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Abstract Since the preparation of labeled data
for training semantic segmentation networks of point
clouds is a time-consuming process, weakly supervised
approaches have been introduced to learn from
only a small fraction of data. These methods are
typically based on learning with contrastive losses while
automatically deriving per-point pseudo-labels from a
sparse set of user-annotated labels. In this paper, our
key observation is that the selection of which samples
to annotate is as important as how these samples
are used for training. Thus, we introduce a method
for weakly supervised segmentation of 3D scenes that
combines self-training with active learning. Active
learning selects points for annotation that are likely
to result in improvements to the trained model, while
self-training makes efficient use of the user-provided
labels for learning the model. We demonstrate that
our approach leads to an effective method that provides
improvements in scene segmentation over previous
work and baselines, while requiring only a few user
annotations.

Keywords semantic segmentation; weakly supervised;
self-training; active learning

1 Introduction

Recent years have seen the introduction of approaches
for semantic segmentation of point clouds, which
have been quite successful in providing meaningful
segmentations of indoor scenes [1–4]. Much of this
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success is due to the use of deep learning methods
combined with the availability of large amounts of
labeled data, e.g., datasets such as ScanNet [5] and
S3DIS [6]. However, the applicability and scalability
of these methods to new contexts is limited, since
creating training data is a time-consuming task,
involving the manual labeling of points.

To address the dependency of segmentation
methods on large amounts of training data, methods
for weakly supervised segmentation have been
introduced, which require only a fraction of the
training data commonly used. These methods either
estimate pseudo-labels for the data in order to train
segmentation networks [7–9], or use variations of a
contrastive loss for enabling learning transfer [10–12].

The recent “one thing one click” method [14]
introduces an iterative self-training approach that
alternates between training and label propagation,
where the labels from points annotated by the user
are propagated to unlabeled data based on a learned
data similarity measure. The method achieves some
of the best results among weakly supervised methods
by training on data with only one label per object.
However, the user is responsible for manually selecting
one point per object, which can be difficult in
cluttered scenes. Moreover, the method is quite
complex, involving the combination of two networks,
one for semantic segmentation and the other for
similarity learning, trained in an iterative manner
with a contrastive loss. The extra complexity of
training a similarity estimation network is necessary
for accurate label propagation during self-training.

In this paper, we introduce a method for weakly
supervised segmentation that combines self-training
with active learning [15–17]. Our focus is on
improving the selection of samples to be annotated
while simplifying the label propagation step. The
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active learning method we introduce automatically
selects the points that have to be annotated by the
user according to an uncertainty measure, reducing
the amount of work involved in the annotation task,
and querying the user for annotations of the points
likely to lead to considerable improvements in the
model’s results. In addition, our self-training method
is much simpler, requiring only the training of a
segmentation network. We perform label propagation
based on scene geometry via super-voxels, without
the need to train a similarity estimation network,
which is unnecessary for the final segmentation task.

We demonstrate that active learning combined with
our simpler self-training pipeline leads to improved
point cloud segmentation results for indoor scenes,
compared to previous approaches and baselines. As
Fig. 1 shows, we obtain higher mIoUs than previous
works on two established datasets of indoor scenes:
ScanNet and S3DIS. In addition, we show that
selecting points according to active learning, which
can potentially query multiple points for the most
challenging objects to segment, leads to improved
results compared to selecting a single point per object,
while still requiring the same number or fewer user
annotations.

Fig. 1 Comparison of our weakly supervised semantic segmentation
method to Liu et al. (denoted 1T1C or 1T3C depending on the
amount of annotation data used) and a fully-supervised method with
the same backbone as ours [13], on two datasets of 3D scenes. Our
method achieves better results (left axis) while using an equal or
smaller number of user annotations than other weakly supervised
methods (right axis).

2 Related work

2.1 Understanding 3D scenes

3D scenes are commonly scanned from the
environment and represented as point clouds, and
their understanding involves solving problems such

as 3D object detection, classification, semantic
segmentation, and instance segmentation. The
problem most related to our paper is semantic
segmentation of point clouds, and thus we discuss it
in more detail here.

Earlier solutions for scene segmentation transform
point clouds into volumetric grid representations
for processing with convolutional neural networks
(CNNs) [18]. However, since it is unnatural to
represent sets of points as a volumetric grid,
several approaches have been introduced for directly
processing point clouds, such as variations of
PointNet [1, 19] that make use of the symmetric max
pooling operation, or generalizations of convolution
to sets of points, such as Li et al., Thomas et al.,
Wu et al. [20], Komarichev et al. [21], Su et al. [22],
and hybrid approaches such as Liu et al. [23] and
Han et al. [4]. Ye et al. [24] use two-direction
hierarchical recurrent neural networks to extract long-
range spatial dependencies in the point cloud. Guo et
al. [25] design a point cloud processing architecture
comprised of transformers. Peng et al. [26] propose a
part-level semantic segmentation annotation method
for a single-view point cloud using the guidance of
labeled synthetic models.

A few methods are also based on other data
representations, such as multiple 2D views [27],
combined 2D/3D information [28], hash tables that
enable sparse convolution [29], and graphs [30].
Tatarchenko et al. [31] project features into predefined
regular domains and apply 2D CNNs to the domain.
Some works focus on online segmentation, which aims
to perform real-time 3D scene reconstruction along
with semantic segmentation [32, 33]. We base the
backbone of our segmentation network on the 3D U-
Net architecture [13], which implements the efficient
generalized sparse convolution.

2.2 Weakly supervised segmentation

In our paper, we address the weakly-supervised
semantic segmentation of point clouds with limited
annotations. Recently, a few methods have been
introduced that have made significant advances in
solving this problem. Xu et al. directly label a small
number of points (around 10% of the data) and
train an incomplete supervision network with spatial
smoothness constraints, showing that the learning
gradient of the insufficient supervision approximates
the gradient of the full supervision. Other methods
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generate pseudo-labels for the unlabeled data based
on a small set of labeled samples. For example, Wei
et al. perform weak supervision with labels that only
indicates which classes appear in the training samples.
These labels are transformed into point pseudo-labels
with a region localization method. Cheng et al. [34]
propagate sparse point labels to the unlabeled data using
a graph of superpoints extracted from the point cloud.

Another important line of work investigates the
use of contrastive losses for learning transfer when
processing point clouds. Xie et al. perform the
first studies in this regard, showing that learning
transfer is possible for point cloud processing.
Moreover, Jiang et al. use a contrastive loss to
guide semantic segmentation, while Hou et al. extend
the contrastive loss to integrate spatial information.
Zhang et al. [35] use a self-supervised method in
a contrastive framework to pre-train point cloud
processing networks with single-view depth scans.
The networks can then be fine-tuned for multiple
tasks such as segmentation and object detection.
Liu et al. combine self-training based on contrastive
learning with a label-propagation mechanism in the
“one thing one click” method, achieving some of the
best results for point cloud segmentation. In contrast,
we introduce a method that provides more effective
selection of labeled samples by active learning, while
simplifying label propagation, achieving significant
improvements over previous works.

2.3 Active learning

Active learning approaches seek to minimize manual
annotation effort by strategically querying the user

for those annotations that maximize the improvement
of the learned models. This is typically an iterative
process involving the selection of points to be labeled
and then updating a model based on the new
annotations. Earlier active learning approaches for
segmentation focused on the annotation of 3D shapes,
such as the method of Yi et al. [36], querying
users for annotation and verification. More recent
approaches focus on the annotation of point clouds
of scanned objects, e.g., as in the method of Hu et
al., simultaneously performing reconstruction and
segmentation.

For point clouds of entire scenes, Wu et al.
introduce an active learning approach that measures
the uncertainty in the point cloud labeling and selects
diverse points to minimize redundancy in the point
selection. Shi et al. maximize model performance for
a limited annotation budget by measuring consistency
at the super-point level. We also incorporate iterative
active learning into our method, although we measure
uncertainty based on the stochastic behavior of a
segmentation network, leading to an effective sample
selection for segmentation.

3 Self-training with active learning

3.1 Overview

An overview of our method is illustrated in Fig. 2.
Our goal is to train a 3D semantic segmentation
network (3D U-Net in Fig. 2) that is able to predict
accurate semantic labels for the input point cloud
X representing a 3D scene. Our key insight is

Fig. 2 Overview of our method: (a) Given an input scene, we train a neural network to predict (b) a semantic segmentation of the point cloud.
Based on the uncertainty of the prediction (c), an active learning method selects a small set of samples which are (d) annotated by a user, where
the selected samples are shown as big dots and the samples of previous iterations are shown as small dots. The labels are (f) propagated to the
entire point cloud based on (e) an over-segmentation of the points into super-voxels. At the same time, a self-training method selects (i) a set of
pseudo labels with (h) the mask determined based on (g) label confidence. The network is then refined based on the (f) true propagated and
(i) pseudo labels. This process is then repeated for multiple iterations until a budget of annotations is achieved.
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that, when training the segmentation network with
extremely sparse labels, the selected annotation labels
have a substantial impact on the accuracy of the
segmentation model. Thus, the segmentation network
is trained in an iterative manner with self-training
combined with active learning, according to the
following steps.

As a pre-processing step, given the input point
cloud X, as shown in Fig. 2(a), we first over-segment
X into geometrically homogeneous super-voxels. The
super-voxels are used for label propagation: all points
in the same super-voxel share the label provided by
the user for a point in the super-voxel. Note that
active learning ensures that the user is never required
to annotate more than one point per super-voxel.

During each iteration of self-training, the seg-
mentation network is trained with two sets of per-
point labels: T and P , as in Figs. 2(f) and 2(i). The
set of true labels T is obtained from user annotations
of a sparse set of sample points T̂ . Based on the
uncertainty predicted by the network trained in the
previous iteration, we sample a set of points for user
annotation.

The true labels T̂ of these samples are then
propagated within their containing super-voxels to
yield a set of propagated per-point labels T , as shown
in Figs. 2(d)–2(f). The set of pseudo labels P is taken
from the prediction results of the segmentation network
trained in the previous iteration of the self-training,
where labels are selected based on the prediction
confidence, and is empty in the first iteration.

We repeat the iterations composed of user
annotation and network training until reaching a pre-
defined number of iterations, to satisfy a requested
annotation budget. We provide more details of the
components of the method in the following.

3.2 3D semantic segmentation network

We adopt the 3D U-Net architecture of Choy et al.
as the backbone of our segmentation network. The
input to U-Net is a point cloud X of N points, with
each point xi containing both 3D coordinates and
color information, where i ∈ {1, . . . ,N}. The network
predicts the probability of each semantic category
for each point xi, denoted as pi,c; the probability
corresponding to the ground truth category c̄,
provided either by T or P , is denoted as pi,c̄. The
network is then trained with the softmax cross-
entropy loss:

L = 1
|T |

∑
i∈T

− log pi,c̄ + λ
1
|P |

∑
i∈P

− log pi,c̄ (1)

where λ is a combination weight.
In the first iteration of self-training, the network is

trained with the set T derived from a set of randomly
sampled points T̂ annotated by the user, and the
set P is empty. In subsequent iterations, the set T̂
is expanded with new samples annotated by users,
where the samples are selected via active learning as
explained in Section 3.3, which are then propagated
through the super-voxels to form a new set T . The
set P is updated with the prediction results of the
current network, as explained in Section 3.4.

Note that, during inferencing, the average of
predictions of all points inside the same super-voxel
is used as the prediction result for the super-voxel,
so that all the points in the same super-voxel have
the same prediction. This “voting method” ensures
that the prediction for the points inside each super-
voxel is consistent, which improves the final prediction
accuracy, as we show in our ablation studies.

3.3 Active learning for true label annotation

During the active learning process, the user is asked
to annotate a sparse set of points with labels, as
illustrated in Fig. 2(d). To select the most effective
set of points to annotate for improving the accuracy
of the segmentation, we measure the uncertainty
of the labeling of each point based on current
prediction results. The uncertainty of each point
is measured by calculating the standard deviation of
several stochastic forward passes, and using the one
corresponding to the category with the highest mean
prediction confidence. More specifically, for each
input point cloud, we first get K different versions
via the standard data augmentation operations of
Choy et al., and then for each point, we compute the
mean and standard deviation of these K probability
distributions predicted from those K different input
versions. Finally, the standard deviation of the
category with the highest mean probability is used
as the uncertainty ui of the point xi:

ui =

√∑
k (pk

i,ĉ − pi,ĉ)2

K
(2)

where pk
i,c is the predicted probability of point xi

in the k-th point cloud version for category c and

pi,c =
(∑

k

pi,c

)/
K is the mean probability for the
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K versions for category c, with ĉ being the category
with the highest mean probability.

For each iteration, we select m points according
to the uncertainty distribution over points, since
intuitively points with high uncertainty require more
reliable user input.

3.4 Pseudo label generation

Following Liu et al., we iteratively update the set of
pseudo labels P . Starting with the label predictions of
the segmentation network trained at a given iteration,
we take the predictions with high confidence (larger
than a given threshold τ) and use them as updated
pseudo labels P . The pseudo labels P are then used
together with the labels T , propagated from the true
labels T̂ , to train the network in the next iteration.
Note that we also use the mean prediction probability
pi,ĉ of K different point cloud versions, as in Eq. (2),
to compute the confidence in this step.

To limit error propagation in our iterative training
and pseudo-labeling process, we generate new labels
for all unlabeled samples and reinitialize the neural
network after each pseudo-labeling step, following
Rizve et al. [37].

4 Results and evaluation

4.1 Datasets

Our experiments were conducted on ScanNet-v2 and
S3DIS, which allowed us to compare our results
directly to those of Liu et al. and other methods. We
used the original training–validate–test split provided
in these two datasets. One thing to note is that we
focus on the “data efficient” annotation setting as in
Hou et al., which is a more realistic setting than the
“one thing one click” setting in Liu et al., since Liu et
al. require the user to identify each individual object
in the scene. Regarding super-voxel creation, for the
ScanNet dataset, we used the method of Dai et al.,
while for S3DIS, we used the method of Landrieu et
al., following Liu et al.

4.2 Implementation details

We implemented our method with the PyTorch [38]
framework based on the implementation of Choy et
al. We used the default data augmentation of Choy
et al. and set the batch size to 4 for both ScanNet-
v2 and S3DIS datasets. The number of training
iterations on Scannet-v2 and S3DIS were 6 and 5,

respectively. For ScanNet-v2, the initial learning
rate was 0.1, with polynomial decay with power 0.9,
and the model was trained for a total of 100k steps
in each iteration. For S3DIS, the initial learning
rate was 0.03, with polynomial decay with power 0.9,
and the model was trained for a total of 60k steps
in each iteration. Uncertainty and confidence were
computed from K = 5 different versions’ predictions.
The threshold τ for pseudo label generation was set
to 0.99 in the first few iterations and 0.95 in the last
two iterations, to generate more training data with
the refined segmentation network. The combination
weight λ was set to 0.5.

In the following sections, we first compare results
with existing methods in Section 4.3 and give results
of ablation studies in Section 4.4, for both datasets.
Then, in Section 4.5, we show that our method can
also work in the “one thing one click” setting and
obtain better results.

4.3 Comparison to existing methods

4.3.1 Notes
For a fair comparison, we used fewer or the same
number of user annotations as existing methods. The
actual number of user annotations used is reported
in each table. As our method uses active learning to
select samples to annotate, the number of samples
is evenly distributed, i.e., if n is the total number of
user annotations and k is the number of iterations,
then m = n/k points are sampled in each iteration
for users to annotate.
4.3.2 Results on ScanNet-v2
Table 1 reports results on the ScanNet-v2 test set,
where the existing methods are roughly divided

Table 1 Comparison of our method ActiveST to existing methods
and to our fully-supervised baseline on the ScanNet-v2 test set

Method Supervision mIoU (%)
Qi et al. [1] 100% 33.9

Tatarchenko et al. 100% 43.8
Thomas et al. 100% 68.4
Graham et al. 100% 72.5

Choy et al. 100% 73.6
Kundu et al. 100%+2D 74.6

Our fully-sup baseline 100% 73.6
Liu et al. 0.02% 69.1
Hou et al. 20 points/scene 53.1
Xie et al. 20 points/scene 55.0
Liu et al. 20 points/scene 59.4

ActiveST (ours) 20 points/scene 70.3
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into two groups: (i) fully supervised approaches
with 100% supervision, including the state-of-the-art
networks for point cloud segmentation, and (ii) weakly
supervised approaches, including the most recent
work of Liu et al. and methods using contrastive pre-
training followed by fine-tuning with limited labels.
Note that “our fully-supervised baseline” refers to the
segmentation network of Choy et al. which we take
as the backbone of our method, trained with 100%
supervision.

Our method produces competitive results with only
20 labeled points per scene. Firstly, our method
outperforms the best weakly supervised approaches

in the “data efficient” setting with 20 points by nearly
11% mIoU. Our method also surpasses that of Liu et
al. by about 1% mIoU whereas Liu et al. use twice
the number of user annotations, and requires object
instance information. Secondly, the gap between our
method and full supervision is less than 3.3% mIoU,
showing the effectiveness of our method.

Figure 3 gives visual examples of results obtained
with our method and the fully-supervised baseline,
compared to the ground truth. We can see that our
method obtains results comparable to, and sometimes
even better than, the fully-supervised baseline. For
example, for the scene shown in the first row, our

Fig. 3 Qualitative segmentation results: the first four rows are from the ScanNet-v2 dataset and the following four rows are from the S3DIS
dataset. The input and the ground truth segmentations are presented in (a) and (b). (c) and (e) are the prediction of our method and of the
fully-supervised baseline, while (d) and (f) are the corresponding error maps, where red regions indicate incorrect predictions.
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method correctly labels all the chairs in different
arrangements. Our method is also able to recognize
the cabinet for the scene in the second row, although
the fully-supervised baseline misclassifies it as a
counter.
4.3.3 Results on S3DIS
Table 2 reports the comparison to existing methods
on the S3DIS dataset, for both fully supervised
approaches and weakly supervised approaches. For
the latter, we only compared to the method of Liu
et al., as it is the most recent work and works better
than previous approaches.

We can see that with only 20 labeled points per
scene (0.01% supervision), our method outperforms
the method of Liu et al. with 0.02% supervision by
nearly 6% mIoU. It also surpasses by nearly 1% mIoU
the method of Liu et al. with 0.06% supervision
that annotates 3 random points per object. Further-
more, our approach even outperforms several fully-
supervised methods, again demonstrating the
effectiveness of our method.

Figure 3 shows visual results of our method on
the S3DIS dataset. We see that even with more
challenging and crowded scenes, our method can still
obtain reasonably good prediction results similar to
those obtained from the fully-supervised baseline.

4.4 Ablation studies

4.4.1 Results
Our ablation studies were conducted using the most
challenging setting with only 20 points annotated
in each scene, for both the ScanNet-v2 and S3DIS
datasets. For ScanNet-v2, evaluation was conducted
on the validation set. For S3DIS, evaluation was
conducted on Area 5.

Table 2 Comparison of our method ActiveST to existing methods
and to our fully-supervised baseline on Area 5 of S3DIS

Method Supervision mIoU (%)

Qi et al. [1] 100% 41.1
Tatarchenko et al. 100% 52.8

Ye et al. 100% 53.4
Landrieu et al. 100% 58.0

Choy et al. 100% 66.3
Kundu et al. 100%+2D 65.4

Our fully-sup baseline 100% 66.3

Liu et al. 0.06% 55.3
Liu et al. 0.02% 50.1

ActiveST (ours) 20 points/scene 56.3

We tested the two key components of our method:
self-training and active learning. We also tested the
voting process used during the inference. The results
are shown in Table 3. We see that each component
of our method contributes to the quality of the final
results.

More specifically, in the first row, we show
the results of our baseline method, which is the
segmentation network of Choy et al. trained with
all user annotations, where the samples are either
selected with a pre-trained model provided by Hou
et al. for ScanNet-v2 or randomly selected for S3DIS.
Adding voting for predictions within each super-
voxel improves the results, confirming the idea of
maintaining label consistency inside each super-
voxel. When adding one of our two key components
individually (see the third and forth rows), results
are improved on both datasets in each case, while the
best results arise when using the full method with
both key components.
4.4.2 Discussion on sample selection
We investigated sample selection via active learning
further, to provide insights into why our method
outperforms previous methods.

Figure 4 gives statistics on the classes of objects
where the points were selected with the active learning
in our method, compared to the method of Hou et al.
We see that our method selects fewer samples on floors
while selecting more samples on categories like wall,
door, window, desk, counter, and sink, which leads
to significant improvement of prediction accuracy
for these categories. Our method even improves the
prediction accuracy for floors as this class often gets

Table 3 Ablation studies of our method conducted with “20
points/scene” annotation. ScanNet-v2 is evaluated on the validation
set while S3DIS is evaluated on Area 5. “Voting” indicates averaging
the prediction of all the points inside of the same super-voxel during
inference. “Self-train.” refers to the self-training approach used to
generate the pseudo label set to train the segmentation network.
“Active learn.” refers to the active learning method used to select the
samples for annotation, which are propagated to constitute a per-point
true label set

Component mIoU (%)

Voting Self-train. Active learn. ScanNet S3DIS

59.2 39.5
X 62.3 40.5
X X 67.2 47.2
X X 65.2 51.8
X X X 69.8 56.3
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Fig. 4 Comparison of samples selected for annotation. Top: statistics on the classes of objects where points were selected with the active
learning in our method, compared to Hou et al. Bottom: a visual comparison between the samples that the active learning selected based on
uncertainty across four iterations and those selected at once based on a pre-trained model Hou et al. (top-right scene outside the dashed box).

misclassified as door in early-iteration results, while
in the final results, there is less confusion with doors
as our method selects more samples for doors.

We also show a visual comparison of selected
samples in Fig. 4. For our method, we show the
uncertainty map over the scene, which is used to
guide the sample selection, together with the selected
samples for each iteration. Compared to the samples
selected at once with the pre-trained model of Hou
et al., the samples we select are located on more
complicated objects with more visual variability like
chairs, rather than the floor.

Note that, if we have s scenes in the training set,
there are two ways for active learning to sample the
points. One way is to sample the same number of
points in each scene, i.e., n/(ks) per scene, and the
other is to sample the points among all the scenes
based on uncertainty only, which results in different
numbers of sample points in different scenes. We
tested these two different options and found the
results to be similar. This is because both datasets
have large scene variations, which leads to samples
being evenly distributed over the scenes even if they

are sampled over the entire dataset based on pointwise
uncertainty. If another dataset with scenes similar
to each other were given, we believe that the results
from sampling over all the scenes would be better.

4.5 Results under “one thing one click” setting

We also tested our method under the “one thing one
click” setting. The only change in our method is
that, for sample selection during the active learning,
we avoid objects that have been sampled before,
selecting the sample with highest uncertainty among
the remaining objects. In other words, our active
learning chooses which object to sample as well as
which point inside each object should be sampled in
each iteration.

In more detail, we first computed the average
number no of objects per scene for both datasets,
which resulted in no = 32 for ScanNet-v2 and no = 36
for S3DIS. Here we set the number of iterations to be
k = 6. For each of the first five iterations, we selected
6 samples from 6 different objects in the scene and
set them as invalid for selection in the next iteration.
In the final iteration, we selected one point with the
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highest uncertainty from each remaining object to
complete “one thing one click” sample selection.

Table 4 shows how the accuracy changes across
iterations. For the S3DIS dataset, our method already
obtains better results than Liu et al. when only 24
points were annotated in iteration 4. Figure 5 gives a
visual comparison of a sample point selected by our
method and the point randomly sampled as in Liu
et al. We can see that our method learns to select
points that are located in more important regions
inside objects, which is more informative and leads
to more accurate prediction results. By focusing on
labeling more challenging regions, our method can
correctly predict other unlabeled regions, while the
random samples of Liu et al. may not be able to
extract enough information to correctly predict the
labels for the challenging regions.

One interesting result that we observed is that, for
both the ScanNet-v2 and S3DIS datasets, after adding
24 points while constraining only one point per object,
the results are worse than for our method under the
20 points/scene setting, where fewer annotations are
given. To find the reason behind this behavior of the
method, in Fig. 6, we give statistics of the number of
points sampled on each object for our method under
the 20 points/scene setting. We see in the results

Table 4 Evaluation of our method in the “one thing one click”
setting, selecting one point per object during the active learning

Method
mIoU (%)

ScanNet S3DIS

Liu et al. 70.5 50.1

Iter 1 (+6 points) 45.7 36.5

Iter 2 (+6 points) 62.5 45.8

Iter 3 (+6 points) 66.9 48.0

Iter 4 (+6 points) 68.7 51.2

Iter 5 (+6 points) 69.3 53.3

Iter 6 (+1 point for
each remaining object) 71.5 54.9

Fig. 5 Visual comparison of a sample point selected by our method
and the point randomly sampled as in Liu et al., with the corresponding
prediction results. We see that our sample is located on a more
challenging region of the desk which leads to a more accurate prediction
after training.

Fig. 6 Statistics on the number of points sampled on each object by
our method under the 20 points/scene setting.

for ScanNet-v2 that, compared to the “one thing one
click” setting where 100% of the objects get exactly
one click, most objects (61%) in our setting do not get
any samples, 14% of the objects get more than one
click, and only 25% of the objects get exactly one click.
We observed a similar distribution on S3DIS. This
indicates that the “one thing one click” procedure
may not be a good way to sample points for semantic
segmentation. Complicated objects may need more
sample points than others, while objects in simpler
categories do not require annotating for each scene.

5 Limitations and future work

Currently, in each iteration, self-training uses the
labels collected from the active learning and the
pseudo labels only once. However, it is possible
to use the active learning as an outer loop and
self-training as an inner loop of the method, to
run more iterations of self-training for each set of
annotated points. This may lead to better results
at the expense of increasing the training time. It is
also possible to use a pre-trained model as in Hou
et al. to obtain a better set of initial samples for
annotation. Theoretically, the work of Liu et al.
requires extra time to identify each individual object
when annotating the same number of points as our
method, while the drawback of our point selection
based on active learning is that points need to be
annotated in several iterations instead of once as in
Liu et al. Although we believe that annotations can
be collected through crowdsourcing on the Internet
and thus no extra user effort is needed as users do
not have to wait in front of the computer, this would
cause information delay and would become a problem
when collection is conducted in person. While we
adopt the same supervoxel clustering methods as in
Liu et al. for a fair comparison, it is worth exploring
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other more advanced methods such those of as Huang
et al. and Lin et al. [39] to further boost results.

6 Conclusions

We have introduced a weakly supervised method for
semantic segmentation of 3D scenes, which combines
an active learning component that selects the most
effective points to be annotated by users, and a self-
training approach that makes efficient use of the user
labels. We have shown that our method leads to
improvements of 11% and 6% mIoU over previous
works on well-known datasets, while using the same
number of or fewer user annotations. Our method is
also competitive with fully supervised methods.

Appendix

In this appendix, we first present more details of
our ActiveST framework in Appendix A. Then, in
Appendix B, we report detailed benchmark results
on the ScanNet-v2 test set with per-category results
of our method compared to other weakly supervised
methods in the most challenging setting with only
20 points annotated in each scene. Finally, in
Appendix C, we show more results on both ScanNet-
v2 and S3DIS datasets with various numbers of
annotated points.
A Details of our ActiveST framework

We present the training procedure for our proposed
ActiveST framework in Algorithm 1. Figure 7 shows
the 3D U-Net architecture used as the backbone. This
architecture was proposed by Choy et al. for semantic
segmentation, and contains four blocks for encoding
and four blocks for decoding. For each block, we show
the output dimension D and number of convolution
layers N .

Fig. 7 3D U-Net architecture of Choy et al. used as our backbone.

Algorithm 1 Training procedure of our ActiveST
framework
Input: Total amount of user annotations n, number of

iterations k, super-voxel partition;
1: Random sample m = n/k points to annotate, and

propagate the labels in super-voxels to get T ;
2: Train a network θ using T ;
3: for i = 1 to k − 1 do
4: Use θ to generate pseudo-labels and compute

uncertainty and confidence;
5: Select m points to annotate according to the

uncertainty distribution, and propagate the labels in
super-voxels to get Ti;

6: Update true labels T = T ∪ Ti;
7: Select pseudo-labels with high confidence on unlabeled

points to get P ;
8: Train a new network θi using T and P with the softmax

cross-entropy loss;
9: θ ← θi

10: end for
Output: Segmentation network θ.

B Per-category results on ScanNet-v2

In Table 5, we compare detailed per-category results
for our method to those for other weakly supervised
methods in the “data efficient” setting with 20 labeled
points per scene as supplement. We can see that
our method achieves significant improvements on
categories such as bathtub, counter, cabinet, sink,
and window. We believe that the reason is that
our method is able to sample more points on more
challenging categories via active learning, compared
to the default set of sampled points used in other
methods.

We also note that the only category for which
our method gets worse results than the method of
Liu et al. is the picture category. We believe that
this is because our method puts more samples on
other categories that lead to more confusion in the
output prediction, leading to fewer annotations for
the picture category. As we show in Appendix C,
when given a larger annotation budget, more points
are sampled on the picture category and thus the
results are highly improved.

C results on ScanNet-v2 and S3DIS

In this section, we show the results of our method
on both ScanNet-v2 and S3DIS datasets with an
increasing number of annotated points, using 20, 50,
100, and 200 points/scene.

We first report the results on the ScanNet-v2 test
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Table 5 Per-category performance of our method compared to other weakly supervised methods on the ScanNet-v2 data-efficient benchmark
(20 labeled points per scene for training)

Method mIoU (%) bath. bed bosh. cabn. chair coun. curt. desk door floor othfur. pict. refrig. show. sink sofa table toilet wall wind.

Hou et al. 53.1 65.9 63.8 57.8 41.7 77.5 25.4 53.7 39.6 43.9 93.9 28.4 8.3 41.4 59.9 48.8 69.8 44.4 78.5 74.7 44.0
Xie et al. 55.0 73.5 67.6 60.1 47.5 79.4 28.8 62.1 37.8 43.0 94.0 30.3 8.9 37.9 58.0 53.1 68.9 42.2 85.2 75.8 46.8
Liu et al. 59.4 75.6 72.2 49.4 54.6 79.5 37.1 72.5 55.9 48.8 95.7 36.7 26.1 54.7 57.5 22.5 67.1 54.3 90.4 82.6 55.7

Ours 70.3 97.7 77.6 65.7 70.7 87.4 54.1 74.4 60.5 61.0 96.8 44.2 12.6 70.5 78.5 74.2 79.1 58.6 94.0 83.9 64.5

set. As Table 6 shows, using an increasing number
of sample points, results consistently improve for all
methods; our method always achieves the highest
mIoU under all settings. We can see that our method
surpasses all other weakly supervised approaches in
the same setting by a large margin and sets a new
state-of-the-art doe the Scannet-v2 “data-efficient”
challenge. Note that, when only using 20 labeled
points per scene, our method even beats the most
competitive weakly supervised approach Liu et al.
which uses 10 times as many points (200 labeled
points per scene) by nearly 1% mIoU.

Table 6 Comparison of our method (ActiveST) to other methods
under different limited point annotations, where “pts” means
points/scene. We report mIoU (%) on Scanet-v2 test set

Method 20 pts 50 pts 100 pts 200 pts

Hou et al. 53.1 61.2 64.4 66.5
Xie et al. 55.0 61.4 63.5 65.3
Liu et al. 59.4 64.2 67.0 69.4

ActiveST (ours) 70.3 72.5 73.5 74.8

With greater annotation budget, we observe that
our method tends to select more points on the
picture category, the category with the worst results
under the 20 labeled points per scene setting (see
Appendix B): the mIoU of the picture category
increases by 25.6% going from 20 to 200 points
per scene. The percentage of points sampled on
the window category also increases, with an mIoU
improvement of 5.6% from 20 to 200 points. Figure 8
compares samples selected by our method and Hou
et al. under different settings. It can be observed
that our method selects more samples on picture
and window categories instead of floor in each
setting, leading to a great improvement in the
final results.

We also notice that although the sample proportion
of some categories such as toilet, cabinet, and curtain
become smaller, mIoU for those categories is not
sacrificed as our model is less likely to misclassify
objects in those categories as wall due to increasing
samples for the wall category. We also report our

Fig. 8 Comparison of samples selected by our method and the method of Hou et al. with different annotation budget.
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results on S3DIS under these various settings in
Table 7. With more points selected by our method,
the gap between our method and the fully supervised
baseline is further reduced.

Table 7 Comparison of our method (ActiveST) to our fully-
supervised baseline under different limited point annotations. We
report mIoU (%) on Area-5 of S3DIS

Method Supervision mIoU (%)

ActiveST (ours) 20 pts 56.3
ActiveST (ours) 50 pts 57.8
ActiveST (ours) 100 pts 59.5
ActiveST (ours) 200 pts 62.1

Our fully-sup baseline 100% 66.3
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