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Abstract Specular highlight detection and removal is
a fundamental problem in computer vision and image
processing. In this paper, we present an efficient end-
to-end deep learning model for automatically detecting
and removing specular highlights in a single image.
In particular, an encoder–decoder network is utilized
to detect specular highlights, and then a novel Unet-
Transformer network performs highlight removal; we
append transformer modules instead of feature maps
in the Unet architecture. We also introduce a highlight
detection module as a mask to guide the removal task.
Thus, these two networks can be jointly trained in
an effective manner. Thanks to the hierarchical and
global properties of the transformer mechanism, our
framework is able to establish relationships between
continuous self-attention layers, making it possible
to directly model the mapping between the diffuse
area and the specular highlight area, and reduce
indeterminacy within areas containing strong specular
highlight reflection. Experiments on public benchmark
and real-world images demonstrate that our approach
outperforms state-of-the-art methods for both highlight
detection and removal tasks.
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1 Introduction

Specular highlights are commonly observed in images.
However, they can interfere with solutions for many
computer vision and image processing tasks, including
image segmentation [1–3], photometric stereo [4],
binocular stereo [5], and text detection [6]. Hence,
effective detection and removal of specular highlights
can be beneficial in various real-world applications.

In recent decades, many approaches have been
proposed to address the challenging problems of
specular highlight detection and removal. Most
existing detection methods are based on various forms
of thresholding operations [7, 8]. These methods are
based on the strict premise that the light is white,
and the brightest pixels form specular highlights. As
for specular highlight removal, traditional methods
can be roughly classified into three categories [9],
using color [10, 11], polarization information [5],
or illumination estimation [12–14]. Most methods
make simple assumptions concerning specific scenes
or specific materials, so are difficult to apply to
the complex situations in real-world images. We
have observed that scenes with specular highlights
in the real-world have two common characteristics:
firstly, specular highlights are usually small and
sparsely distributed, and secondly, the colors of
the highlights are similar to the color of the light
source. However, the brightest areas in a real image
may not be highlights, but caused by overexposure
or excessive reflections between objects (see the
bottom row of Fig. 1). As a result, existing
traditional methods cannot accurately locate specular
highlights, nor can they eliminate the semantic
ambiguity between white (or close to white) materials
and highlights in complex real scenes, especially
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Fig. 1 Specular highlight removal and detection results from our
method. Left: input images with specular highlights. Middle: after
highlight removal. Right: detected highlights.

when the image simultaneously contains refraction,
reflection, and transmission, particularly involving
metal and glass. Some recent approaches have started
to utilize deep neural networks [15–17] to remove
specular highlights from a single image. However,
most are trained on synthetic data in a supervised
manner, and their detection and removal abilities
usually deteriorate significantly for real-world images.
Furthermore, existing methods usually regard highlight
detection and removal as two separate tasks, and do
not use detection results to guide specular highlight
removal.

In this paper, we propose a new deep neural model
which jointly detects and removes specular highlights
in a single image. To accomplish this, we utilize the
popular Unet to detect specular highlight areas, and
use this information to guide the specular highlight
removal network. Inspired by the great success of
transformers in recent computer vision tasks [18],
which construct hierarchical feature expressions by
dividing images or feature maps into smaller windows,
we integrate an efficient Swin transformer into
our highlight removal network. Doing so is also
supported by our previous observations about specular
highlights, since the Swin transformer [19] works well
to capture global features and establish relationships
between continuous self-attention layers. This enables
interaction and connection between windows of the
previous layer, which greatly improves the expressive
ability of the model. As a result of introducing the
transformer module, our specular highlight removal
network is capable of leveraging high-level contextual

clues to reduce indeterminacy within areas containing
strong specular highlight reflections. Furthermore, we
also use highlight detection results as a mask to guide
the removal task, which can reduce color defects. To
sum up, the key contributions of this work are:
• a joint specular highlight detection and removal

network that works well for single real-world
images, and

• an efficient Unet-Transformer module for specular
highlight removal, where detection results are
used as a guidance mask to reduce the effects of
chromatic aberration.

2 Related work

In this section, we briefly review previous specular
highlight detection and removal methods.
2.1 Specular highlight detection

Early studies proposed various methods for specular
highlight detection task based on a color constancy
model [20–22]. Zhang et al. [23] formulated specular
highlight detection as non-negative matrix factori-
zation (NMF) [24] based on the assumption that the
number of specular highlights is small. Li et al. [8]
proposed an adaptive robust principal component
analysis (Adaptive-RPCA) method to robustly detect
specular highlights in endoscope image sequences.
Recently, Fu et al. [25] presented a large-scale
dataset for specular highlight detection in real-world
images. Based on the dataset, they also proposed a
deep neural network leveraging multi-scale context-
contrasted features to accurately detect specular
highlights. However, this dataset does not contain
corresponding diffuse images, so it cannot be used for
learning specular highlight removal.

2.2 Specular highlight removal

2.2.1 Using color
Tan et al. [26] proposed to use the spatial distribution
of color to overcome specular reflection separation
ambiguity in real images. Shen et al. [11] separated
highlight reflections in a color image by selecting
an appropriate body color for each pixel by error
analysis of chromaticity. Shen and Cai [27] extended
this work to improve the robustness of the algorithm.
For real images, specular reflections can be effectively
removed [28–30] using a dichromatic reflection
model [10]. Akashi and Okatani [31] formulated the
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separation of reflections as a sparse non-negative
matrix factorization problem without spatial priors.
Likewise, Guo et al. [32] imposed the non-negativity
constraint on the weighting matrix and enhanced
robustness. Fu et al. [33] designed an optimization
framework for simultaneously estimating diffuse
and specular highlight images from a single image.
They recovered the diffuse components of specular
highlight regions by encouraging sparseness of the
encoding coefficients. However, such methods cannot
semantically distinguish whether a bright area in the
image is a highlight or a white object: when light-
colored areas and highlights coexist, these algorithms
may suffer from large errors.
2.2.2 Using polarization
Unlike color-based methods, to avoid the color
distortion caused by illumination, polarization-based
methods take advantage of polarimetric information.
Nayar et al. [34] presented a method that separates
the diffuse and specular components of brightness
in single images, using color and polarization
information at the same time to obtain constraints on
the reflection component of each pixel. By using two
or more images of surface reflection, Umeyama and
Godin [35] proposed a stable separation algorithm for
diffuse and specular reflections based on independent
component analysis. Further, Wang et al. [36]
presented an efficient specular removal method
based on polarization images through global energy
minimization. Wen et al. [37] recently introduced
a new polarization guided model to generate a
polarization chromaticity image. They conducted
specular reflection separation by optimizing a global
energy function. However, these polarization-based
methods rely on strictly controlled light sources and
are only suitable in certain specific scenarios. In real
scenes, some specular highlight components are still
retained in the diffuse reflection images.
2.2.3 Using illumination estimation
Illumination-estimation-based methods can coarsely
remove highlights [12, 13, 38]; they either focus on
estimating the distribution direction of the light
source or estimating the illumination color. There are
two methods for estimating illumination color. One is
to estimate illumination color based on the specular
reflections [14, 39], and the other is to analyze the
surface color based on the color constant of the
prior model [40–42]. Lin et al. [43] presented an

interactive method by introducing specular highlight
removal as an inpainting process. Tan et al. [44, 45]
separated specular illumination using the concept of
inverse intensity space. However, these methods are
often susceptible to complex lighting and chromaticity
issues.
2.2.4 Using deep-learning
Deep-learning-based methods have been widely
used for removing specular highlights in single
image; handcrafted priors are replaced by data-
driven learning [15–17, 46–48]. Shi et al. [15] pre-
sented an encoder–decoder convolutional neural
network (CNN) to handle the non-Lambertian object
intrinsic decomposition problem. Funke et al. [46]
proposed a CycleGAN based network for specular
highlight removal from a single endoscopic image.
To train this network, they constructed a dataset
by extracting small image patches with specular
highlights and patches without highlights from the
endoscopic video. Lin et al. [16] presented a
fully CNN, trained on a synthetic dataset. The
network can work out the intricate relationships
between an image and its diffuse parts. Muhammad
et al. [17] presented Spec-Net and Spec-CGAN, aimed
at removing high intensity specularities from low
chromaticity facial images. Yi et al. [49] presented
an unsupervised method for specular reflection layer
separation using multi-view images. Wu et al. [47, 48]
proposed a novel generative adversarial network
(GAN) for specular highlight removal based on
polarization theory. Fu et al. [50] developed a
multi-task network for joint highlight detection and
removal, based on a large-scale dataset with manual
annotation. However, while numerous researchers
have considered specularity removal, current methods
still leave specular highlight residuals and chromatic
aberrations in real-world scenes.

3 Methodology

3.1 Overview

In this paper, we propose an end-to-end network
structure to jointly detect and remove the specular
highlights from real-world images. Given a single
image with specular highlights as input, our goal
is to detect the locations of the highlights and
restore diffuse reflection in such highlight areas. Our
network architecture comprises two branches and is
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summarized in Fig. 2. The highlight detection branch
uses a pure Unet to output a set of masks locating
the highlights. Then the second branch uses a novel
Unet-Transformer-based highlight removal module
to obtain the corresponding diffuse reflection image
(i.e., without specular highlights). We exploit the
assumption that the locations of highlights provide
a strong prior for highlight removal, so we use the
highlight detection result to guide the removal task.

Details of our network architecture and loss
functions follow, then implementation details,
including training dataset and settings.

3.2 Specular highlight detection

The specular highlight detection task can be regarded
as a binary classification task, which outputs 0 in
non-highlight areas and 1 in highlights. To this end,
our proposed specular highlight detection network
is based on an encoder–decoder framework [51]. As
shown in Fig. 2, the network takes the input image
with specular highlights Is and outputs a mask M ′
indicating specular highlight regions. We adopt a
fully convolutional architecture consisting of four
downsampling layers (the encoder) and corresponding
upsampling layers (the decoder). The purpose of
the encoder is to extract feature maps from the
highlight image. Specifically, each downsampling
layer consists of two 3× 3 convolutions, each followed
by a ReLU, and a 2× 2 max-pooling operation. The

decoder is used to output the pixel classification result.
It consists of three parts: upsampling of a feature
map followed by a 2 × 2 convolution in which the
number of feature channels is halved, concatenation
with the corresponding cropped feature map from
downsampling, and two 3 × 3 convolutions each of
which is followed by a ReLU. Cropping is necessary
due to the loss of border pixels in every convolution.

3.3 Specular highlight removal

Existing specular highlight removal methods do not
achieve satisfactory results for transparent objects
and complex scenes (e.g., in which transmission and
reflection exist at the same time), which usually
require global contextual reasoning. To solve this
problem, our key idea is to exploit the self-attention
mechanism [52] of transformers to enhance the
connection between a specular highlight area and
the surrounding area. Our method appears to be the
first application of transformers to specular highlight
removal.

As Fig. 2 shows, we first perform a patch partition
operation to preprocess the input images Is and M ′.
This partition changes the image from H ×W × 3
to a tensor of size H/4 ×W/4 × 48. Then in stage
1 (see Fig. 2), a linear embedding layer is used to
convert an image with dimensions (H/4, W/4, 48)
into a feature vector with dimensions (H/4, W/4, C).
In stages 2–4, the patch merging layer divides the

Fig. 2 Proposed specular highlight detection and removal framework. Given an input image Is with specular highlights, an encoder–decoder
detection network outputs a mask M ′ indicating highlight areas. Using the detection results as guidance, a Unet-Transformer provides a
specular-free diffuse image Id′ .
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input patches into 4 parts and concatenates them.
This processing down-samples the feature resolution
by a factor of 2. Since the concatenation operation
increases the feature dimension by a factor of 4, a
linear layer is applied to the concatenated features
to unify the feature dimension to twice the original
dimension.

Here we adopt a powerful transformer architecture,
a Swin transformer [19], recently used in image
classification and segmentation, to generate the
hierarchical feature maps in linear time. The Swin
transformer is constructed using shifted windows, as
shown in Fig. 3; two consecutive Swin transformer
blocks are presented. Each Swin transformer block
is composed of a LayerNorm (LN) layer, a multi-
head self attention module, a residual connection,
and a 2-layer multilayer perceptron (MLP) with a
non-linear Gaussian error linear unit (GELU). The
window-based multi-head self attention (W-MSA)
module and the shifted window-based multi-head self
attention (SW-MSA) module are applied in the two
successive transformer blocks. The transformer uses
linear projections to compute a set of queries Q, keys
K, and values V , and takes a weighted sum of value
vectors according to a similarity distribution between
query and key vectors:
Q = BHWC1, K = BHWC2, V = BHWC3

(1)

Attention(Q,K, V ) = Softmax(QKT/
√
d+B)V

(2)

where Q is a matrix of nq query vectors, B is the
learnable relative positional encoding, K and V

both contain nk keys and values, all with the same
dimensionality, and d is a scaling factor.

In the implementation of the encoder, the C-
dimensional tokenized inputs with resolution H/4×
W/4 are fed into the Swin transformer block to

Fig. 3 A Swin transformer block [19]. LN: LayerNorm layer. W-
MSA: window-based multi-head self-attention module. SW-MSA:
shifted window-based multi-head self-attention module.

perform representation learning. Note that in this
process the feature dimension and resolution remain
unchanged. Then the patch merging layer reduces
the number of tokens (using 2× downsampling) and
increases the feature dimension by a factor of 2. This
procedure is repeated three times in the encoder.
Finally, the decoder, consisting of four upsampling
layers, is used to output the generated diffuse
image Id′ .

However, in some cases, the specular highlight may
be located in a large area with strong intensity, and
direct removal will cause chromatic aberration in
non-highlight areas. In order to reduce chromatic
aberration, we use the specular highlight detection
mask to guide specular highlight removal.
3.4 Loss functions

To jointly train the network, we integrate the two
modules above in a unified network architecture.
Network training is supervised by an efficient loss
function with three components: specular detection
loss, context loss, and style loss.
3.4.1 Specular detection loss
Cross-entropy loss is commonly used for solving
edge detection and semantic segmentation problems.
Similarly, we use this loss for the specular highlight
detection task, formulating it as LBCE:
LBCE = −

∑
i

[Mi log(M ′i) + (1−Mi) log(1−M ′i)]

(3)
where i indexes each pixel, Mi is an element of
the ground-truth highlight mask M , and M ′i is the
predicted probability of the pixel belonging to a
specular highlight area.
3.4.2 Pixel loss
Following Ref. [53], we use pixel loss to reduce the
intensity and texture difference between the generated
diffuse image Id′ and the ground-truth image Id:

Lpixel = α‖Id − Id′‖2
2 + β(‖∇xId −∇xId′‖1+

‖∇yId −∇yId′‖1) (4)
We set α = 0.2 and β = 0.4 in all of our experiments.
3.4.3 Style loss
Style loss is usually used in image style transfer
tasks [54]. We use this loss to add constraints on
the pixel and feature space:

Lstyle = σ ‖ψ(Id′)− ψ(Id)‖1 (5)
where σ = 120, ψ(·) = φ(·)φ(·)T is the Gram
matrix [54], where φ are feature maps of pre-trained
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VGG-16 [55]. The selected layer indices in VGG-16
for style loss are 0, 5, 10, 19, 28.
3.4.4 Total loss
To summarize, our total loss function is defined as

LG = ω1LBCE + ω2Lpixel + ω3Lstyle (6)
where we set ω1 = 1.0, ω2 = 1.0, and ω3 = 0.08 in
our experiments.

3.5 Implementation details

3.5.1 Datasets
We trained our method on the SHIQ dataset [50],
which provides specular highlight images, corre-
sponding diffuse images, and highlight mask images.
These specular highlight images were collected from
the MIW dataset [56], which contains many hard
shiny materials (e.g., metal, plastics, glass). Note
that instead of capturing real diffuse images, the
corresponding diffuse images were generated by the
RPCA method [57]. However, the results generated
by RPCA still contain specular residuals, so Fu
et al. [50] only cropped high-quality local images
(with paired specular image and specular-free diffuse
image) to build the SHIQ dataset. We used 9825
groups for training and 999 groups for testing. The
resolution of each image was 200× 200.
3.5.2 Training settings
Our network was implemented in PyTorch on an
NVIDIA GeForce GTX1080Ti graphics card. We
trained the network on our training set for 60 epochs
using the Adam optimizer [58]. The initial learning
rate was set to 10−4 and reduced using an attenuation
coefficient of 0.8 every 5 epochs until reaching 10−5.
We also augmented the SHIQ dataset by randomly
mirror-flipping images and adding noise.

4 Experimental results

In this section, we start with several experiments
through visually inspecting our results on the
dataset to demonstrate the effectiveness of our
proposed neural network. Then we compare our
detection and removal results with current state-of-
the-art approaches with qualitative and quantitative
evaluations.
4.1 Detection and removal results

Figure 4 shows our specular highlight detection
and removal results on some representative images

selected from the SHIQ dataset. These examples
include objects with different materials such as
transparent plastic, glass, and metal. Specular
highlight removal is particularly challenging for
transparent objects as there are both reflection and
transmission components, making it difficult restore
specular highlight areas. As the figure illustrates, our
method can accurately locate the specular highlights,
and can also effectively remove them from such
objects. The fourth row shows that our method can
still give satisfactory results for large highlight areas,
and areas including reflections.

4.2 Comparisons

4.2.1 Highlight detection
We first compare highlight detection results from our
method with those from previous methods, including
two traditional methods (NMF [8] and ATA [23]),
and two state-of-the-art deep-learning-based methods
(SHDN [25] and JSHDR [50]). For quantitative
evaluation, we adopt two commonly used metrics,
namely, detection accuracy and balance error rate
(BER). Their definitions are

Acc = TP + TN
TP + TN + FP + FN

(7)

BER = 1
2

( FP
TN + FP + FN

TN + TP

)
(8)

where TP is the number of true positives, TN true
negatives, FP false positives, and FN false negatives.

A higher value of accuracy and a lower value of
BER indicate better detection results. Table 1 reports
quantitative comparison results on the SHIQ testing
data. As we can see, JSHDR [50] and our method
achieve the best results, while our method is slightly
better in terms of accuracy.
4.2.2 Highlight removal
We also compare our approach to various highlight
removal competitors, including two traditional app-
roaches (Shen et al. [11], Yamamoto et al. [59]), and

Table 1 Quantitative comparison of our method with state-of-the-art
highlight detection methods. The best results are given in bold

Method Acc↑ BER↓
NMF 0.70 18.8
ATA 0.71 24.4

SHDN 0.91 6.18
JSHDR 0.93 5.92

Ours 0.97 5.92
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Fig. 4 Specular highlight detection and removal results using our neural network: (a) input images with specular reflections, (b) ground-truth
diffuse images, (c) ground-truth masks of the specular highlights, (d) our removal results, and (e) our detection results.

three state-of-the-art deep-learning-based approaches
(Multi-class GAN [16], Spec-CGAN [46], and JSHDR
[50]). For a fair comparison, we re-trained Multi-

class GAN and Spec-CGAN on the SHIQ dataset.
Figure 5 shows results using the SHIQ testing data
for evaluation. We observe that Shen and Cai [27] and
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Fig. 5 Visual comparison of highlight removal methods on the SHIQ dataset: (a) input image, (b) ground-truth specular-free diffuse image,
and results from (c) Shen et al. [11], (d) Yamamoto et al. [59], (e) Multi-class GAN [16], (f) Spec-CGAN [46], (g) JSHDR [50], and (h) our
method.

JSHDR [50] have local specular highlight residuals,
especially on the Garniture and Wrapper scenes
(in first and fourth rows). Yamamoto et al. [59]
induced color distortion on the surfaces of light
color objects, resulting in dark areas. Multi-class
GAN [16] and Spec-CGAN [46] leave obvious specular
highlight residuals. In comparison, our network
removes most of the highlights and produces no dark
shadows and chromatic aberrations. For quantitative
comparison, we adopt three commonly used metrics:
mean-squared error (MSE), structural similarity
index (SSIM), and peak-signal-to-noise ratio (PSNR).
Table 2 reports these values for different methods
for Fig. 5. Our network has better scores than all
compared methods.

Finally, in order to compare the capabilities of
approaches using natural images, we captured a real-
world specular testing dataset using a cellphone. As
Fig. 6 shows, traditional methods like Shen et al. [11]
either fail to effectively remove specular highlights
(see first row), or produce chromatic aberrations
(see rows 2, 3, 5). Yamamoto et al. [59] generated
distinct dark areas in light and specular highlight
regions. Multi-class GAN [16] can remove some
specular highlights from the images, but chromatic
aberration appears (see rows 2, 4). Spec-CGAN [46]
has obvious specular highlight residuals (see rows 3,
4, 5). JSHDR [50] achieves good results overall, but

Table 2 Quantitative comparison of highlight removal methods on
the SHIQ dataset

Scene Method MSE/10−2↓ SSIM ↑ PSNR ↑
Shen et al. 5.93 0.3707 12.27
Yamamoto et al. 27.12 0.0679 5.67

Garniture Multi-class GAN 0.45 0.9373 23.51
Spec-CGAN 0.14 0.9597 28.38
JSHDR 0.08 0.9738 31.00
Ours 0.04 0.9812 34.47
Shen et al. 0.21 0.9046 26.79
Yamamoto et al. 10.87 0.5450 9.63

Metal Multi-class GAN 0.23 0.9666 26.33
Spec-CGAN 0.21 0.9712 26.85
JSHDR 0.07 0.9923 34.30
Ours 0.05 0.9894 32.43
Shen et al. 4.87 0.2728 13.13
Yamamoto et al. 6.89 0.1828 11.62

Plastic Multi-class GAN 0.36 0.8627 24.38
Spec-CGAN 1.24 0.8869 19.07
JSHDR 0.51 0.9282 22.93
Ours 0.20 0.9374 26.99
Shen et al. 10.75 0.2903 24.61
Yamamoto et al. 6.56 0.3824 9.69

Wrapper Multi-class GAN 0.31 0.8746 23.75
Spec-CGAN 1.04 0.8439 19.83
JSHDR 0.35 0.9515 24.54
Ours 0.28 0.9598 25.51

it still generates distinct dark patches (see rows 2, 3)
and has obvious specular highlight residuals (see
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Fig. 6 Visual comparison on natural images in the wild: (a) input, and results from (b) Shen et al. [11], (c) Yamamoto et al. [59], (d)
Multi-class GAN [16], (e) Spec-CGAN [46], (f) JSHDR [50], and (g) our method.

rows 4, 5). In contrast, our network can effectively
remove specular highlights without generating dark
shadows or chromatic aberrations. Our neural
network generalises well.

4.3 Ablation studies

4.3.1 Highlight detection
It should be noted that, when the highlight detection
and removal networks are jointly trained, the
detection results are slightly inferior to when only
using the highlight detection network. This is be-
cause the highlight detection probability is used
as a weight when the diffuse reflection image
is finally generated; the two have a connection
relationship via the gradient which affects the
detection result. To demonstrate this, we conducted
experiments to evaluate the influence of the specular
highlight removal network and Swin transformer on
the specular detection network. Table 3 reports
quantitative results of this ablation study. As ob-
served, when the removal network or the Swin

Table 3 Quantitative comparison of detection network settings. The
best result in each case is shown in bold

Method Accuracy ↑ BER ↓

Ours without removal 0.92 6.98
Ours without Swin transformers 0.93 6.31
Our full method 0.97 5.92

transformer is removed from our network, the balance
error rate metric is slightly worse than for SHDN [25]
and JSHDR [50], while our full method is slightly
better than the other methods.
4.3.2 Highlight removal
To verify the effectiveness of our network architecture
and loss functions, we compared our network with
ablated versions. Visual examples from the ablation
studies are shown in Fig. 7 and corresponding
quantitative results are given in Table 4. As we can
see, our full model achieves the best performance.
As shown in Fig. 7(c), Fig. 7(d), and Fig. 7(g),
the network without Swin transformers produces
obvious chromatic aberration. The network without
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Fig. 7 Visual examples from ablation studies for the proposed network: (a) input, (b) ground-truth, and results from (c) our method without
Swin transformer, (d) our method without highlight mask, (e) our method without pixel loss, (f) our method without style loss, and (g) our
overall method.

highlight mask produces artifacts in the highlights,
indicating the usefulness of the highlight mask as
guidance in local highlight areas. As shown in
Figs. 7(e)–7(g), results obtained without pixel loss
have highlight remnants (see rows 1, 3). Results
without style loss produce artifacts (see rows 1, 2)
and highlight remnants (see row 3). Our full loss
(see Fig. 7(g)) provides cleaner results with fewer
highlight remnants and no artifacts. The quantitative
results in the Table. 4 further show that our full

Table 4 Quantitative comparison of ablation study, corresponding
to Fig. 7. “−” means without

Scene Method MSE/10−2↓ SSIM ↑ PSNR ↑

− Swin 0.08 0.8852 30.58
− mask 0.04 0.9798 34.19

Faucet − pixel loss 0.09 0.9781 30.64
− style loss 0.04 0.9815 33.65
full method 0.03 0.9822 34.65

− Swin 0.25 0.8801 25.85
− mask 0.10 0.9859 29.86

Bottle − pixel loss 0.05 0.9874 32.42
− style loss 0.07 0.9882 31.72
full method 0.05 0.9886 33.08

− Swin 1.06 0.8248 19.77
− mask 0.05 0.9972 32.80

Yellow plastic − pixel loss 0.07 0.9951 31.63
− style loss 0.04 0.9975 33.92

full method 0.04 0.9976 33.61

network achieves the best results. We can also see
that Swin transformers play a more important role
than highlight masks for highlight removal.

4.4 Limitations

We have successfully applied our method for detecting
and removing specular highlights to a variety of single
images. However, our neural network in common with
many state-of-the-art methods may fail to remove
large specular highlight areas, as shown in Fig. 8,
where the large areas lack meaningful and reliable
contextual cues to help restore them. Furthermore,
out network cannot handle images with text due to
a lack of training data richness: when the specular
highlight covers part of the text, it is challenging to

Fig. 8 Examples of failures: (a) input image, (b) our highlight
removal results, and (c) our detection results.
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remove the highlights. To handle such cases, a text
detection branch or a text-aware loss might help [60].

5 Conclusions and future work

This work has solved the challenging problem of
joint specular highlight detection and removal in
a single image, using an end-to-end deep learning
framework that consists of two networks: an encoder–
decoder network for highlight detection, and a
Unet-Transformer network for highlight removal.
We also use the detection results as guidance to
ensure that the highlight removal network pays
more attention to the highlight areas. A variety
of experiments on public benchmark datasets and
many challenging real images have shown the
effectiveness of our neural network. Our source
code is publicly available at https://github.com/
jianweiguo/specularityRemoval.

In future, we hope to remove specular highlights
from complex scenes with rich textures. We also
plan to construct a large dataset and design a
more effective text-related loss to promote text-
aware highlight removal. Finally, we will explore the
relationship between specular highlights and object
geometry, such as flat, spherical, and cylindrical
highlights, which may help to accurately locate and
remove specular highlights.
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