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Abstract Crowd counting provides an important
foundation for public security and urban management.
Due to the existence of small targets and large den-
sity variations in crowd images, crowd counting is a
challenging task. Mainstream methods usually apply
convolution neural networks (CNNs) to regress a
density map, which requires annotations of individual
persons and counts. Weakly-supervised methods can
avoid detailed labeling and only require counts as
annotations of images, but existing methods fail to
achieve satisfactory performance because a global
perspective field and multi-level information are usually
ignored. We propose a weakly-supervised method,
DTCC, which effectively combines multi-level dilated
convolution and transformer methods to realize end-
to-end crowd counting. Its main components include
a recursive swin transformer and a multi-level dilated
convolution regression head. The recursive swin trans-
former combines a pyramid visual transformer with a
fine-tuned recursive pyramid structure to capture deep
multi-level crowd features, including global features.
The multi-level dilated convolution regression head
includes multi-level dilated convolution and a linear
regression head for the feature extraction module. This
module can capture both low- and high-level features
simultaneously to enhance the receptive field. In
addition, two regression head fusion mechanisms realize
dynamic and mean fusion counting. Experiments on
four well-known benchmark crowd counting datasets
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(UCF CC 50, ShanghaiTech, UCF QNRF, and JHU-
Crowd++) show that DTCC achieves results superior
to other weakly-supervised methods and comparable to
fully-supervised methods.
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1 Introduction

Crowd counting is an important topic in the field of
crowd analysis: the aim is to estimate the number
of people in an image. With increasing population
and urbanization, there are more and more crowd-
containing localities: e.g., subway platforms, bus
stations, airports, tourist attractions, and shopping
malls. Crowd congestion can occur during peak
hours, with a serious negative impact on public
safety. Accurate crowd counting can help to avoid
crowd congestion, and plays an essential role in public
security, abnormal situation warning, and pedestrian
control.

Significant progress has been made in crowd
counting via computer vision through years of relevant
research. As Fig. 1 shows, existing crowd counting
methods can be classified as depending on object
detection, density estimation, point-supervision, and
weak-supervision. Deep learning-based methods can
also be divided into CNN-based and transformer-
based methods. In an earlier study, researchers used
object detection to solve the crowd counting problem
[1, 2]. However, such methods do not work for dense
scenes: severe occlusion and complex backgrounds
typically occur in such cases, leading to unsatisfactory
results. To solve these problems, some regression-
based approaches have appeared. They usually learn
low-level features (e.g., texture features, edge feature,
etc.) using traditional algorithms and map features to
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Fig. 1 Mainstream crowd counting methods can be classified as
depending on (a) object detection, (b) density estimation, (c) point-
supervision, and (d) weak-supervision.

the number of persons in the crowd through regression
models. However, these methods ignore crowd
distribution information in the image. To make use of
it, Lempitsky and Zisserman [3] proposed a method
based on density estimation which learns a linear
or nonlinear mapping between image features and
density maps. Nonetheless, the features extracted by
traditional methods cannot capture deep-level feature
representations. Therefore, Walach and Wolf [4]
and others [5, 6] have used CNN-based approaches
to regress density maps. The powerful image feature
extraction capability of CNNs enables these methods
to achieve better results. Nowadays, CNN-based
methods have become mainstream for dense scenes.

Recent CNN-based fully-supervised methods
[7–9] achieve excellent results; they require both
a count and annotation of individual people as
supervision. These methods generate the true
density map from individual annotation and regress
the predicted density map. Nevertheless, detailed
individual labeling is tedious, limiting its application.
Therefore, it is fundamental to find a method
that can obtain precise results simply using crowd
counts as annotations. Corresponding deep learning-
based weakly-supervised methods have thus emerged
[10, 11]. However, these existing weakly-supervised
methods usually ignore the extraction of global
receptive fields and multi-level information; they
predict the total count directly from the entire image,

so the global receptive field is important for these
methods. A CNN is limited to extracting a global
receptive field without using a density map due to
the characteristics of local feature extraction. In
2021, a transformer was introduced to the weakly-
supervised crowd counting task [12]. The global
attention of the corresponding network can effectively
overcome the limited receptive field of CNN-based
methods. However, this work cannot effectively
extract multi-level information about the target.
Figure 2 shows an image with targets of different sizes
in the two regions marked in red. Thus, for weakly-
supervised crowd counting, multi-level information is
very important. Sufficient features cannot be learned
to regress counting if multi-level information is not
properly utilized.

This paper proposes DTCC, a pyramid vision
transformer network for weakly-supervised crowd
counting. It comprises a transformer feature extra-
ction module and a multi-level dilated convolution
regression module. The main contributions of this
paper are:
(1) DTCC, a multi-level transformer dilated

convolution weakly-supervised framework, which
is capable of accurate end-to-end crowd counting.

(2) A multi-level crowd information feature
extraction module for dense prediction. The
final feature representation can distinguish
between dense crowd heads and larger scale
crowd heads. The overall framework is a
recursive pyramid structure, which combines a
pyramid vision transformer backbone network
and a fine-tuned recursive pyramid structure
(recursive fine-FPN) to obtain multi-level
contextual crowd information.

(3) A multi-level dilated convolution regression
module, which can enhance the receptive field for
features and capture stronger global features. It
is combined with two networks, DTCC-Dynamic

Fig. 2 An image containing a crowd with people at different scales.
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and DTCC-Mean, as multi-level regression heads
adapted to different crowd scenes.

(4) Experiments on four well-known benchmark
datasets demonstrating better accuracy than
other weakly-supervised methods, with com-
petitive results to mainstream fully-supervised
methods.

2 Related work

2.1 Background

Crowd counting approaches can be divided into two
categories: fully-supervised and weakly-supervised
methods. Fully-supervised methods use a density
map as supervisory information to train the model,
which requires point-level annotations of the crowd.
Weakly-supervised methods only need a count of the
crowd. Mainstream crowd counting methods usually
utilize CNN to regress a density map [23, 26, 44]. The
success of transformer-based methods in computer
vision tasks such as image classification [13–15],
object detection [13, 16, 17], and image segmentation
suggests use of a transformer framework as the
backbone network for crowd counting.

2.2 Fully-supervised crowd counting

CNN-based methods regress a density map and obtain
the total number of people in the crowd by integrating
the density map. Zhang et al. [18] proposed a network
with three differently-sized receptive fields, which
was capable of learning multi-level crowd features.
This method replaces the fully connected layer by
a convolution layer and can modify the size of the
input images. Sam et al. [19] proposed a selective
CNN with several convolution kernels of different
sizes as the density map regression head; a selection
classifier selects the optimal regression head for the
input to predict the result. Li et al. [20] presented
a deeper framework with convolution layers as the
backbone, based on a combination of VGG16 and
dilated convolution layers to expand the receptive
field. It extracted deeper features without losing
resolution. Later advances considered new density
map loss functions with better results: Ma et al.
[21] illustrated a point-supervised loss function for
crowd count estimation, converting a sparse point
labeling into a ground truth density map using
a Gaussian kernel. This was used as a learning
target to train the density map estimator. Liu

et al. [22] used a swin transformer as the backbone
network and a top–down fusion mechanism to fully
utilize the various spatial information extracted from
different stages of the model. Abousamrad et al. [24]
reported a method that uses topological constraints
instead of binary region maps to compute L2 loss
functions for the head and background region. Only
a few methods are based on transformer networks
to realize fully-supervised crowd counting. Among
them, Liang et al. [23] proposed an elegant, end-
to-end crowd localization transformer that solves
the task using a regression-based paradigm. Sun
et al. [25] investigated the role of global contextual
information in crowd counting. This method extracts
global information from overlapping image blocks
using a transformer, and adds contextual tags to the
input sequence. In addition, a token attention module
and regression token module are proposed to predict
the total number of people in images. Gao et al. [26]
showed a dilated convolutional transformer method,
introducing a window-based vision transformer for
crowd counting.

In summary, fully-supervised crowd counting
methods have been extensively studied and have
achieved good results. However, the application of
fully-supervised methods to specific scenes is very
limited, because they require individual annotation to
generate density maps, and it is tedious and difficult
to perform accurate individual annotation for dense
scenes.

2.3 Weakly-supervised crowd counting

Weakly-supervised counting methods just rely on
crowd counts for training. Shang et al. [27] proposed
an end-to-end CNN architecture that exploits shared
computation over overlapping regions. Wang et al.
[28] presented a novel and efficient counter, which
explores embedded global dependency modeling and
total count regression by designing a multi-granularity
regressor. Lei et al. [29] suggested a new multi-
assisted task training strategy, MATT, which learns
from a few images with individual annotations and
many simply with counts to obtain more accurate
predictions. Transformers have an inherent advantage
in weakly-supervised crowd counting, since they
can enhance global information about features and
capture contextual knowledge. TransCrowd [12] was
the first transformer-based crowd counting framework,
which reformulates the counting problem from a
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sequential perspective to a counting perspective.
CCTrans [31] is applicable to both fully-supervised
and weakly-supervised data, and uses Twins [32] as
a feature extraction framework. It combines the
features of multiple stages of the Twins network
through multi-level dilated convolutions for feature
fusion, finally predicting the number of people through
a regression head. Savner and Kanhangad [52] proposed
an architecture based on a pyramid vision transformer
network to extract multi-scale features with global
context. Wang et al. [53] proposed a joint CNN
and transformer network based on weakly-supervised
learning to reduce the number of parameters and
overcome the problem of target segmentation.

Without annotations of individuals, weakly-
supervised crowd counting is challenging. Existing
weakly-supervised methods cannot extract sufficient
global features and multi-level information, leading
to the loss of collective semantic information and a
failure to provide rich global features for the final
regression. Using a global attention mechanism
provides a new way to design an effective weakly-
supervised crowd counting model.

3 Method

3.1 Approach

Existing weakly-supervised crowd counting methods
have two problems to be solved: extraction of a
global receptive field and utilization of multi-level
information. Therefore, this paper introduces a swin
transformer to capture global features. A feature
pyramid structure is also introduced to enrich the

multi-level feature representation, so that single-level
features contain rich multi-level information. In
addition, since the window attention mechanism of
the swin transformer processes image patches, this
alleviates the problem of uneven distribution of the
crowd to a certain extent. To enhance the receptive
field of features, a multi-level dilated convolution
module is designed for the swin transformer, to
solve the problem of local domain loss by dilated
convolutions. Based on the above ideas, we propose
DTCC, an end-to-end weakly-supervised method for
crowd counting, which can provide accurate crowd
counts based only on crowd count annotations.

3.2 Network architecture of DTCC

The framework of DTCC is shown in Fig. 3. The
input image is divided into blocks of the same
size and converted into a 1D sequence for the
swin transformer. DTCC is composed of two main
modules. The recursive swin transformer feature
extraction module consists of a swin transformer [13]
and the recursive fine-FPN. The multi-level dilated
convolution regression head module consists of a
multi-level dilated convolution and a linear regression
head. The counting results from multi-level feature
regression are given different weights to obtain the
final count.

For feature extraction, the swin transformer is
composed of a transformer-encoder. Therefore,
the 2D image structure must be converted to a
1D sequence required as input to a transformer-
encoder. This network is commonly used in natural
language processing, but can also get good results

Fig. 3 Network architecture of DTCC.



DTCC: Multi-level dilated convolution with transformer for weakly-supervised crowd counting 863

in computer vision by using ViT [30] to solve the
input problem.

The input image to the swin transformer is defined
as X ∈ RH×W×C , where H, W , C represent the
height and width of the image and the number of
channels, respectively. Firstly, the image is divided
into image patches of size P × P . Thus the image
of size H × W × C is divided into patches X ′ ∈
RN×P×P×C , where N = (H/P )×(W/P ). Then, each
image patch is linearly transformed into a sequence
of length P 2 × C for input to the model. Therefore,
the input image is transformed into Z ∈ RN×T by
preprocessing, where T = P 2 × C. The feature
extraction backbone network of swin transformer
calculates local window attention, and performs image
embedding operations in the window for each image
patch. It uses two operations for dividing windows.
The image is first divided into image patches, and
then the image patches are divided by moving
windows. This method moves non-overlapping local
windows, which reduces computational complexity to
linear in image size.

3.3 Recursive swin transformer

3.3.1 Approach
The recursive swin transformer (RST) effectively
combines the pyramid structure transformer back-
bone with the recursive fine-FPN. For crowd counting
in dense prediction tasks, the swin transformer has
a pyramid structure similar to a CNN which can
extract multi-level feature representations of images.
The self-attention mechanism of transformer solves
the disadvantages of local feature extraction in CNNs
and can capture stronger global features. In addition,
the window attention mechanism of swin transformer
is executed on image patches, which alleviates the
problem of uneven distribution of the crowd to a
certain extent. Recursive fine-FPN iteratively fuses
multi-level features to observe multiple views of the
image, and produces richer feature representations
for the regression head.
3.3.2 Transformer backbone network
The transformer backbone network inputs Z ∈ RN×T

to the transformer encoder and uses a multi-headed
attention mechanism to extract features (since the
visual task does not require the encoding part,
only the decoding part is utilized). The transformer
encoder consists of multi-head self-attention (MSA)

and MLP layers, while each layer uses residual
connections and layer normalization (LN). The overall
process is given by

Z ′l−1 = MSA (LN (Zl−1)) + Zl−1 (1)
Zl = MLP (LN (Z ′l)) + Z ′l−1 (2)

where Z ′l−1 is the output of MSA.
Self-attention is the most important contribution

of the transformer. The attention mechanism can
assign different weights to input information when
aggregating information. Briefly, the mechanism
can learn the attention between a sequence and
other sequences, which is a weight matrix from an
operational point of view. There are three concepts
in attention: the query (Q), the key (K), and the
value (V ). Each sequence outputs Q, K, and V

by multiplying by the W Q, W K , and W V matrices
where K and V exist in pairs. The attention between
different sequence pairs for each subsequence Q is

Attention (Q, K, V )=SoftMax
(

QKT/
√

d
)

V (3)
where d is the size of the query and key.

The original transformer structure also adds a
positional encoding to provide location information.
ViT [30] does not use the default fixed positional
encoding and instead sets the positional encoding to a
set of learnable 1D sequences. The position encoding
used by swin transformer has two differences: the
position encoding is different, and it is added to the
attention matrix. Relative position information is
used instead of absolute position information. The
attention can be written as

Attention (Q, K, V ) = SoftMax(QKT/
√

d + B)V
(4)

where B is the relative position bias matrix.
The attention mechanism in the transformer is

multi-head attention, using h heads to compute
attention. This allows the model to focus on different
aspects of information. The input sequence Z ∈
RN×T is divided into h sequential inputs of size
Z ∈ RN×d, where T = h × d. Finally, this module
concatenates the output from the h heads and obtains
the final output using a linear transformer.

The swin transformer is a pyramid structure
that can handle multiple levels as well as reducing
complexity. This network consists of four transformer
network layers to calculate local attention, with step
sizes for the four stages given by P = [4, 8, 16, 32].
The swin transformer combines two types of window
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division method which effectively captures both local
and global attention.
3.3.3 Recursive fine-FPN
As Fig. 4 shows, we add a recursive feature pyramid
structure [46] after the transformer; it is inspired by
the idea of looking and thinking twice before acting.
This network can deliver better semantic information
through feedback connections in the structure of the
fine-FPN. Multi-level features are extracted and fed
back to the transformer backbone layer to realize
bottom–up connections for the corresponding network
layer. It is important to note that our method uses a
recursive feature pyramid network to fuse the features
from different stages, which differs from the winner
of ICCV-VisDrone [22]. This architecture can look at
images twice or more, so can better observe detailed
information in a dense crowd image.

The fine-FPN solves the multi-level problem
in crowd counting tasks through simple network
connections. The overall display is a bottom–up
structure that integrates features at different scales.
Each layer of fine-FPN first adjusts the number of
channels using 1× 1 Conv, and up-sampling features
from the previous stage. Next, it performs fusion
by a simple add operation, and finally the 3 × 3
Conv is used to eliminate blending effects. fine-FPN
improves upon the original FPN: we up-sample the
fused features after 3 × 3 Conv to give the higher-
level fused features, improving robustness. A two-
level recursive feature pyramid is used in this paper,
defined as

M ′ = fine FPN(SwinT(M ′)) (5)
M = fine FPN(SwinT(M ′ + X)) (6)

where M ′ is the output of the first stage fine-FPN and
M is the final output. We use the same method to
combine them as for combining the fine-FPN output
and the output of the swin transformer.
3.4 Multi-level dilated convolution regression

head

The density of people in images varies greatly
in the crowd counting task, and images contain
objects at different scales. Therefore, extraction
of global features is an important foundation for
weakly-supervised crowd counting. We use a multi-
level dilated convolution regression head to enhance
the receptive field of features. As Fig. 3(b) shows,
the multi-level dilated convolution regression head
(M-DRH) module consists of multi-level dilated
convolution and multi-headed linear regression layers.
Dilated convolution is commonly used in computer
vision to collect contextual information without
adding extra parameters, while widening the receptive
field. The dilation rate represents the interval used
in the convolution kernel. When the rate is equal to
1, the result is the same as ordinary convolution.

Using the output of multi-level features from RST,
the M-DRH module performs mutli-level dilated
convolution for various features. The dilation rate
is inversely proportional to feature level: [2, 3, 4].
At the same time, the M-DRH module avoids the
problem of local information loss resulting from
dilated convolution; the swin transformer has four
stages which can realize down-sampling to extract
multi-level features as in CNN-based crowd counting
methods. The down-sampling rate of each stage
is 2, so the elements are selected at a row- and

Fig. 4 Recursive fine-FPN network architecture.
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column-wise interval of 2. See Fig. 5: K ′ is the
next stage of output to K, and green shows where
convolutional operations are performed while white
means that no convolution is performed. Down-
sampling for the swin transformer merges features
near four points. So, K ′12 is composed of K(1−2)(3−4)
and K ′13 is composed of K(1−2)(5−6). We perform
dilated convolution with dilated rate of 2 and 3
for K ′ and K, respectively. K ′12 does not pass
the operation of convolution and K(1−2)(3−4) has
convolution operation. Although K(1−2)(5−6) pixel
blocks are not the operation of convolution, but K ′13
has convolution operation, and so on for the other
parts. This mechanism ensures that our proposed
M-DRH is able to avoid the problem of local feature
loss by dilated convolution.

Since crowd images contain head information at
multiple scales, different levels of crowd head feature
maps have different advantages. Therefore, we use
multi-level feature maps to regress results and a
dynamic layer to learn optimal fusion parameters.
Specifically, an activation function and linear layer
overlay component are designed to perform regression
on multi-level features simultaneously. We use two
kinds of fusion mechanism. In Fig. 6(left), we add a
dynamic layer of parameters to learn fusion weights
for the three regression results; this layer contains
three learnable parameters. In Fig. 6(right), we
directly average the three regression results to get
the final result.

3.5 Loss function

The number of people in dense scenes can be relatively
large. However, the L1 loss function commonly used
in related studies has fold points which can lead to

Fig. 5 Dilated convolution for different levels of image patches.

Fig. 6 Two types of regression head for DTCC.

instability in the case of large counts. In this paper,
the SmoothL1 [33] loss function is used to ensure
smooth output and enhance robustness; it is less
likely to cause gradient explosion. It is given by

SmoothL1(p, D) =
{

0.5x2, |x| < 1
|x| − 0.5, otherwise

(7)

where x = p −D represents the difference between
the predicted result p and the ground truth D.

The feature extraction backbone network outputs
multi-level feature representations which solves the
problem of target scale change in images. Therefore,
two regression head fusion mechanisms are used in
this paper. DTCC-Dynamic uses a dynamic network
layer to automatically learn different fusion weights,
with loss function:

LD = SmoothL1((ae1 + be2 + ce3), D) (8)
where the multi-level regression values are e1, e2, e3,
and the output of the dynamic layer is defined as a,
b, c. DTCC-Mean takes the mean of the predicted
values, so the loss function of DTCC-Mean is

LM = SmoothL1
(

e1 + e2 + e3

3 , D

)
(9)

4 Experiments

4.1 Overview

In this section, we evaluate DTCC using several public
crowd counting datasets: ShanghaiTech, UCF CC 50,
UCF QNRF, and JHU-Crowd++. We compare our
results to those of both weakly-supervised and fully-
supervised methods in Tables 1–3. In addition, results
of ablation experiments conducted to evaluate each
component of the proposed framework are shown in
Tables 4–6.

4.2 Experimental setting

4.2.1 Datasets
We used the following datasets:
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Table 1 Comparison, in terms of MAE and MSE, of the proposed method to other popular methods on UCF CC 50, ShangHaiA, ShangHaiB,
UCF QNRF

Method Venue
Label UCF CC 50 ShanghaiA ShanghaiB UCF QNRF

Location Number MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [35] CVPR16 X X 277.0 426.0 110.2 173.2 26.4 41.3 277.0 426.0
CMTL [43] AVSS17 X X 322.8 397.9 101.3 152.4 20.0 31.1 252.0 514.0
Switching CNN [17] CVPR17 X X 318.1 439.2 90.4 135.4 21.6 33.4 228.0 445.0
CP-CNN [44] ICCV17 X X 298.8 320.9 73.6 106.4 20.1 30.1 — —
ACSCP [45] CVPR18 X X 291.0 404.6 75.7 102.7 17.2 27.4 — —
CSRNet [20] CVPR18 X X 266.1 397.5 68.2 115.0 10.6 16.0 — —
CAN [37] CVPR19 X X 212.2 243.7 62.3 100.0 7.8 12.2 107 183
PACNN [39] CVPR19 X X 267.9 357.8 66.3 106.4 8.9 13.5 — —
S-DCNet [40] ICCV19 X X 204.2 301.3 58.3 95.0 6.7 10.7 104.4 176.1
BL [21] ICCV19 X X 229.3 308.2 62.8 101.8 7.7 12.7 88.7 154.8
RPNet [47] CVPR20 X X — — 61.2 96.9 8.1 11.6 — —
ADSCNet [38] CVPR20 X X — — 55.4 97.7 6.4 11.3 71.3 132.5
GL [48] CVPR21 X X — — 61.3 95.4 7.3 11.7 — —
P2PNet [41] ICCV21 X X 172.7 256.2 52.7 85.1 6.3 9.9 85.3 154.5
SASNet [54] AAAI21 X X 161.4 234.5 53.5 88.3 6.3 9.9 85.2 147.3
CCTrans [31] arXiv21 X X 168.7 234.5 52.3 84.9 6.2 9.9 82.8 142.3
MATT [29] PR21 % X 355.0 550.2 80.1 129.4 11.7 17.5 — —
TransCrowd [12] SCIS22 % X — — 66.1 105.1 9.3 16.1 97.2 168.5
CCTrans [31] arXiv21 % X 245.0 343.6 64.4 95.4 7.0 11.5 92.1 158.9
DTCC-Dynamic (ours∗) — % X 211.1 319.9 60.8 97.0 7.2 10.8 88.7 162.4
DTCC-Mean (ours∗) — % X 182.9 312.6 64.8 100.0 8.3 12.2 93.2 168.9

Table 2 Results on the JHU-Crowd++ validation set. Low, Medium, and High refer to images with up to 50, 50–500, and over 500 people,
respectively

Method Venue
Label JHU-Low JHU-Medium JHU-High JHU-Total

Location Number MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [35] CVPR16 X X 90.6 202.9 125.3 259.5 494.9 856.0 160.6 377.7
CMTL [43] AVSS17 X X 50.2 129.2 88.1 170.7 583.1 986.5 138.1 379.5
DSSI-Net [49] ICCV19 X X 50.3 85.9 82.4 164.5 436.6 814.0 116.6 317.4
CAN [37] CVPR19 X X 34.2 69.5 65.6 115.3 336.4 619.7 89.5 239.3
SANet [50] ECCV18 X X 13.6 26.8 50.4 78.0 397.8 749.2 82.1 272.6
CSRNet [46] CVPR18 X X 22.2 40.0 49.0 99.5 302.5 669.5 72.2 249.9
CG-DRCN [36] PAMI20 X X 17.1 44.7 40.8 71.2 317.4 719.8 67.9 262.1
MBTTBF [55] ICCV19 X X 23.3 48.5 53.2 119.9 294.5 674.5 73.8 256.8
SFCN [11] CVPR19 X X 11.8 19.8 39.3 73.4 297.3 679.4 62.9 247.5
BL [21] ICCV19 X X 6.9 10.3 39.7 85.2 279.8 620.4 59.3 229.2
TransCrowd-Token [12] SCIS22 % X 7.1 10.7 33.3 54.6 302.5 557.4 58.4 201.1
TransCrowd-GAP [12] SCIS22 % X 6.7 9.5 34.5 55.8 285.9 532.8 56.8 193.6
DTCC-Dynamic (our*) — % X 4.8 7.0 28.6 44.9 261.2 546.4 51.6 204.1
DTCC-Mean (our*) — % X 4.6 6.8 29.3 44.7 266.5 566.1 54.0 187.8

(1) UCF CC 50 [34] consists of 50 images in total,
divided into training and validation sets in a ratio
of 4:1. The dataset contains a small number
of images and high density variation, with a
maximum of 4633 people and a minimum of 96
people, with an average count of 1297.

(2) ShanghaiTechA [35] consists of 482 images
in total, with 300 training images and 182
validation images. The images were randomly
crawled from the Internet, so the images have a
very wide range of sources. The images contain an
average of 501 and a range of 33–3139 people.
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Table 3 Results on the JHU-Crowd++ test set. Low, Medium, and High refer to images with up to 50, 50–500, and over 500 people,
respectively

Method Venue
Label JHU-Low JHU-Medium JHU-High JHU-Total

Location Number MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [35] CVPR16 X X 97.1 192.3 121.4 191.3 618.6 1166.7 188.9 483.4

CMTL [43] AVSS17 X X 58.5 136.4 81.7 144.7 635.3 1225.3 157.8 490.4

DSSI-Net [49] ICCV19 X X 53.6 112.8 70.3 108.6 525.5 1047.4 133.5 416.5

CAN [37] CVPR19 X X 37.6 78.8 56.4 86.2 384.2 789.0 100.1 314.0

SANet [50] ECCV18 X X 17.3 37.9 46.8 69.1 397.9 817.7 91.1 320.4

CSRNet [46] CVPR18 X X 22.2 40.0 49.0 99.5 302.5 669.5 72.2 249.9

CG-DRCN [36] PAMI20 X X 19.5 58.7 38.4 62.7 367.3 837.5 82.3 328.0

MBTTBF [55] ICCV19 X X 19.2 58.8 41.6 66.0 352.2 760.4 81.8 299.1

SFCN [11] CVPR19 X X 16.5 55.7 38.1 59.8 341.8 758.8 77.5 297.6

BL [21] ICCV19 X X 10.1 32.7 34.2 54.5 352.0 768.7 75.0 299.9

TransCrowd-Token [12] SCIS22 % X 8.5 23.2 33.3 71.5 368.3 816.4 76.4 319.8

TransCrowd-GAP [12] SCIS22 % X 7.6 16.7 34.8 73.6 354.8 752.8 74.9 295.6

DTCC-Dynamic (our*) — % X 7.7 19.1 30.9 50.8 296.0 652.3 64.1 254.7

DTCC-Mean (our*) — % X 8.4 17.3 33.7 55.9 302.1 651.8 66.9 255.1

Table 4 Numbers of parameters and GFlops used by DTCC and
various mainstream crowd counting methods

DTCC DCST SASNet TransCrowd

Venue — CVPR21 AAAI21 SCIS22
GFlops 218.2 154.8 130.9 49.3
Params 205.1 252.3 38.9 89.1

Table 5 Multi-level dilated convolution regression head ablation
experiment

Method
ShanghaiA ShanghaiB

MAE MSE MAE MSE

DTCC (w/o M-DRH) 63.8 103.5 8.9 13.3
DTCC 60.8 97.0 7.2 10.8

Table 6 Experiment on choice of dilation rates

Dilation rates
ShanghaiA ShanghaiB

MAE MSE MAE MSE

1, 2, 3 64.9 101.0 7.7 11.5
2, 3, 4 60.8 97.0 7.2 10.8
3, 4, 5 62.5 97.2 7.7 11.7

(3) ShanghaiTechB [35] consists of 716 images
in total, with 400 training images and 316
validation images. These are real images from
the streets of Shanghai, captured by road
cameras. The images contain an average of 123
and a range of 9–578 people.

(4) JHU-Crowd++ [36] consists of 4822 images in
total, with 2722 training images, a validation set
of 500 images, and a test set of 1600 images. This

dataset has rich image information including
count, person center coordinates, head frame
coordinates, weather information, and lighting
conditions. It can also be divided into three
datasets according to the number of people
contained: JHU-Low, JHU-Medium, and JHU-
High. The images contain an average of 437 and
a range of 2–7286 people.

(5) UCF QNRF [51] consists of 1535 images in
total, with 1201 training images and a validation
set of 334 images. It contains real scenes
from around the world, including buildings,
vegetation, sky, and roads, which are important
for counting crowds in different situations. The
images contain an average of 815 and a range of
49–12,865 people.

4.2.2 Baselines and compared methods
In order to verify the effectiveness of our method,
we choose a large number of comparator methods
including mainstream fully-supervised and state-of-
the-art weakly-supervised methods. Fully-supervised
methods need both person location and count
annotations, and include CAN [37], ADSCNet [38],
PACNN [39], S-DCNet [40], and P2PNet [41].
Weakly-supervised methods only need count
annotations, and include that of MATT, TransCrowd,
and CCTrans. In particular, TransCrowd and CCTrans
also use a transformer as the backbone network for
feature extraction.
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4.2.3 Implementation details
We used the Swin-L model pre-trained on ImageNet-
22K to speed up convergence of the model. For
the backbone network of the swin transformer, the
number of heads used was [6, 12, 24, 48], the position
embedding was a position bias matrix, the window
size was 12, the number of layers was [6, 12, 24, 48],
and the number of channels in the hidden layer of
the first stage was 192. In the training section, we
strictly followed the input image size requirement of
384 × 384 for Swin-L. We used the same approach
as TransCrowd [12]: we resize all original images to
1152× 768 (landscape) or 768× 1152 (portrait), then
cropped each image into 6 blocks of size 384×384, and
calculated the number of people in each image block
by location annotation of the people in the image. We
also utilized data augmentation strategies, such as
random flipping and gray scaling. For compatibility
with the operation of dividing each image into 6
image blocks, the training batch size was set to 24.
All experiments were executed on a Linux system
with an Intel E5-2620v4 Xeon CPU at 2.10 GHz and
an NVidia P100 16 GB Tesla. The learning rate was
set to 10−5 initially and decreased to 10−6 in the final
epoch.

In the evaluation phase, we choose the widely
accepted MSE and MAE as metrics:

MAE = 1
N

N∑
i=1
|Pi −Gi| (10)

MSE =

√√√√ 1
N

N∑
i=1
|Pi −Gi|2 (11)

where N is the number of images, and Pi and
Gi represent the i-th predicted count and ground
truth, respectively. The MAE represents the mean
absolute error, and is a very intuitive evaluation
metric representing the distance between predicted
value and ground truth. MSE better represents the
stability of the model.

4.3 Comparison to existing methods

Our method, with alternatives DTCC-Dynamic and
DTCC-Mean, shows good accuracy compared to other
weakly-supervised methods. Table 1 gives errors for
the UCF CC 50, ShanghaiTech, and UCF QNRF
datasets. UCF CC 50 has only a few images, and
they are all of dense crowds. Without increasing the
amount of data, our method has made significant

progress compared to other weakly-supervised
methods. DTCC-Mean achieves better results than
DTCC-Dynamic, showing that using an average
fusion mechanism for the regression head can provide
good accuracy and robustness given a small amount
of data. The ShanghaiTech partA dataset comes from
a wide range of scenes with large variations in crowd
density, so accurately estimating the number of people
is very challenging. Our proposed method DTCC-
Dynamic achieves the best MAE. This indicates
that our backbone swin transformer network can
better adapt to different densities, while the dynamic
fusion regression head can learn optimal ratios from
a large number of datasets. However, the MSE
metrics is less satisfactory. So, in the presence of
anomalies, our method still needs to be improved. On
ShanghaiTech partB, DTCC again achieves significant
improvements over other weakly-supervised methods.

For the JHU-Crowd++ dataset, we conducted
experiments on the validation set (Table 2) and test
set (Table 3) separately. We divided the dataset into
three count levels of low (0–50), medium (51–500),
high (500+), and also aggregated total results. For
the validation set, DTCC achieves the better results
than other weakly-supervised methods, and shows
competitive results when compared to mainstream
fully-supervised methods. To further demonstrate the
effectiveness of the proposed DTCC, we conducted
further experiments on the test set using the pre-
trained model parameters of JHU-Total. In this
case, for the JHU-Low dataset, our proposed method
achieves competitive results, differing slightly from
the state-of-the-art weakly-supervised method. On
JHU-Medium, our method achieves the best estimates
compared to other weakly-supervised methods; it
shows a strong advantage for this higher density
dataset. On JHU-High further improvements are seen.
The proposed dynamic fusion mechanism achieves
better results: dynamic learning parameters provide
good fault tolerance for ultra-dense scenes. JHU-
Total contains all horizontal images, and the density
range of the dataset is large, which requires a robust
model. The good improvements to MAE and MSE,
show that our method has not only high accuracy
but also good stability.

4.4 Visualization of feature maps

To verify the effectiveness of our method, we
visualized feature maps on ShanghaiTech PartA using
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heat maps. As noted, each image is split into six
sub-images to input into the model, which can be
seen in the visualization. Figure 7 shows that our
method pays more attention to dense image regions
and adapts to different scenes. It can also be seen
that there are a few areas incorrectly given attention
due to the lack of individual person annotations.

4.5 Computational cost

To evaluate the all-round performance of DTCC, we
calculated the number of parameters and GFlops
consumed by the model. Table 4 compared the
results with other mainstream full-supervised and
weakly-supervised crowd counting methods. DTCC
consumes more computing resources than other
methods, because it uses the swin transformer as its
backbone network. Using a recursive swin transformer
further increases the cost. However, the cost of our
work is still of the same order of magnitude as that
of other works, with no major impact on practical
applications.

4.6 Ablation experiments and tuning

We conducted various ablation experiments on the
DTCC-Dynamic version using the ShanghaiTech
dataset to verify the contribution of each module
and to justify the reasoning behind it, and to tune
operation.
4.6.1 Multi-level dilated convolution regression head
Table 5 shows results of an ablation experiment on

Fig. 7 Visualization of feature maps.

use of the multi-level dilated convolution regression
module. By comparing the results with and without
M-DRH, we can see that introducing the multi-
level dilated convolutional regression head improves
counting accuracy. This justifies our assumption
that multi-level feature relationship modeling can
capture different scales of crowd information in
images with dense crowd scenes. In addition, the
presence of the dilated convolution can enhance the
global receptive field, which is important for weakly-
supervised methods in crowd counting.

We conducted further experiments to assess
different choices of dilation rate. As Table 6 shows,
optimal results were obtained by setting the dilation
rates to [2, 3, 4]. Using too small dilation rates does
not enhance the receptive field of features enough,
while using too large dilation rates may lead to loss of
local features. As a compromise, we set the dilation
rates to [2, 3, 4].

We also performed experiments with different multi-
level features for weakly-supervised methods, as
reported in Table 7. Dilation rates 1, 2, 3 represent
feature maps with resolutions of 12×12, 24×24, and
48× 48, respectively. Adding successive feature maps
of different resolutions improves the model’s results
significantly, demonstrating that multi-level features
are important to our method.
4.6.2 Recursive fine-FPN
In Table 8, a baseline of DTCC-Dynamic was used; it
compares results of using the baseline with recursive
FPN, and using the baseline with recursive fine-FPN.
We can see that using fine-FPN achieves better results
than the original FPN. This indicates that for crowd
counting, fusion of deep features upsampled by 3× 3
Conv can provide better performance.

Table 7 Experiment on use of multi-level features

Dilation rates
ShanghaiA ShanghaiB

MAE MSE MAE MSE

1 63.8 97.2 8.1 13.0
1, 2 62.7 96.4 7.9 12.1

1, 2, 3 60.8 97.0 7.2 10.8

Table 8 Ablation experiment on recursive fine-FPN

Module
ShanghaiA ShanghaiB

MAE MSE MAE MSE

Recursive FPN 62.1 99.0 8.0 12.5
Recursive fine-FPN 60.8 97.0 7.2 10.8
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We performed further experiments on the pyramid
structure. The baseline was DTCC-Dynamic method
without any pyramid structures. Table 9 compares
results of three sets of experiments, using baseline,
baseline with fine-FPN, and baseline with recursive
fine-FPN. Addition of the pyramid structure
effectively improves the accuracy of the model;
the recursive pyramid structure achieves the best
accuracy. Due to the features at the last level of the
transformer output, pixel information is easily lost
in the process of increasing the step size for patches.
Using the recursive fine-FPN causes extra feedback
connections from fine-FPN to be incorporated into
the bottom–up backbone layers, allowing all levels of
feature maps to have strong contextual information.
4.6.3 Loss function
We separately evaluated the commonly used L1 and
SmoothL1 [33] loss functions. From the results in
Table 10, it can be concluded that SmoothL1 gives
better results. SmoothL1 is more stable and can
adapt well to both large and small errors.

Table 9 Experiments on feature pyramid

Module
Shanghai-A Shanghai-B

MAE MSE MAE MSE

DTCC w/o fine-FPN 68.1 118.6 9.6 16.9

fine-FPN 64.5 103.1 8.3 13.1

Recursive fine-FPN 60.8 97.0 7.2 10.8

Table 10 Choice of loss function

Method
ShanghaiA ShanghaiB

MAE MSE MAE MSE

L1 62.1 99.0 8.0 12.5

SmoothL1 60.8 97.0 7.2 10.8

5 Conclusions

This work proposes a pyramidal vision transformer
network for weakly-supervised crowd counting; it
can achieve end-to-end crowd counting. A multi-
level feature extraction module and a multi-level
dilated convolutional regression module are designed
for dense prediction tasks; they can better capture
global features and generate more reasonable features
for weakly-supervised crowd counting. Extensive
experiments on four well-known benchmark datasets

demonstrate that DTCC achieves superior counting
performance compared to other mainstream weakly-
supervised methods and is competitive with some
fully-supervised methods.

In future, we plan to further investigate a more
concise feature extraction backbone network for
crowd counting, and design a better regression head
for prediction. In addition, we also intend to further
extend DTCC to other dense prediction scenarios,
such as traffic counting for intelligent transportation.
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