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Abstract Regional facial image synthesis conditioned
on a semantic mask has achieved great attention in
the field of computational visual media. However, the
appearances of different regions may be inconsistent with
each other after performing regional editing. In this
paper, we focus on harmonized regional style transfer
for facial images. A multi-scale encoder is proposed
for accurate style code extraction. The key part of our
work is a multi-region style attention module. It adapts
multiple regional style embeddings from a reference
image to a target image, to generate a harmonious result.
We also propose style mapping networks for multi-modal
style synthesis. We further employ an invertible flow
model which can serve as mapping network to fine-tune
the style code by inverting the code to latent space.
Experiments on three widely used face datasets were
used to evaluate our model by transferring regional facial
appearance between datasets. The results show that
our model can reliably perform style transfer and multi-
modal manipulation, generating output comparable to
the state of the art.

Keywords face manipulation; style transfer; generative
models; facial harmonization

1 Introduction

Semantic image synthesis [1–7], that aims to generate
realistic natural images from semantic labels, has
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been an active research topic in the past few years.
Based on the different ways of involving new styles
in synthesis, there are two types of mainstream
methods to generate diverse images: injecting random
noise [1, 2, 8], or transfer from reference images [7, 9–
11]. Researchers have made great progress in both
fields. Choi et al. [12] employ a style extraction net for
facial style transfer and a mapping network adapted
from StyleGAN [13, 14] to transform Gaussian noise
into style codes.

SPADE [5] adopts the idea of VAE [15] to encode
the image style and enables both tasks. However,
SPADE is just able to transfer facial style globally,
thus limiting its practical usage. Recent works [6, 7, 9]
extract style codes for all semantic components
separately, enabling regional style transfer and
manipulation (R-ST&M) for facial images.

R-ST&M provides flexible facial image editing.
However, new problems arise at the same time:
regional appearance editing (i.e., transfer or
manipulation) can lead to different regions having
mutually inconsistent appearance. For example, when
transferring skin style from a target facial image
to another face captured under different lighting
conditions, the new skin style generated by methods
such as SEAN [7] may mismatch other regions in the
target image (see Fig. 1). Similar problems occur
in the field of image composition [16–19]. To the
best of our knowledge, no prior work focuses on style
consistency and harmony for R-ST&M.

In this paper, we propose a framework which
takes style consistency of different regions into
consideration for R-ST&M. We design a multi-scale
encoder which incorporates feature maps from all
original layers in the SEAN encoder to extract style
codes with rich style information, since low-level
features are important for reconstruction [1, 2, 20].
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Fig. 1 An example of skin transfer. The R-ST&M method can modify
the transferred skin to match the global lighting of the target image.
However, without considering the relationships between different
regions, the synthesised region in (c) is not in harmony with other
regions.

In order to make the synthesized image with
transferred style look plausible, we employ a multi-
region style attention (MRSA) module where the
relationship between the reference and target image
is computed to synthesize a calibrated reference
style. Apart from regional style transfer, we employ
style mapping networks to map random vectors
from latent space to the style spaces for region-wise
multi-modal style synthesis. The idea of the style
mapping networks is inherited from StarGAN-v2 [12].
However, instead of training the mapping networks by
adversarial loss of fake and real images, we calculate
the adversarial loss on the style embedding space. The
multi-scale encoder outputs multi-region style spaces
with relationships between different regions; building
the mapping networks directly from distributions can
generate reliable regional styles. Furthermore, we train
a continuous normalizing flow (CNF) [21, 22] which
can invert the style code generated by the multi-scale
encoder to latent space. Thus, we can fine-tune style
codes from real images in latent space. To further
evaluate the “harmony” of synthetic images, we use
a binary classification network to distinguish natural
photographs from composite ones, following Ref. [19].
The proposed approaches are used as a basis for two
facial editing applications. Figure 2 shows an example
of our harmonized color editing application.

To summarize, our main contributions are as follows:
• focusing on harmonious appearance of regions

in R-ST&M tasks, we introduce a multi-scale

Fig. 2 Examples of color editing using our model.

encoder that incorporates low- and high-level
features to extract regional styles and style
mapping networks to generate random styles for
different semantics,

• a multi-region style attention module which
facilitates harmony and consistency in regional
style transfer, and

• evaluations and two new face editing applications
which show that the proposed framework can
generate high-quality facial images for various
R-ST&M tasks.

2 Related work

2.1 Facial image manipulation with GANs

Generative adversarial nets (GANs) [1, 13, 14, 23–25]
have achieved great success in image generation. A
GAN consists of two competitors, i.e., a generator
and a discriminator. The generator is trained to
synthesize images that cannot be distinguished from
real ones by the discriminator. However, the original
GAN [23] suffers from mode collapse. Many works,
e.g., Refs. [24, 26–29], have proposed improvements
to the generation quality of GANs.

One of the most important applications of
GANs is to generate photo-realistic human face
images. PGGAN [25] grows both the generator
and discriminator progressively, allowing users to
produce high-resolution and high-quality face images.
StyleGAN [13] and StyleGAN2 [14] introduce a
novel generator architecture borrowed from the
style transfer literature, enabling indistinguishable
face image generation. In the field of facial image
editing, significant progress has been made using
powerful GANs. FaceShop [30] presents a novel
system for face image manipulation, providing both
geometry and color constraints as user-drawn strokes.
DeepFaceEditing [31] is a structured disentanglement
framework designed for face images to support
face manipulation with disentangled control of
geometry and appearance. MichiGAN [32] explicitly
disentangles hair into four orthogonal attributes
and designs a corresponding condition module to
process user inputs for each attribute. DualFace [33]
proposes a two-stage guidance system to help users
produce detailed portrait sketches with data-driven
global guidance and GAN-based local guidance.
InterFaceGAN [34] explores disentanglement of
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various semantic attributes and edits several
attributes using linear editing paths. SeFa [35]
proposes a general closed-form factorization method
for latent semantic discovery. StyleRig [36] provides
face rig-like control over a pretrained StyleGAN.
StyleFlow [37] utilizes normalizing flows [38] for
editing facial attributes interactively with StyleGAN.

Recent works [20, 39] learn to encode facial images
for StyleGAN inversion and facilitate various image
editing tasks. MaskGAN [10] proposes a face
dataset with fine-grained mask annotations and dense
mapping network for attribute transfer and style copy.
However, MaskGAN just allows global style transfer.
Sun et al. [40] use partial dilated layers to modify
a few pixels in learned feature maps and realize
mask-aware continuous facial attribute manipulation.
Gu et al. [9] propose an end-to-end framework to
learn conditional GANs guided by semantic masks,
enabling regional facial style transfer. SEAN [7]
proposes semantic region-adaptive normalization for
GANs conditioned on segmentation masks; it can
control the style of each semantic region individually.
Our work improves the SEAN encoder with a multi-
scale structure and a multi-region style attention
module for facial image harmonization. Moreover,
we introduce style mapping nets to generate multi-
modal styles regionally with latent codes sampled
from Gaussian distributions.

2.2 Self-attention

Self-attention was first proposed in the natural
language processing literature in the form of
Transformer [41]. Computer vision researchers then
extended the idea to video classification [42] and
image generation [29]. Recent works generalize self-
attention to extract correspondences between source
and reference image for semantic style transfer [43, 44]
and makeup transfer [45]. However, the self-attention
mechanism computes the correspondence spatially,
making it time-consuming and inefficient. Instead,
our style attention, inspired by the above works,
computes the correlation between semantic regional
style vectors, which ensures its computational
efficiency.

2.3 Multi-modal image synthesis

BicycleGAN [2] models a distribution of possible
outputs in a conditional generative modeling setting.
To ensure that random sampling can be used during

testing, the model employs KL-divergence loss to
enforce the latent style distribution to be close to a
standard normal distribution. Refs. [46, 47] extend
the multi-modal idea to unsupervised image-to-image
translation, to generate diverse images. SPADE [5]
uses the same idea to encode image style for semantic
image synthesis. GroupDNet [6] extends SPADE by
using KL loss for all semantic labels, thus enabling
regional multi-modal synthesis. Recently, StarGAN-
v2 [12] was proposed; it learns a mapping network to
achieve diversity. Our style mapping model follows
StarGAN-v2, but has a different training strategy
more suited to our framework.

2.4 Deep image harmonization

Deep convolutional models have achieved significant
success for image harmonization in recent years. Zhu
et al. [19] train a binary classifier to guide color
adjustment for composite images. Then, an end-to-
end deep CNN model captures both the context and
semantic information during harmonization. Cun
and Pun [48] use a spatially-separated attention
module in order to learn separate foreground and
background feature maps. DoveNet [17] translates
the foreground domain to the background domain
by using a domain verification discriminator, with
impressive results. Since facial regional style transfer
may lead to disharmony, we propose a multi-region
style attention module to adjust the transferred
regional style to other regions. The proposed
module is incorporated into the style transfer process,
allowing harmonious images to be directly synthesized
without a subsequent image harmonization process.
We use the method of Zhu et al. [19] to evaluate the
degree of harmony of an image.

3 Architecture

Figure 3 shows the framework of our proposed
multi-region style transfer and multi-modal synthesis
method. The inputs are a segmented target image
xt that the user wishes to edit and a reference
style. The reference style can either be generated
from a segmented reference style image xr for style
transfer, or directly sampled from a normal Gaussian
distribution for manipulation. In this section, we
start by introducing the regional feature encoding,
including a multi-scale encoder for input images and
regional style mapping (RSM) subnets for multi-
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Fig. 3 Framework. (a) Multi-level feature fusion part of the encoder. (b) Multi-region style attention module. (c) An example style mapping
network, in which the mapping network generates styles for skin and nose simultaneously; multi-modal results are shown in (d). (d) SEAN
generator with results of (a) and (c).

modal style synthesis. We then move on to the
multi-region style attention (MRSA) module followed
by a semantic region-adaptive normalization based
decoder. Next, we discuss the supervised training
strategy and details. Finally, we demonstrate how to
fine-tune a real style code based on normalizing flow
models.

3.1 Regional feature encoding

3.1.1 Multi-scale encoder
The encoder in SEAN employs a “bottleneck”
structure with plain convolutional layers to extract
styles of all facial semantic regions. Since the purpose
of the model is to generate images from the encoder,
low-level features from the shallow layers are
important for image reconstruction. Therefore, we
compute a weighted sum of feature maps from
all layers in the encoder, as shown in Fig. 3(a).
Concretely, we first re-scale the feature maps to a
uniform resolution to get new features {Fi}K

i=1, where
K is the number of shallow layers. Then, a set of
learnable parameters {ai}K

i=1 is fed into a softmax
function for normalization:

{αi}K
i=1 ← softmax({ai}K

i=1) (1)
We then get the final multi-scale style feature map
using

F =
K∑

i=1
αiFi (2)

The learned weights {ai}K
i=1 indicate the proportion

of each scale to use when compositing the feature
map F . Given an input target image xt and a
reference image xr with segmentation masks mt and
mr respectively, we employ a region-wise average
pooling layer [4, 7] to transform Ft and Fr to initial
style vectors st and sr respectively.
3.1.2 Regional style mapping
In order to synthesize multi-modal facial images with
random styles, we utilize a series of regional style
mapping sub-networks to learn the distributions of
styles from different facial regions respectively. Facial
semantic regions can be divided into several groups
according to their relevance, and one network is
responsible for one group. For example, some regions
such as skin and nose that share color and texture
appearance are strongly correlated, so we should
define one network to model them simultaneously.
In practice, we only train hair and skin networks
as the area of these regions is large enough. As
the correlations between some regions, such as nose
and hair, are weak, we use two networks to model
them separately. Figure 3(c) shows an example of
the mapping sub-network for modeling skin and
nose. Given a latent code z sampled from the
Gaussian distribution, a random reference style can
be generated using the mapping network M:

sr =M(z) (3)
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In our method, related regions such as skin and
nose or the two eyes share a common mapping
network. More details of training the RSM are given
in Section 3.4. Next, we feed sr into the MRSA
module and generator G.

3.2 Multi-region style attention

If the global appearances (i.e., lighting conditions) of
xt and xr are quite different, regional style transfer
results may be disharmonious. However, users
would prefer to get a harmonious image directly
without a need for a subsequent image harmonization
process. To this end, we propose a multi-region
style attention (MRSA) module to learn transferred
styles. Figure 4 illustrates the workflow of the MRSA
module. Unlike the attention modules in Refs. [43, 44]
that extract spatial correspondences in pixel space,
our MRSA module computes relationships between
regional semantic styles. In order to correct the styles
of different regions, we first concatenate the target
components in sr with the remaining components in
st to form a new s′r. Then we map the style vectors
using Q = Wq(s′r), K = Wk(st), and V = Wv(st),
whereWq,Wk, andWv are linear mappings. Next, an
attention matrix can be computed by QKT followed
by a softmax function within each row:

M = softmax(QKT) (4)
After computing the attention matrix M , we can get
the style correction: sc = MV . Finally, the target
style can be computed using

Fig. 4 Multi-region style attention module. st: target style vectors
of all regions. s′

r: concatenation of styles from target regions in the
reference and styles from the remaining regions in the target. Linear
projection metrics Wv , Wq , and Wk are used to produce V , Q, and
K, respectively. Then, V and Q are used to yield an attention matrix
M . Finally, the multi-region style correction is calculated by applying
MV to s′

r.

s′t = s′r + αsc (5)

3.3 Decoder

Given the style vectors generated by MSRA, the
SEAN generator [7] is used as a decoder by feeding
them into a semantic region-adaptive normalization
(SEAN) module. In SEAN, a target mask and a
style map generated by broadcasting style vectors
to the corresponding regions are used to modulate
the activation from the previous layer. The decoder
employs several SEAN blocks with upsampling layers
and synthesizes images progressively.

3.4 Model training

The encoder–decoder part of our model is similar
to that in SPADE and SEAN. We use three loss
functions described in SPADE and SEAN to train it:
adversarial loss, feature matching loss, and perceptual
loss. During training, if we use sr extracted from a
reference different from the source image xs, this
results in unsupervised training as there is no ground
truth for the new image. To tackle this problem, we
set xr equal to xs for training. We tried a training
strategy mixing supervised and unsupervised training,
but it failed to generate realistic images. The reason
we suppose is that the unsupervised result disturbs
the supervised training pace.

As for style mapping networks {Mj}M
j=1, we turn to

the adversarial loss imposed on ss and sr generated by
style mapping. M is the number of mapping networks.
In order to train {Mj}M

j=1, a set of discriminators
{Dj}M

j=1 is employed, with adversarial objectives as
Eq. (6):
Lj = min

Mj

max
Dj

E[logDj(ss)]+E[log (1−Dj(Mj(z)))]

(6)
A similar style mapping network was proposed in
StarGAN-v2 [12], which focuses on unsupervised
image-to-image translation. However, StarGAN-v2
trains it with the adversarial loss defined on image
synthesis. The training strategy in StarGAN-v2
cannot effectively train our style mapping networks,
as our encoder–decoder is trained in a supervised way,
and the encoder learns expressive style information. It
is more effective to learn the distributions of encoded
styles directly.

3.5 Style random fine-tuning

If users are not satisfied with the current style, we also
provide a method for style fine-tuning that users can
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use to adjust to a new style based on the current
one. A straightforward idea for doing this is to
sample a random unit vector d as the tuning direction,
then move the style code st along d. However,
the style distribution in style space is supported on
a low-dimensional manifold since the style code s

contains abundant semantic information. As shown
in Fig. 5, fine-tuning in z space is more reasonable
as the support of Gaussian distribution is the whole
space. In order to realize style random fine-tuning in
z space, we train an invertible continuous normalizing
flow (CNF) [21, 22], as utilized in Ref. [49] for point
cloud generation and Ref. [37] for facial attribute
manipulation.

Specifically, we first use the ODE below to get zt
corresponding to st:

zt = s(l0) +
∫ l1

l0

f(s(l), l)dl (7)

where s(l0) = st and l denotes time. Then we fine-
tune zt by z′t = zt +ηd, where η is the step size. Then
a reverse-time ODE is employed to recover a modified
meaningful style code:

s′t = z′(l1) +
∫ l0

l1

f(z′(l), l)dl (8)

where z′(l1) = zt.

Fig. 5 Style fine-tuning in z space and style space. Manipulation in
style space leads to an out-of-manifold result.

4 Experiments

4.1 Experimental setting

4.1.1 Datasets
We used three face datasets to evaluate our frame-
work.

CelebAMASK-HQ [10] consists of 30,000 face
images with segmentation masks. Each image is
annotated with a semantic mask of 19 semantic
categories in total. We used the first 28,000 images
for training and the remainder for evaluation.

FFHQ [13] contains 70,000 high-quality images.
We utilized a deeplab-v3 model [50] trained on
CelebAMASK-HQ to parse the facial semantics. We
employed the first 2000 images for evaluation.

LaPa [51] is a new dataset for face parsing which
consists of more than 22,000 images with large
variations in pose, facial expression, and illumination.
11-category semantic label maps are provided. We
discarded low-resolution images in the dataset. The
final training and test sets contained 19,770 and 1930
faces respectively.

4.1.2 Metrics
We used several common metrics to evaluate our
framework and competing methods. Specifically,
FID [53] computes the distance between the
distributions of synthesized images and of real images,
and is used to evaluate the quality of synthesized
results. We also adopt PSNR, SSIM, and LPIPS [54]
to assess the similarity between synthesized and
ground-truth images in the face reconstruction task.
In order to evaluate the performance of our model for
regional multi-modal synthesis with random styles,
we utilized mean class-specific diversity (mCSD) and
mean other-class diversity (mOCD) [6]. For a fixed
semantic region, mCSD assesses the generated diversity
of the region while mOCD assesses the diversity of
the remaining regions. High mCSD and low mOCD
indicate good performance for a fixed region.

In addition to the above metrics, we employ
harmony score (HS) to measure the degree of harmony
between the transferred region and the remainder for
regional style transfer. The idea of harmony score
follows that of realism score [19] predicted by a binary
classifier. Concretely, we train a convolutional neural
network to distinguish real images from synthetic
ones and use the output probability as the harmony
score. Real images are set as positive samples and
unrealistic composite images are set as negative
samples. We used HAdobe5k [17] to train the
classification network and concatenated an image
and its corresponding foreground mask to form each
individual input.
4.1.3 Competing methods
We compared our method to five leading semantic
image synthesis models: pix2pixHD [4], SPADE [5],
GroupDNet [6], SEAN [7], and CLADE [52].
Specifically, pix2pixHD applies an image feature
encoder network and instance-wise pooling to get
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image features within each object. Then the features
and the corresponding mask are feed into a coarse-
to-fine generator to reconstruct the image. Thus,
pix2pixHD is suitable for regional style transfer.
SPADE uses an encoder and generator to form
a VAE [15] and a new normalization for the
generator, enabling global style transfer and multi-
modal synthesis conditioned on the semantic mask.
GroupDNet extends the idea of SPADE by encoding
different semantic regions separately and leveraging
a group decreasing generator. GroupDNet can be
used for regional style transfer and multi-modal
synthesis. SEAN employs similar structures to
the pix2pixHD encoder and SPADE generator;
SEAN normalization improves the generation quality
significantly. CLADE improves SPADE based on the
observation that its modulation parameters benefit
more from semantic-awareness rather than spatial-
adaptivity. Tan et al. [52] also introduce CLADE-
ICPE, where intra-class positional map encoding
improves spatial-adaptivity.

4.2 Implementation details

We use the TTUR [53] strategy and set the learning
rate to 0.0001 and 0.0004 for the generator and
discriminator, respectively. Following SPADE and
SEAN, we apply spectral norm [55] to the encoder.
Moreover, we use the ADAM solver [56] with β1 = 0.5
and β2 = 0.999 to optimize the model. For style
mapping, we set the learning rate to 0.0002 for both
mapping networks and discriminators. For both
training and evaluation, the input images are resized
to a fixed resolution of 256× 256.

4.3 Global reconstruction

We first evaluated the effectiveness of the proposed
multi-region style control and manipulation network

in the image reconstruction task, namely transferring
the image’s own style to itself. Only one image was
employed as input. Visual comparisons are shown in
Fig. 6. Overall, pix2pixHD and groupDNet fail to
maintain skin color well. Compared to SEAN, our
method can reconstruct more facial details of the
input, e.g., the wrinkles on the left of the woman’s
face and the left eye of the man under the sunglasses.
A quantitative evaluation is provided in Table 1. Our
model outperforms the other state-of-the-art methods
on all datasets. It is worth noting that although
MRSA is designed for style transfer and manipulation,
it exhibits the best reconstruction quality (lowest
FID) on all datasets.

Fig. 6 Image reconstruction results.

Table 1 Facial image reconstruction results. Higher PSNR and SSIM are better, but lower LPIPS and FID

CelebAMASK-HQ FFHQ LaPa

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

pix2pixHD [4] 17.32 0.5387 0.2117 21.68 16.08 0.5200 0.2506 45.55 13.16 0.4387 0.3817 68.87

SPADE [5] 16.87 0.5142 0.2462 25.46 15.82 0.4894 0.2923 53.10 14.82 0.4607 0.3927 89.96

GroupDNet [6] 16.40 0.5184 0.2526 38.87 15.27 0.4913 0.2981 71.83 14.22 0.4454 0.3928 93.35

SEAN [7] 18.55 0.5741 0.1749 17.12 17.23 0.5368 0.2099 34.29 14.72 0.4841 0.3281 47.94

CLADE [52] 16.18 0.4863 0.2518 24.47 15.16 0.4653 0.2952 57.45 14.67 0.4681 0.4012 76.58

CLADE-ICPE [52] 16.57 0.4997 0.2507 23.75 15.57 0.4794 0.2967 56.46 14.07 0.4495 0.3925 85.93

Ours 18.60 0.5787 0.1702 15.26 17.41 0.5510 0.2020 32.84 14.75 0.4891 0.3295 46.62
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4.4 Regional style transfer

4.4.1 Initial evaluation
We further evaluated the effectiveness of the proposed
approach in the regional style transfer task. One
target image and one reference image were employed
as inputs. We split all test datasets into two parts:
one half as target images and the other half as
reference images. SPADE was not considered for
comparison since it does not support region style
transfer. Figure 7(a) shows some results. We used
FID measured on the whole image as the metric in
two transfer tasks: skin (with nose) transfer, and
hair transfer. Quantitative results are provided in
Table 2. In terms of FID, our model with style
attention achieves the lowest values, indicating that
it synthesizes human faces with the highest quality.
4.4.2 Cross-dataset transfer
Most images in CelebAMask-HQ [10] and FFHQ [13]
were captured under good lighting, so regional style
transfer between these images can hardly lead to
disharmonious results. However, LaPa [51] consists
of facial images with abundant variations in lighting
conditions. Therefore, we transferred skin (with
nose) and hair of facial images from the test sets
of CelebAMask-HQ, FFHQ, and LaPa to the test
set of LaPa separately, and calculated FID and HS
of synthesized faces, with results shown in Table 3.

Table 2 FID↓ results for skin and hair transfer

CelebAMASK-HQ FFHQ LaPa

Skin Hair Skin Hair Skin Hair

pix2pixHD 26.39 26.58 57.13 56.44 85.49 84.72
GroupDNet 45.65 44.09 77.89 78.20 104.52 104.02
SEAN 24.04 24.59 44.84 43.64 61.19 60.68
SEAN+DoveNet 29.62 24.67 52.96 44.32 65.70 63.46
Ours 22.65 22.97 42.82 41.85 60.14 58.85

Our method and SEAN [7] perform much better than
pix2pixHD [4] and GroupDNet [6] in terms of FID,
corresponding to higher image quality. We can draw
the same conclusion from additional visual results in
Fig. 7. HS reflects the harmony degree between the
transferred region and the remaining regions. Our
method exhibits obviously higher harmony scores
than SEAN, showing the effectiveness of MRSA.
However, pix2pixHD and GroupDNet reach higher
harmony scores than our model. As shown in Fig. 7,
although the results of pix2pixHD and GroupDNet
are harmonious, the two methods fail to reconstruct
the transferred styles and severe changes occur
to the remaining regions which should keep their
appearance. In summary, our model provides the
best trade-off between image quality and degree of
harmony.

We can see that the area outside the region
of interest is also greatly changed, especially the
background in Fig. 7(b). This is because the
background contains rich diversity and the 512-
dimensional style code (following SEAN) cannot
reconstruct the background accurately. It is not the
transferred region that affects the background.

4.4.3 User study
We conducted user studies to further compare the
visual performance of our method to the other
selected methods. Firstly, we showed the participants
each target-reference pair and told them which region
in the target image we wanted to edit. Then we
showed them four results, one from our method and
the others from pix2pixHD, GroupDNet, and SEAN.
Each subject was assigned with 30 group results. We
received 59 responses, among which 47 responses
were valid. A total of 1410 votes were obtained.
Our model had 627 (44.45%) votes, SEAN had 410

Table 3 PSNR↓ and HS↑ results for cross-dataset regional style transfer. Although pix2pixHD and GroupDNet have better HS than our
method, these two methods achieve harmony at the expense of severely modifying other regions (see Fig. 7), contradicting the goals of regional
style transfer. “Ours w/o softmax” means our method without softmax normalization and MRSA; “Ours w/o SA” means our method without
MRSA

CelebAMASK-HQ→LaPa FFHQ→LaPa LaPa→LaPa

Skin Hair Skin Hair Skin Hair

pix2pixHD [4] 73.62/0.7923 73.80/0.8075 77.36/0.8538 73.98/0.8137 85.49/0.8314 84.72/0.8035
GroupDNet [6] 96.20/0.8965 93.36/0.8752 94.78/0.9131 93.34/0.8753 104.52/0.9093 104.02/0.8736
SEAN [7] 48.25/0.7420 48.43/0.6940 48.17/0.7105 48.62/0.7164 61.19/0.7396 60.68/0.6996
Ours w/o softmax 52.98/0.8071 54.90/0.7353 53.10/0.8100 54.68/0.7495 66.67/0.8003 65.25/0.7348
Ours w/o SA 48.06/0.7749 47.72/0.7130 47.84/0.7598 48.39/0.7310 61.43/0.7872 59.99/0.6964
Ours 47.46/0.8490 47.05/0.7742 46.71/0.8341 47.36/0.7854 60.14/0.8537 58.85/0.7566
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Fig. 7 Regional style transfer results (segmentation mask shown as inset). (a) Target and reference images from the same dataset. (b) Cross
dataset transfer. Our model generates more harmonious results than DoveNet [17] performed on the outputs of SEAN [7].

(29.07%) votes, GroupDNet had 265 (18.78%) votes,
and Pix2Pix had 108 (7.66%) votes.
4.5 Comparison to DoveNet

Since our work concerns image harmonization,
we utilized a recent deep harmonization model,
DoveNet [17], to harmonize the outputs of SEAN for
comparison. As shown in Table 2, DoveNet has an
adverse effect on image synthesis quality: DoveNet
gets higher FID scores than SEAN. Consider the
image harmonization shown in Fig. 7(b). DoveNet
indeed harmonizes the output of SEAN, but it has
limited effect. Since DoveNet is a subsequent and
independent process and the reference is invisible to
it, DoveNet changes the original tone from that of the
reference during harmonization. More importantly,
separate harmonization will take extra time.
4.6 Regional multi-modal manipulation

We next evaluated the effectiveness of the proposed
approach in the regional multi-modal manipulation

task. One target image and one vector sampled from
a normal Gaussian distribution were employed as
inputs. SPADE [5], GroupDNet [6], CLADE [52],
and CLADE-ICPE [52] were selected for comparison.
SPADE and CLADE are intended for global multi-
modal synthesis while GroupDNet is intended for
regional multi-modal synthesis. Figure 8 shows
the manipulation of skin. GroupDNet affects hair
more significantly than our method in skin multi-
modal synthesis. We further conducted qualitative
experiments on manipulation of skin and hair regions.
Table 4 reports FID, mCSD, and mOCD calculated
for the three different datasets. In terms of image
quality, our method outperforms other methods by
a large margin on all datasets. In terms of diversity
(mCSD), SPADE, CLADE, CLADE-ICPE, and our
method perform at the same level, but SPADE,
CLADE, and CLADE-ICPE fail to preserve the
appearance of the other regions (higher mOCD), as
they are designed for global synthesis. For skin multi-
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Fig. 8 Skin multi-modal synthesis.

modal synthesis, our method exhibits higher mCSD
and lower mOCD than GroupDNet, even though
it extends SPADE to regional style synthesis: our
method is better at maintaining the appearance of
the remaining regions while achieving high color and
texture diversity in skin synthesis. For hair multi-
modal synthesis, GroupDNet generates facial images
with low diversity: mCSD and mOCD of GroupDNet
are both close to zero. In all multi-modal synthesis
experiments, we manipulated each image using 10
random styles.

4.7 Fine-tuning style
First, we evaluated the style synthesis quality of CNF
model. As shown in Table 4, CNF performs closely
to GAN on style multi-modal synthesis. Although
our CNF model can be used for regional multi-modal
synthesis, we only recommend it for style fine-tuning
since the CNF runs much more slowly than a GAN
model: our model with CNF takes 0.2 s to generate
a style code while our GAN mapping network takes
6× 10−4 s on a single RTX3090.

Secondly, we validate the analysis in Section 3.5 by
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Table 4 Regional multi-modal synthesis

SPADE GroupDNet CLADE CLADE-ICPE Ours w/ CNF Ours

CelebA
MASK-HQ

Skin
FID↓ 21.09 39.72 21.39 19.40 12.21 12.67

mCSD↑ 0.0354 0.0321 0.0437 0.0416 0.0408 0.0395
mOCD↓ 0.2126 0.1280 0.2561 0.2382 0.0721 0.0752

Hair
FID↓ 21.12 50.43 21.42 19.39 12.84 12.55

mCSD↑ 0.1848 0.0001 0.1855 0.1954 0.2323 0.2078
mOCD↓ 0.1230 0.0000 0.1203 0.1417 0.0585 0.0505

FFHQ

Skin
FID↓ 51.38 72.34 55.38 52.24 30.57 31.43

mCSD↑ 0.0392 0.0360 0.0395 0.0393 0.0458 0.0413
mOCD↓ 0.2020 0.0820 0.2097 0.2278 0.0285 0.0279

Hair
FID↓ 51.36 81.71 55.32 52.28 28.45 28.45

mCSD↑ 0.0723 0.0000 0.1167 0.1533 0.0826 0.0875
mOCD↓ 0.1920 0.0000 0.1757 0.1797 0.0157 0.0150

LaPa

Skin
FID↓ 74.61 96.75 53.83 60.29 40.54 40.47

mCSD↑ 0.0455 0.0446 0.0462 0.0466 0.0685 0.0600
mOCD↓ 0.3005 0.1657 0.3375 0.3201 0.1185 0.1071

Hair
FID↓ 74.68 150.46 53.76 60.21 41.11 41.26

mCSD↑ 0.0512 0.0047 0.0884 0.0957 0.1076 0.0958
mOCD↓ 0.3080 0.0000 0.3299 0.3405 0.1238 0.1004

showing examples of style random fine-tuning both
in z space and style space. Figure 9 demonstrates
that skin tuning results using z space are much better
than those in style space. Small tuning steps in style

space hardly affect the style of the target image while
larger steps fail to generate clear results. As the skin
style code consists of two parts, tuning the skin style
code will lead to deviation from the manifold. Thus,

Fig. 9 Two examples of style random fine-tuning for skin in both z and style spaces. Tuning in z space can achieve the goal of convincingly
fine-tuning style, such as gradually changing skin color and adding wrinkles.
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the nose presents a different style from the facial skin
even if the step size is small. A similar conclusion
holds for hair style fine-tuning.

4.8 Ablation study

4.8.1 MRSA
To validate the effectiveness of the softmax
function and MRSA module in the encoder, we
conducted ablation experiments omitting them from
the framework. Results of cross-dataset regional
style transfer in Table 3 indicate that softmax
normalization and MRSA improve the image quality
and degree harmony degree, respectively.
4.8.2 RSM
To validate the effectiveness of the RSM module,
we conduct ablation experiments by combining the
encoders and training strategies used in GroupDNet
[6], StarGAN-v2 [12], and ours with the SEAN
generator. This gave three variants for comparison:
“SEAN+GroupDNet”, “SEAN+StarGAN-v2”, and
“SEAN+Our RSM”. Table 5 provides FID for skin
and hair multi-modal synthesis for all datasets. The
“SEAN+Our RSM” method provides much better terms
of image quality than the two variants. Our RSM
uses a similar mapping network to StarGAN-v2 but
a different training strategy. If we used the training
strategy from StarGAN-v2, the generator would be
trained in an unsupervised way. However, our encoder–
decoder is trained in a supervised manner and the
mapping network shares the same generator with
the encoder; different objectives would misguide the
generator. A visual comparison of the results can be
found in Fig. 8.

Table 5 FID↓ for RSM ablation study

SEAN+
GroupDNet

SEAN+
StarGAN-v2

SEAN+
Our RSM

Ours

CelebA
MASK-HQ

Skin 25.32 27.19 14.53 12.67
Hair 28.82 20.05 14.56 12.55

FFHQ
Skin 55.02 40.88 32.06 31.43
Hair 58.07 33.57 30.27 28.45

LaPa
Skin 84.72 105.30 41.93 40.47
Hair 87.29 90.75 43.30 41.27

5 Applications

Our framework can underpin various applications of
facial image synthesis. Sections 4.4 and 4.6 demon-
strate the effectiveness of regional style transfer across

facial images and multi-modal synthesis with random
styles, respectively. Two other applications are
interactive face shape editing and face color editing.

Our framework allows users to edit the shapes of
facial components directly on the segmentation mask
to manipulate the face interactively. Figure 10(a)
shows an example of hair and face shape editing.

By drawing simple color strokes on facial com-
ponents, our method enables color editing on facial
semantic regions. The two rows in Fig. 10(b) demon-
strate color editing of the hair and lips respectively.

Fig. 10 Applications: (a) shape editing, and (b) color editing
(hair/lips).

6 Conclusions

In this paper, we focus on the harmonized region style
editing for facial images. The proposed framework
follows the encoding–fusion–decoding pattern. For
the encoder, we employ a multi-scale structure in
order to extract regional styles more effectively. Then
a multi-region style attention (MRSA) module is
used for harmonious regional style transfer; it is
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especially effective when the target and reference face
images have different lighting conditions. For regional
multi-modal synthesis, we introduce the regional
style mapping (RSM) net to map random noise to
styles.

Although our model can generate high-quality
regional multi-modal results with random styles,
the styles of specific regions are still only weakly
controllable. Regional style transfer is the only
way to provide strong control information. Our
model, SPADE, and GroupDNet are all powerless to
randomly synthesize regions with specific appearance.
Resolving this problem remains as our future
work.
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