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Abstract The point pair feature (PPF) is widely
used for 6D pose estimation. In this paper, we propose
an efficient 6D pose estimation method based on
the PPF framework. We introduce a well-targeted
down-sampling strategy that focuses on edge areas
for efficient feature extraction for complex geometry.
A pose hypothesis validation approach is proposed
to resolve ambiguity due to symmetry by calculating
the edge matching degree. We perform evaluations on
two challenging datasets and one real-world collected
dataset, demonstrating the superiority of our method
for pose estimation for geometrically complex, occluded,
symmetrical objects. We further validate our method
by applying it to simulated punctures.

Keywords point pair feature (PPF); pose estimation;
object recognition; 3D point cloud

1 Introduction

The goal of 6D pose estimation is to determine the
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position and orientation of a target object via a rigid
transformation from the object’s coordinate system
to the camera coordinate system. Pose estimation
is an important aspect of target recognition and
scene understanding. Pose estimation has also been
widely used in industrial and medical fields. In the
medical field, with increased development of medical
imaging, computer-assisted surgery, and 3D vision,
robot-operated surgery based on 3D visual navigation
has become a trend [1, 2]. In 3D visually navigated
robot-operated surgery, registration of preoperative
3D models reconstructed by medical imaging and
spine point clouds acquired by depth cameras during
an operation is crucial.

In real surgical scenarios, the human spine has
a complex geometry with high self-occlusion and
symmetry [3], potentially leading to algorithmic
errors. There is no satisfactory and universal solution
to this problem. In this work, we propose a method
of pose estimation taking into account the particular
geometry of the spine. Given the complex shape
of the spine, many spine feature points lie on
edges. Therefore, an edge-focused sampling method
is used to select stable and salient points to generate
stable transformation hypotheses. To handle the
ambiguities due to spinal symmetry, we consider that
the difference in details between symmetric and highly
occluded objects can be effectively distinguished by
the degree of edge matching.

Overall, the contributions of our work may be
summarized as follows:
• A well-target down-sampling strategy relying

on edge information. It effectively retains edge
points and points with large curvature variations.
Robust hypothesis generation is achieved by
sampling stable feature points.
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Fig. 1 Experiment on robot-operated positioning with vision-based
navigation. (a) The depth camera scans the spine to perform template-
based pose estimation. (b) After matching, the robotic arm drills the
spine using a predetermined pose and position.

• A pose hypothesis verification method which
considers the degree of matching for edge points.
It has an early exit strategy to reduce time.

• An implementation of an experimental platform
for robot-operated positioning based on this
method. We use a position-based visual servoing
scheme to control the robot arm to ensure the
accuracy of the drilling position.

2 Related work

This section reviews relevant algorithms and their
modifications for pose estimation for 3D point clouds,
and point pair features.
2.1 Pose estimation methods

Many different methods have been proposed for
3D object detection and pose estimation. Existing
research methods can be roughly divided into feature-
based methods, template matching methods, point-
based methods, and deep learning-based methods.
Feature-based methods can be considered the
broadest solution, and can be roughly divided
into global feature-based and local feature-based
algorithms. Algorithms based on global features [4–6]
have good speed and memory consumption. However,
their usefulness is limited in clinical applications due
to their sensitivity to occlusion and noise, and the
need to pre-isolate the region of interest from the
background. Algorithms based on local features [7–
10] are more robust to occlusion and clutter. However,

they require additional computation time during the
subsequent matching and hypothesis validation, so
do not meet the requirements of a real-time surgical
navigation system. Methods based on template
matching [11] can detect texture-free targets but
are sensitive to surgical instrument occlusion. The
main point-based method is the iterative closest
point algorithm (ICP) [12] and its variants [13, 14].
They depend on a good initial pose estimate and
are usually used for pose refinement. Deep learning-
based methods [15–19] work well on public 3D
datasets. However, deep learning-based methods
require significant computational power and time
to label datasets. The difficulty of collecting medical
samples and the small amount of data hinders
the application of deep learning-based methods to
surgical navigation.

2.2 Point pair features

In 2010, Drost et al. [20] proposed a rigid 6D pose
estimation method based on point pair features
(PPFs). It is a compromise between local feature
and global feature methods, striking a good balance
between accuracy and speed. PPFs describe the
surface of an object through global modeling of
four-dimensional features defined by directional
point pairs. These features are used to find the
corresponding relationships between scene and
model point pairs, to generate numerous candidate
hypotheses, and then to cluster and sequence the
candidate poses to obtain the final hypotheses. PPFs
are low-dimensional features based on oriented points
and are suitable for objects with rich surface variation.
Moreover, PPF descriptors, having global significance,
show stronger discriminative power than most local
features. They are suitable for the objects studied
in this paper with complex structures and strong
occlusion, so we choose the PPF framework as our
basis.

Because of the advantages of PPF, many improved
PPF methods have been proposed. Choi and Christensen
[21] proposed a color point pair feature (CPPF),
which uses color information to significantly improve
the discrimination and accuracy of traditional point
pair features. Drost and Ilic [22] proposed the
concept of geometric and textured edges. Geometric
edges are obtained using the intensity image and
depth image to construct multimodal point pair
features. Liu et al. [23] proposed a novel descriptor,
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the boundary-to-boundary-using-tangent-line (B2B-
TL) to estimate the poses of industrial parts. Vock
et al. [24] utilized point pair features on edges for
the quick generation of transformation guesses in a
random sample consensus setting. Inspired by the
above article, we propose a down-sampling method
using a combination of edge points and geometric
high curvature feature points for the spine. We also
propose a pose hypothesis verification method based
on edge matching to make it more competitive in
detecting geometrically complex and symmetrical
objects such as the spine.

The rest of this paper is organized as follows.
Section 3 describes the original PPF method, and
Section 4 describes our proposed method and the
design of our robot-operated positioning experiments.
Experimental results for the spine dataset and the
public datasets are given in Section 5. Section 6
concludes the paper.

3 PPF method

Our approach is based on the original PPF
method [20]. To better understand this article, we
introduce the basic framework of that method in this
section.
3.1 Point pair feature

A point pair feature is used to describe the relative
distance and normals of a pair of oriented points, as
shown in Fig. 2. Given a reference point pr and a
second point ps with normals nr and ns respectively,
the PPF is a four-dimensional vector defined as
PPF (pr,ps)=(‖d‖2,∠ (nr,d) ,∠ (ns,d) ,∠ (nr,ns))

(1)
where d = pr − ps, and ∠(a, b) denotes the angle
between vectors a and b.

3.2 Drost’s pipeline

The PPF method can be divided into offline global
modeling and online local matching steps.

Fig. 2 Point pair feature definition.

In the offline global modeling phase, to create a
description of the model, the model is down-sampled
using uniform sampling. Then point pair features are
computed and quantified for all possible model point
pairs. The point pair features are used as hash keys
in a hash table via a quantization function, while
the value encodes the pose of the feature relative to
the model. The pose of the model is encoded by
storing the index of the reference point pr and an
angle αm, the latter representing the angle between
the projection of the model point pair concatenation
and the positive direction of the y-axis.

The online local matching phase consists of two
parts: (1) finding the correspondence between point
pairs using four-dimensional point pair features,
and (2) generating candidate poses from the
correspondences and then clustering them to obtain
the best object pose. In the first part, reference points
are sampled from the scene. Uniform down-sampling
of the scene point cloud is performed to obtain a
set of scene points, and then the i-th (default i = 5)
scene point is used as the reference point. We use this
reference point to calculate PPFs in conjunction with
all other scene points. We also map it to the model
reference point and angle αm by matching using
the previously constructed hash table. This process
effectively solves the correspondence problem between
point pairs by matching point pairs with the same
quantized PPF. In the second part, αs is calculated for
the scene point pairs. αs represents the angle between
the connected projection of the scene point pairs and
the positive direction of the y-axis. For each matched
point pair feature, the angle α = αm−αs is found, and
then voting is performed in the Hough space of (pr, α).
The cell with the maximum number of votes in Hough
space is extracted to form a pose hypothesis. After
valid candidates have been generated for all reference
points, we cluster similar poses, those with rotations
and translations lower than thresholds. The group
with the highest total number of votes is the resulting
pose hypothesis.

4 Algorithm

4.1 Overview

We propose a new 6D pose estimation algorithm, the
framework of which is shown in Fig. 3. Based on PPF,
we mainly make the following improvements. Firstly,
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Fig. 3 Framework of the proposed method. It has two main stages: offline training and online matching. In the former, a CAD model is
input (a). After downsampling (b), PPFs are extracted from the model (c). During filtering (d), we remove PPFs with angles higher than 175◦

or lower than 5◦ by considering normal vector angle differences. PPFs are extracted and stored in a hash table (e). In the online matching
stage, the scene point cloud is input (f). It is pre-processed (g), using a clustering down-sampling method that takes into account the normal
vector information; it focuses on edge points and points with large curvature. PPFs extracted from the scene point cloud (c) are matched to the
hash table, and candidate poses are generated by voting and pose clustering (h). Each candidate pose is then post-processed (i). The pose with
highest matching score is selected by an improved edge-based pose verification method. Finally, we use ICP to refine that pose.

when pre-processing the input model, we remove
point pair features that interfere with the matching
based on the normal vector angle for the input
model. Secondly, when pre-processing the scene point
cloud, we use a clustered down-sampling method
that preserves edges in the point cloud. Finally, the
pose verification operation is performed by checking
the matching degree of edges to filter out wrong
poses. These improvements are described further in
the following sections.

4.2 Offline training

In the offline training phase, all point pair features of
the model are extracted and stored in a hash table to
create a global model description. However, due to
self-occlusion, the global description contains some
redundant point pair features that never appear in
the input scene. The redundant point pair features
not only increase the search time during the online
matching phase but also increase the matching error.
To mitigate the negative impact of redundant point
pair features, we adopt a method based on Ref. [25]
to determine the visibility of point pair features by
using the normal vector angle between point pairs. If
the angle between the normal vectors of two oriented
points is higher than 175◦, we consider the point pair
to be almost invisible. Such point pair features are
not stored.

Furthermore, it is common for the traditional

PPF method to degrade when an object has many
repetitive features, such as large planes. Therefore,
we do not store pairs whose normal vector angle for
the two oriented points differ by less than 5◦, so that
the algorithm focuses on geometrically-rich point pair
features. As Fig. 4 shows, we mainly filter out the
points that are self-obscured due to the viewpoint
and points that lie on the same plane.

4.3 Online matching

4.3.1 Pre-processing
In order to accelerate the computation of object
poses, the scene point cloud must be down-sampled.

Fig. 4 Suppose p1 is used as the reference point. p2 has a normal
vector angle of more than 175◦ to p1, so does not appear in the same
view due to the visibility constraint of the viewpoint. Because of the
specificity of the plane structure, the points in the same plane such as
p3 are often mapped to the same hash bin in the hash table, which
reduces the performance of the algorithm.
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Unlike Drost’s method [20], we use a clustering down-
sampling method that takes into account normal,
like Refs. [26, 27]. However, we also focus on edge
points in the point cloud. Edge points can robustly
describe the shape of the object, and for complex
objects such as spinal bones, feature points have a
higher probability of being present at edges. Our
approach is shown in Fig. 5, where we first create
a multi-resolution grid structure to discretize the
scene point cloud according to the diameter of the
model. Similar points with normal angle difference
less than the threshold θ are then merged in a voxel
grid. After this first fine-grained sampling, we extract
the edge point clouds and continue with a fine-to-
coarse multi-resolution sampling strategy for the non-
edge points. To prevent some geometric features
from being filtered out in the coarse-grained grid, the
threshold θ is gradually reduced proportionally. The
above operation can effectively preserve edge points
and points with large curvature.
4.3.2 Feature extraction
For scene point clouds, we follow the solution
proposed in Ref. [20], choosing 1/5th of the points
in the scene as reference points and other points
as the second point of the point pair feature. To
improve the efficiency of the matching part, we use a
kd-tree structure and adopt the intelligent sampling
strategy of Hinterstoisser et al. [28] to select other
points within the model diameter d from the model
to construct as point pairs.
4.3.3 Pose clustering
To merge similar candidates, we use a hierarchical
clustering method [26]. If the rotation and trans-

Fig. 5 Flowchart for clustered down-sampling method considering
edge information.

formation between the two candidate poses are lower
than the predefined threshold, the two candidate
poses are grouped. All poses within each cluster follow
the same conditions based on the two thresholds of
rotation and transformation. Finally, the quaternion
average for each cluster is used to calculate a new
candidate pose, and the score of each pose is added
up to the score of the new candidate pose.
4.3.4 Post-processing
The score of each pose is obtained by adding
the votes of the candidates in the cluster. In the
presence of sensor noise and background clutter,
the score of the poses may not correctly represent
the degree of matching. Therefore, we recommend
that a more reliable score be calculated through an
additional re-scoring process. We observed that in
most approaches [26–29], most of the computational
time is spent on pose verification. So, for speed of pose
estimation, we propose an edge-based pose hypothesis
verification method with an early exit strategy.

Edges are distinctive features of an object and can
well represent the shape characteristics and contours
of the object. Using the edge information from the
point cloud, it is possible to select the correct pose
from a set of candidate poses with high probability.
In our pose hypothesis verification method, for the
input candidate pose, the axis-aligned bounding box
(AABB) of the computed candidate pose is used as
the region of interest (ROI). Edge points within the
ROI are clustered, and the distance between the edge
clustering center and the center of the candidate pose
is computed to remove remote and divergent edge
points. The reason for filtering based on distance to
the centroid of edge clustering is that often cluttered
edges that are not in the object are discontinuous
and distant. The final degree of edge matching score
for this candidate pose is given by

S = NMatching

NROI
(2)

NROI denotes the number of edge points in the ROI
(red and blue in Fig. 6) after filtering out outliers

Fig. 6 Classification of edge points in the ROI.
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(yellow in Fig. 6). NMatching is the number of edge
points close to the candidate poses (red in Fig. 6).

Detailed steps in the pose verification process are
as follows:
• The input candidate poses are sorted according

to the number of votes; the maximum number
of votes for the candidate poses is Vmax. The
candidate poses are divided into two categories
according to Vmax. The first contains the
candidate poses whose number of votes greater
than Vmax/2, so are more likely to be the correct
pose. The second category contains the remaining
candidates. The number of candidates in this
category is much larger.

• For the first category of candidate poses, we use a
kd-tree to quickly see how well each pose matches
the edges of the scene. Edge points close to the
model indicate support for the pose hypothesis.
The N candidate poses with the highest scores
(the value of N is given in Section 5.4) are selected
for more detailed filtering using Eq. (2). We do
not directly use the edge match to all points in the
scene point as correctness of the match is greatly
reduced when the scene is prone to clutter. If the
pose score computed by Eq. (2) is higher than
0.7, it is directly considered to be the correct pose
and subsequent computation is stopped. If the
score is lower than 0.7 but higher than 0.6, the
pose with the highest score among the N poses
is selected.

• If the score is higher than 0.6, poses in the second
category are processed in the same way as for
poses in the first category. If the score for the N
poses of the second category is also under 0.6, the
pose with the highest score from the 2N candidate
poses is selected as the final pose.

After selecting the final pose, ICP [13] is used to
further refine the pose to improve the accuracy of the
match.

4.4 Design of robot-operated positioning
experiment

4.4.1 Hardware
The hardware used in our experiment is shown
in Fig. 7. The 3D camera used is the Azure
Kinect DK depth camera. The robotic arm is
the AUBO collaborative robot with six joints for
flexible operation, and is used to perform fixed-point
movements to complete operations on the spine. The

Fig. 7 Hardware used in our experiments. Left: schematic diagram.
Right: photo.

medical drill is fixed at the end of the robotic arm
and is equipped with various drill holes, adjusted for
different speeds, pointing at the spine. We simulate
the platform as well as using real equipment.
4.4.2 Position-based visual servoing scheme
Visual servoing uses visual information extracted
from images or point clouds captured by one or more
cameras to control the motion of a robot. Visual
servoing is a closed-loop system in which vision
analysis provides guidance for the robot and robot
motion provides new vision analysis for the camera.
Closed-loop design can effectively improve success
and reduce deviation.

We use a position-based visual servoing scheme, as
shown in Fig. 8. The input is the difference between
the detected actual pose of the spine and the desired
spine pose. The output controls the robot velocity,
to make the robot move quickly to the target pose
state. After the instruction is completed, the camera
continues to receive feedback of the robot state,
forming a closed-loop control system. The closer
the real pose is to the desired pose, the smaller the
speed of the robot arm will be. When the difference
is less than the threshold we set, the speed of the
robot arm is 0, and the servo stops.
4.4.3 Transformation relationship analysis
In order to control the drill mounted on the robotic
arm to drill in the attitude we specify, we perform
coordinate transformation. Transformations relate

Fig. 8 Position-based visual servoing scheme.
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the model of the spine, the fixed drill, the depth
camera, and the end of the robotic arm.

First, based on the preoperative surgeon’s design,
we obtain the target drill pose and position in the
spine model coordinate system in advance; we denote
it T thope

s . Next, a hand-eye calibration process gets
the matrix T e

c that converts the coordinate system of
the camera to the coordinate system of the end of the
robotic arm. Then the tool calibration process gets
the matrix T e

t that converts the coordinate system of
the fixed drill to the coordinate system of the end of
the robotic arm. Since both the camera and the drill
are fixed to the robot arm, the conversion relationship
is fixed, and T c

t means that the coordinate system of
the fixed drill is converted to the coordinate system
of the camera. Thus, in Section 4.4.2, the desired
pose of the camera with respect to the spine is

T chope
s = T c

t · T thope
s (3)

The transformation matrix T c
s from the spine model

coordinate system to the camera coordinate system
is obtained from the above pose estimation algorithm.
T c

s is the current pose in Section 4.4.2. The gap
between T c

s and T
chope
s is reduced by the position-

based visual servoing scheme.

5 Experiments

In this section, after describing the datasets required
for the experiments, the evaluation criteria, and
the open-source methods used for comparison, we
first evaluate the impact of different parameters on
the real spine dataset. Then, in Sections 5.5 and
5.6, a real spine dataset and a publicly available
dataset are tested to investigate the robustness
of the algorithm and to validate the algorithm
design. In Section 5.7, we evaluate our method
quantitatively and qualitatively on the real spine
dataset and show the result of the robot-operated
positioning experiment. Finally, to demonstrate
the effectiveness of our pose estimation method
for complex, symmetric objects, and its generality
for objects of different shapes, we perform a
comprehensive comparison of recognition rates and
efficiency with state-of-the-art methods on two well-
known publicly available datasets in Section 5.8.

The algorithm proposed in this paper was
implemented using the Point Cloud Library (PCL)
and tested on a PC with a 3.6 GHz Intel i9-10850K

CPU and 16 GB of RAM. The algorithm uses
OpenMP technology to improve matching speed.
5.1 Datasets

5.1.1 Pubic datasets
The public datasets contain both UWA dataset [30]
and DTU dataset [31]. The UWA dataset contains 5
complete 3D models as well as 50 2.5D scenes, where
the rhino models are mainly used for interference.
Each 2.5D scene contains 4–5 models, and the
degree of model occlusion ranges from 65% to 95%.
5 models and some scenes are shown in Fig. 9(a). The
DTU is a large dataset consisting of 45 objects and
3204 scenarios captured by a structured light scanner,
each of which contains 10 objects. These objects
belong to three different types: geometrically complex
models, cylindrical and planar models. Because some
objects are highly occluded. We do not consider
objects with more than 98% occlusion. The DTU
dataset is challenging because of the high occlusion,
high similarity, and diversity of models. Some of the
models and scenes are shown in Fig. 9(b).
5.1.2 Spine dataset
To validate the effectiveness of our algorithm for
spinal bone pose estimation, we constructed a real
dataset using a pig spine. The spine model point
cloud used CT scanning of the spine for accurate
reconstruction. The professional medical software
Mimics Research was used to convert medical data in
DICOM format into 3D models. Our experimental
platform was used to collect three types of spine
datasets with an Azure Kinect DK depth camera:
• less occluded far-field spine scenes (S1, Fig. 10(b));
• more occluded near-field spine scenes (S2, Fig. 10(c));
• cluttered randomly placed spine scenes (S3,

Fig. 10(d)).
S1–S3 each have 40 scenes, with a total of 120 scenes.

Fig. 9 Various object models and two random scenes in (a) UWA
dataset and (b) DTU dataset.



68 C. Liu, F. Chen, L. Deng, et al.

Fig. 10 Spine dataset: (a) spine model, and (b–d) S1–S3 respectively.

5.2 Evaluation criteria

To determine pose accuracy, we adopt the average
distance metric (ADM) [32] as the pose error metric.
It considers both the visible and invisible parts of
the 3D model surface. ADM measures the mean
Euclidean distance between the model points in the
estimated pose T̂ and in the true pose T̄ . In Ref. [27],
two alternatives to ADM (ADD and ADI) are used
for objects that do not have symmetry and those that
do. We also use these evaluation criteria. We accept
the pose estimation as positive if the pose error is less
than ζe, where ζe is related to the object diameter d.
The ADD and ADI pose error metrics are given by

eADD = avg
x∈M
‖T x− T̂ x‖2 (4)

e′ADI = max
(

avg
x1∈M

min
x2∈M

∥∥∥T x1 − T̂ x2

∥∥∥
2
,∥∥∥T co − T̂ co

∥∥∥
2

)
(5)

where M is the point cloud of model and co is the
object center. eADD computes the average Euclidean
distance of the same points after transformation,
while eADI computes the average Euclidean distance
of the two closest points after transformation and also
takes into account the distance to the object center.

We use two evaluation criteria, recognition rate
(RR) and mean recall (MR) to evaluate the accuracy
of the algorithm. RR is the ratio of correct poses
to all detected poses. MR is the average recognition
rate for all objects and is used to measure the quality
of the algorithm over the entire dataset:

MR = avg
o∈O

(∑
s∈S

|P (o, s)|/
∑
s∈S

|G(o, s)|
)

(6)

where O and S are the sets of all template objects
and scenes respectively, P (o, s) is the set of correctly
detected poses, and G(o, s) is the set of ground-truth
poses of object o in scene s.

5.3 Baselines

We compare our method with several baseline
algorithms using only depth images as input: these
include Drost-PPF [20] and Buch-17 [33]; we choose
the commercial machine vision software MVTec
HALCON to implement the original PPF and the
optimization algorithm. The open-source method
Buch-17 [33] is a 3D object recognition method.
It uses various three-dimensional local feature
descriptors to find point pair correspondences that
are constrained to vote in a 1-DOF rotation subgroup
of the entire pose, SE(3). Kernel density estimation
allows for an efficient combination of voting to
determine the resulting pose. The method relies on
three-dimensional local feature descriptors, and is
evaluated using several descriptors: ECSAD [34],
NDHist [35], SI [7], SHOT [36], FPFH [8], and
PPF [20].

5.4 Parameter settings

In this section, we use the spine dataset to determine
parameter settings. To do so, we use the variable
control method for parameter validation. If the
parameter does not have a determined value, we use
the default value for the assignment. We analyze the
following four parameters: the distance quantization
step of ∆dist, the angle quantization step ∆angle,
the number of poses in the pose verification function
N , and the size of AABB box s. ∆dist is related
to the diameter of the model. As Fig. 11 shows,
the best results are obtained with ∆angle = 5 and
∆dist = 0.02. An axis-aligned bounding box (AABB)
is used as the ROI in the pose verification function.
The larger the AABB, the more points around the
pose are considered, so it is easy to filter out some
poses that only partially match the spine. We hope to
determine the correctness of the poses by considering
the matching degree of the points in the AABB
box, but when the AABB box is larger than a
certain degree, the pose accuracy is susceptible to the
influence of outliers and tends to decrease, so we set
the AABB box size to 140%. The more the selected
poses, the better the results, but taking into account
the time consumption, we set N = 9.
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Fig. 11 Parameter analysis for spine dataset. Default values of these parameters are: quantization step for distance ∆dist = 0.025, quantization
step for angle ∆angle = 5, number of poses in pose verification function N = 10, and size of AABB box s = 150%.

5.5 Quality and robustness

We next test the robustness of our method in the
presence of Gaussian noise using the real bone dataset
and the open dataset UWA. We randomly added
Gaussian noise with different standard deviations to
the point coordinates using standard deviations of
0.0, 0.5, 1.0, 1.5, and 2.0 mm. Table 1 shows the
results. Quality decreases slightly as the noise level
increases, but we still perform well on the noisy data.

5.6 Ablation study

5.6.1 Effectiveness of sampling
To validate the contribution of sampling in our
method, we compare it to a sampling method [27] that
does not emphasize edge points. In order to make the
number of points sampled by the method focusing on
edge points smaller or equal to the compared method,
we perform an additional sampling step for non-edge

points. As Table 2 shows, higher recall is achieved
for sampling more focused on edge points, which we
attribute to the fact that stable features are more
present on the contours of the object. Increasing the
number of edge points sampled can improve matching
results.
5.6.2 Effectiveness of our pose verification
We next compared our edge-based post-processing
method and the pose verification method in Ref. [29].
In Ref. [29], scoring is based on the overlap of surfaces,
and those model points that are close to the scene
vote to indicate support for the pose hypothesis. As
shown in Table 3, our edge-based post-processing
approach is more discriminative. Edge information
can robustly describe the geometric contours of the
object. When in the ROI region, the better the
matching of edge points, the higher the probability
that this is the correct pose.

Table 1 Results of our algorithm with added noise

Dataset ζe Noise=0 Noise=0.5 Noise=1.0 Noise=1.5 Noise=2.0

Spine dataset
0.05d 93.33 89.17 85.83 80.83 78.33
0.1d 95.00 90.00 87.50 83.33 80.83

UWA dataset
0.05d 99.47 98.94 94.15 89.36 86.17
0.1d 100.00 98.94 94.15 90.43 86.70

Table 2 Validation of edge-based sampling method

Sampling method ζe RRS1 RRS2 RRS3 RRchicken RRpara RRcheff RRTrex

Ref. [27]
0.05d 92.5 77.5 90.0 97.9 97.8 98.0 97.8
0.1d 92.5 80.0 90.0 97.9 97.8 98.0 100.0

Our method
0.05d 92.5 80.0 92.5 97.9 100.0 98.0 100.0
0.1d 92.5 82.5 92.5 100.0 100.0 100.0 100.0

Table 3 Validation of our pose verification method

Sampling method ζe RRS1 RRS2 RRS3 RRchicken RRpara RRcheff RRTrex

Ref. [29]
0.05d 90.0 82.5 85.0 91.7 91.1 98.0 95.6
0.1d 92.5 82.5 85.0 93.8 91.1 98.0 95.6

Ours
0.05d 95.0 85.0 100.0 97.9 100.0 100.0 100.0
0.1d 97.5 87.5 100.0 100.0 100.0 100.0 100.0
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5.6.3 Effectiveness of early exit strategy on
performance

We next considered the effect on speed of our pose
verification function, and compare three ways of
using the pose verification function. In the first,
poses are not classified and then post-processed. The
second approach is as described in Section 4.3.4, but
without using an early exit strategy. The third is
our full method, using the early exit strategy when
the threshold is exceeded. As Fig. 12 shows, the
third is the fastest. Our pose classification and early-
exit strategy improve efficiency. Pose classification
increases speed because poses with larger scores are
more likely to be the correct pose. Processing the
few such poses can reduce the time significantly.

5.7 Effectiveness of the prototype system in
operation

5.7.1 Recognition results on the spine dataset
As Table 4 shows, our algorithm achieves excellent
results in terms of correctness, and outperforms the

Fig. 12 Comparison of time taken for three ways of using the pose
verification functions for data from UWA and spine datasets.

other competitors. In terms of speed, the commercial
HALCON software is the fastest because it makes full
use of the hardware and is also fully optimized at each
step. Compared to Ref. [33], our method is faster than
most 3D descriptor algorithms. Our algorithm has
potential to be further accelerated at each step on the
GPU for surgical navigation applications. Figure 13
shows a qualitative comparison of these methods for
several scenes.
5.7.2 Results of navigation and positioning
In order to verify the effectiveness of the robot control
method, we modeled the scheme in the simulation
environment. Figure 14 shows the visualization
interface, simulated in CoppeliaSim. In the simulation
environment, camera intrinsics, hand-eye calibration

Table 4 Comparison of eight algorithms on the spine dataset

Method ζe RRS1 RRS2 RRS3 MR Time (s)

Buch-17-ECSAD
0.05d 92.5 77.5 87.5 85.8

2.83
0.1d 95.0 77.5 87.5 86.7

Buch-17-FPFH
0.05d 92.5 70.0 77.5 80.0

8.76
0.1d 92.5 70.0 77.5 80.0

Buch-17-NDHist
0.05d 95.0 77.5 92.5 88.3

3.28
0.1d 95.0 80.0 92.5 89.2

Buch-17-PPF
0.05d 97.5 80.0 90.0 89.2

3.62
0.1d 97.5 80.0 92.5 90.0

Buch-17-SHOT
0.05d 90.0 65.0 80.0 78.3

5.96
0.1d 90.0 65.0 80.0 78.3

Buch-17-SI
0.05d 92.5 72.5 87.5 84.2

3.11
0.1d 92.5 72.5 87.5 84.2

HALCON
0.05d 97.5 82.5 100.0 93.3

1.78
0.1d 97.5 82.5 100.0 93.3

Ours
0.05d 95.0 85.0 100.0 93.3

3.45
0.1d 97.5 87.5 100.0 95.0

Fig. 13 Qualitative comparison of results from various methods for scenes S1–S3 from the spine dataset.
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Fig. 14 Simulation environment.

parameters, and tool calibration parameters can be
directly calculated. However, in the real scene, these
parameters can only be obtained by calibration, and
there are errors in the calibration process, which
can not be accurately determined. To simulate the
real situation, we added noise to these parameters.
Based on our experience of real scenarios, we added
Gaussian noise with σ = 5 for fx, fy and σ = 1 for
cx, cy in the camera intrinsics. Gaussian noise with
σ = 0.01 was added for the rotation and translation
vectors of the calibration parameters.

In this setting, the robot arm performs a movement
of two seconds at a time. During the simulation,
the motion trajectory of the camera’s optical center
(Fig. 15(a)), camera velocities (Fig. 15(b)), and visual
features error (Fig. 15(c)) were recorded. It can be
seen from the change of camera speed and feature
errors that the closer the drill is to the target pose,
the lower the speed of the robot arm. The calculated

Fig. 15 Experimental results for the simulation. (a) Motion trajectory
of the camera’s optical center in Cartesian space. (b) Camera velocities.
(c) Visual feature error.

tip distance error is within 1 mm and the orientation
error is within 1◦.

Figure 16 shows the qualitative experimental results
in the real environment. The left is a pose diagram
of the prescribed drill, and the right is the robotic
arm’s effect.

5.8 Recognition results on public datasets

To demonstrate not only the high recognition rate of
our algorithm for complex and symmetric objects like
the spine, but also the effectiveness of our algorithm
for objects of other shapes, we tested it using the
public UWA and DTU datasets.

Table 5 shows the recognition results of our
algorithm and the other seven algorithms on the UWA
dataset. In terms of speed, our algorithm is superior
to the others apart from the commercial HALCON
software. In terms of recognition accuracy, we achieve
a 100% recognition rate for most objects, surpassing
the other algorithms even in highly occluded cases.
Figure 17 shows that for the UWA dataset, our
algorithm still gives stable and correct results in the
case of strong occlusion.

The DTU dataset contains many different types
of geometric models. In order to more clearly show
the effect of our algorithm on different geometric
structures, we artificially divided the DTU dataset
into geometrically complex, planar, and cylindrical
models (see the Appendix).

We selected some complex and symmetric objects
with bone properties from the DTU dataset. A
quantitative comparison of results of these eight
algorithms is given in Table 6, which shows the clear
advantage of our algorithm for this type of object.

Fig. 16 Predetermined pose and actual effect.
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Table 5 Comparison of eight algorithms on the UWA dataset

Method ζe RRchicken RRpara RRcheff RRTrex MR Time (s)

Buch-17-ECSAD
0.05d 93.75 80.00 100.00 80.00 88.83

3.08
0.1d 93.75 80.00 100.00 80.00 88.83

Buch-17-FPFH
0.05d 91.67 84.44 88.00 86.67 87.77

6.12
0.1d 91.67 84.44 92.00 88.89 89.36

Buch-17-NDHist
0.05d 93.75 95.56 100.00 100.00 97.34

3.61
0.1d 93.75 95.56 100.00 100.00 97.34

Buch-17-PPF
0.05d 93.75 95.56 100.00 100.00 97.34

3.77
0.1d 93.75 95.56 100.00 100.00 97.34

Buch-17-SHOT
0.05d 89.58 75.56 98.00 71.11 84.04

3.95
0.1d 89.58 75.56 98.00 71.11 84.04

Buch-17-SI
0.05d 93.75 91.11 100.00 97.78 95.74

4.12
0.1d 93.75 91.11 100.00 97.78 95.74

HALCON
0.05d 91.67 91.11 98.00 95.56 94.15

0.4
0.1d 91.67 91.11 98.00 97.88 94.68

Ours
0.05d 97.92 100.00 100.00 100.00 99.47

2.11
0.1d 100.00 100.00 100.00 100.00 100.00

Table 6 Quantitative comparison of results for various complex, symmetric DTU models

Method ζe RR1 RR2 RR3 RR4 RR5 RR7 RR26 RR36 RR37 RR38 RR39 RR46 MR

Buch-17-ECSAD
0.05d 41.61 68.57 31.25 66.30 68.29 91.59 5.33 4.00 5.08 0.00 0.00 4.44 42.45
0.1d 43.07 68.57 31.25 67.93 69.51 91.59 5.33 8.00 7.61 0.00 0.00 6.67 43.04

Buch-17-FPFH
0.05d 33.58 40.71 12.50 54.35 69.51 89.72 4.00 8.00 4.06 0.00 0.00 0.00 34.28
0.1d 33.58 40.71 12.50 55.43 69.51 90.65 5.33 16.00 5.58 0.00 0.00 0.00 34.68

Buch-17-NDHist
0.05d 53.28 49.29 26.56 67.93 89.02 93.46 20.00 8.00 8.12 0.00 10.53 35.56 45.96
0.1d 53.28 50.00 26.56 67.93 89.02 93.46 20.00 12.00 10.66 0.00 10.53 35.56 46.27

Buch-17-PPF
0.05d 66.42 72.86 39.06 77.72 93.90 93.46 34.67 16.00 14.21 2.63 15.79 60.00 57.05
0.1d 67.15 75.00 40.63 79.89 93.90 93.46 36.00 20.00 16.24 2.63 15.79 62.22 57.77

Buch-17-SHOT
0.05d 33.58 50.71 18.75 57.07 57.76 76.64 5.33 4.00 6.09 2.63 0.00 4.44 35.35
0.1d 34.31 52.14 20.31 58.15 57.76 76.64 9.33 12.00 10.15 2.63 0.00 8.89 36.48

Buch-17-SI
0.05d 64.23 63.57 37.50 72.83 86.59 91.59 20.00 16.00 10.15 0.00 0.00 15.56 50.49
0.1d 64.23 65.71 40.63 72.83 86.59 92.52 24.00 20.00 16.75 2.63 0.00 15.56 51.57

HALCON
0.05d 48.91 67.86 40.63 68.48 81.71 90.65 61.33 20.00 22.34 42.11 10.53 51.11 56.24
0.1d 48.91 67.86 42.19 69.48 81.71 91.59 61.33 24.00 26.90 47.37 10.53 73.33 57.32

Ours
0.05d 60.58 79.29 64.06 89.67 95.12 91.59 70.67 24.00 20.30 60.53 36.84 66.67 66.04
0.1d 60.58 79.29 64.06 90.76 95.12 92.52 78.67 24.00 20.30 60.53 42.11 73.33 67.21

Fig. 17 Qualitative comparison of results for scenes from the UWA dataset.
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We compared our algorithm to other algorithms for
different geometric structures in the DTU dataset; the
results are given in Table 7. It can be seen that our
algorithm outperforms other matching algorithms for
various types of 3D models in the DTU dataset. Thus,
our algorithm has general applicability. A qualitative
comparison for the DTU dataset is shown in Fig. 18.

Table 7 Comparison of eight algorithms on the DTU dataset

Method ζe
Geometrically

complex Cylindrical Planar MR

Buch-17-ECSAD
0.05d 57.12 33.35 35.69 40.63
0.1d 57.83 36.24 38.23 42.83

Buch-17-FPFH
0.05d 45.25 34.62 15.76 33.98
0.1d 45.88 38.26 17.61 36.40

Buch-17-NDHist
0.05d 61.71 41.11 47.97 48.37
0.1d 61.86 43.61 50.28 50.16

Buch-17-PPF
0.05d 71.60 51.95 61.88 59.53
0.1d 72.31 54.05 64.58 61.37

Buch-17-SHOT
0.05d 48.50 27.07 36.85 35.13
0.1d 49.36 30.23 39.04 37.45

Buch-17-SI
0.05d 61.95 38.96 27.00 43.21
0.1d 62.73 42.23 28.89 45.73

HALCON
0.05d 69.38 45.90 55.62 54.54
0.1d 70.49 49.45 56.89 56.95

Ours
0.05d 82.20 57.13 71.73 67.18
0.1d 82.67 60.02 73.23 69.11

6 Conclusions

Considering the structural characteristics of the
human spine, we have proposed a pose estimation
method based on edge-enhanced point pair features.
Its main features are an edge-based sampling method
and an edge-matching-based pose verification method.

We have performed extensive tests on the pig spine
dataset and open datasets; they demonstrate that our
method is suitable for automatic surgical navigation
systems, having high accuracy, robustness, and good
speed. Moreover, our algorithm is completely based
on depth information for point cloud registration, and
can serve as an excellent solution to light shading in
surgical scenes.

Appendix

Figures 19 and 20 show our classification of shapes
in the DTU dataset [31] according to symmetry and
geometric properties.
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Fig. 19 Symmetry classification of the DTU dataset.

Fig. 20 Geometric classification of the DTU dataset.
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feature fusion for improved matching, pose estimation
and 3D object recognition. SpringerPlus Vol. 5, No. 1,
1–33, 2016.

[36] Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique
signatures of histograms for surface and texture
description. Computer Vision and Image Understanding
Vol. 125, 251–264, 2014.

Chenyi Liu received her B.E. degree
in software engineering from Tianjin
Normal University, China, in 2020.
She is now a master student in
the National University of Defense
Technology (NUDT), China. Her
research interests cover 3D point cloud
registration.

Fei Chen is a professor of spinal surgery
in the Second Xiangya Hospital. His
current interests lie in surgical robot
perception and automatic navigation.



6DOF pose estimation of a 3D rigid object based on edge-enhanced point pair features 77

Lu Deng is a professor in the Surgery
Department of the Second Xiangya
Hospital. Her current interest is in
automatic surgical navigation.

Renjiao Yi is an assistant professor
in the School of Computing, NUDT.
She received her Ph.D. degree from
Simon Fraser University in 2019. She
is interested in 3D vision problems such
as inverse rendering and image-based
relighting.

Lintao Zheng is an assistant professor
in the College of Meteorology and
Oceanography, NUDT. He earned his
Ph.D. degree in computer science from
NUDT. His research interests focus on
3D vision and robot perception.

Chenyang Zhu is an assistant professor
in the School of Computing, NUDT. He
received his Ph.D. degree from Simon
Fraser University in 2019. His current
directions of interest include 3D vision,
and robot perception and navigation.

Jia Wang received her B.E. and
M.E. degrees from NUDT. She is
currently an assistant research fellow
at Beijing Institute of Tracking and
Communication Technology. Her
research interests focus on launch
informatics.

Kai Xu is a professor in the School of
Computing, NUDT, where he received
his Ph.D. degree in 2011. He serves on the
editorial boards of ACM Transactions
on Graphics, Computer Graphics Forum,
Computers & Graphics, etc.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Pose estimation methods
	Point pair features

	PPF method
	Point pair feature
	Drost's pipeline

	Algorithm
	 Overview 
	Offline training
	Online matching
	Pre-processing
	Feature extraction
	Pose clustering
	Post-processing

	Design of robot-operated positioning experiment
	Hardware 
	Position-based visual servoing scheme
	Transformation relationship analysis


	Experiments
	Datasets
	Pubic datasets
	Spine dataset

	Evaluation criteria
	Baselines
	Parameter settings
	Quality and robustness
	Ablation study
	Effectiveness of sampling
	Effectiveness of our pose verification
	Effectiveness of early exit strategy on performance

	Effectiveness of the prototype system in operation
	Recognition results on the spine dataset
	Results of navigation and positioning

	Recognition results on public datasets

	Conclusions

