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Abstract Salient object detection (SOD) in RGB
and depth images has attracted increasing research
interest. Existing RGB-D SOD models usually adopt
fusion strategies to learn a shared representation
from RGB and depth modalities, while few methods
explicitly consider how to preserve modality-specific
characteristics. In this study, we propose a novel
framework, the specificity-preserving network (SPNet),
which improves SOD performance by exploring both
the shared information and modality-specific properties.
Specifically, we use two modality-specific networks and
a shared learning network to generate individual and
shared saliency prediction maps. To effectively fuse
cross-modal features in the shared learning network,
we propose a cross-enhanced integration module (CIM)
and propagate the fused feature to the next layer to
integrate cross-level information. Moreover, to capture
rich complementary multi-modal information to boost
SOD performance, we use a multi-modal feature
aggregation (MFA) module to integrate the modality-
specific features from each individual decoder into the
shared decoder. By using skip connections between
encoder and decoder layers, hierarchical features can
be fully combined. Extensive experiments demonstrate
that our SPNet outperforms cutting-edge approaches
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on six popular RGB-D SOD and three camouflaged
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available at https://github.com/taozh2017/SPNet.
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1 Introduction

Salient object detection (SOD, also called saliency
detection) aims to emulate the mechanisms of
human visual attention and locate the most visually
distinctive object(s) in a given scene [1]. SOD has
been widely applied in various vision-related tasks,
such as image understanding [2], action recognition
[3, 4], video/semantic segmentation [4, 5], and person
re-identification [6]. Although significant progress has
been made, it is still challenging to accurately locate
salient objects in many challenging scenarios, such
as images with cluttered backgrounds, low-contrast
lighting conditions, and salient object(s) having a
similar appearance to the background. Recently,
with the ready availability of depth sensors in smart
devices, depth maps have been introduced to provide
geometric and spatial information to improve SOD
performance. Consequently, fusing RGB and depth
images has gained increasing interest in the SOD
community [7–15], and it is a challenging task to
adaptively fuse RGB and depth modalities.

Over past years, various RGB-D SOD methods
have been proposed; they often focus on how to
effectively fuse RGB and depth images. Existing
fusion strategies can be divided into categories
using early fusion, late fusion, and intermediate
fusion. The early fusion strategy often adopts a
simple concatenation to integrate the two modalities.
For example, methods in Refs. [1, 16–18] directly
integrate RGB and depth images to form four-
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channel input. However, this type of fusion does
not consider the distribution gap between the two
modalities, which could result in an inaccurate feature
fusion. The late fusion strategy uses two parallel
network streams to generate independent saliency
maps for RGB and depth data, which are fused to
obtain a final prediction map [19–21]. However, it is
still challenging to capture the complex interactions
between the two modalities.

Recent research mainly focuses on intermediate
fusion, which utilizes two independent networks to
learn intermediate features of the two modalities
separately, and then the fused features are fed into
a subsequent network or decoder (see Fig. 1(a)).
Other methods carry out cross-modal fusion at
multiple scales [22–28]. As a result, complex
correlations can be effectively exploited from the
two modalities. Further methods utilize depth infor-
mation to enhance RGB features via an a auxiliary
subnetwork [29–31] (see Fig. 1(b)). For example,
Zhao et al. [30] introduced a contrast prior into
a CNN-based architecture to enhance the depth
information, which was then integrated with RGB
features using a fluid pyramid integration module.
Zhu et al. [31] utilized an independent subnetwork
to extract depth-based features, which were then
incorporated into the RGB network. The above

methods focus on learning shared representations
by fusing them and then use a decoder to generate
the final saliency map. Furthermore, there is
no supervised decoder to guide the depth-based
feature learning [30, 31], which may prevent optimal
depth features from being obtained. From a
multi-modal learning perspective, several works
[34–37] have shown that exploring both the shared
information and modality-specific characteristics can
improve model performance. However, in the RGB-
D SOD community, few methods explicitly exploit
modality-specific characteristics.

Thus, in this paper, we propose a novel RGB-D
SOD framework, the specificity-preserving network
(SPNet), which can effectively explore the shared
information as well as capture modality-specific
characteristics to improve the SOD performance. Two
encoder subnetworks are used to extract multi-scale
features for the two modalities (i.e., RGB and depth),
and a cross-enhanced integration module (CIM) is
proposed to integrate cross-modal features in different
feature layers. Then, we use a simple U-Net [38]
structure to construct a modality-specific decoder,
in which skip connections between the encoder and
decoder layers are used to combine hierarchical
features. In this way, we can learn powerful modality-
specific features in each independent decoder, which

Fig. 1 Comparison of two existing RGB-D salient object detection frameworks and our proposed model. (a) RGB and depth images are fed
into two independent network streams, and then fused high-level features are fed into a decoder to predict saliency maps (e.g., Refs. [22–25]).
(b) Depth features are integrated into the RGB network using an auxiliary subnetwork (e.g., Refs. [29–33]). (c) Our method adopts two
modality-specific networks and a shared learning network to explicitly explore modality-specific characteristics and shared information. Features
learned from the modality-specific decoders are integrated into the shared decoder to boost SOD performance.
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also captures modality-specific characteristics to
provide cross-modal complementarity. Further, we
construct a shared decoder to combine hierarchical
features from outputs of the previous CIM via a
skip connection. To make full use of the modality-
specific features, a multi-modal feature aggregation
module (MFA) is proposed to integrate them into
the shared decoder. Finally, we formulate a unified
and end-to-end trainable framework where shared
and modality-specific information are simultaneously
exploited to boost SOD performance.

The main contributions of our paper in summary
are:
• A novel RGB-D salient object detection frame-

work, the specificity-preserving network (SPNet),
which explores shared information from RGB
and depth images as well as preserving modality-
specific characteristics.

• A cross-enhanced integration module (CIM) to
integrate cross-modal features and learn shared
representations for the two modalities. The
output of each CIM is propagated to the next
layer to explore rich cross-level information.

• An effective multi-modal feature aggregation
(MFA) module to integrate learned modality-
specific features. It allows our model to make full
use of the features learned in the modality-specific
decoder to improve salient object detection.

• Extensive experiments on six public RGB-D SOD
and three camouflaged object detection (COD)
datasets demonstrate the superiority of our model
over other cutting-edge methods. Moreover,
we carry out an attribute-based evaluation on
various state-of-the-art RGB-D SOD methods
under varying conditions (e.g., number of salient
objects, indoors or outdoors, lighting, and object
scale), which has not been done previously.

This paper significantly extends our previous work
in Ref. [39], as follows:
• We discuss differences between (i) our proposed

CIM and existing fusion strategies, and (ii) the
proposed CIM and MFA.

• We provide further details, including (i) a review
of existing RGB SOD methods, (ii) a discussion
of the importance of integrating multi-level/scale
features, and (iii) better characterisation of our
evaluation metrics.

• We provide an additional ablation study and
attribute-based evaluation, to validate the

effectiveness of the shared decoder, and to
examine the effects of different numbers of CIMs.
We also show that our model can effectively
handle variations in object scale.

• We apply SPNet to a new RGB-D task: COD, and
demonstrate its superiority over existing methods.

2 Related work

In this section, we review three types of works most
related to the proposed model, i.e., RGB salient object
detection, RGB-D salient object detection, and multi-
modal learning.
2.1 RGB salient object detection

Early salient object detection methods were based
on hand-crafted features and various saliency priors,
such as a background prior [40], color contrast [41],
a compactness prior [42], and a center prior [43].
However, the generalizability and effectiveness of
these traditional methods are limited. With the
breakthrough of deep learning in the field of
computer vision, various deep learning-based salient
object detection methods have been developed with
promising results. For example, Hou et al. [44]
proposed a novel salient object detection method
by introducing short connections to the skip-layer
structures within the holistically-nested edge detector
architecture. Wang et al. [45] proposed a recurrent
fully convolutional network framework for salient
object detection with promising results. Liu et al. [46]
proposed to hierarchically embed global and local
context modules into the top–down pathway, which
can generate attention over context regions for each
pixel. Deng et al. [47] proposed a recurrent residual
refinement network with residual refinement blocks
to accurately detect salient objects. Further methods
can be found in a survey [48]. Scale variation is a
key challenge in the SOD task, so several methods
have been proposed to integrate multi-level or scale
features [49–52] to improve SOD results. In our
method, we consider how to effectively combine cross-
modal (RGB and depth) features, and how multi-level
information can be exploited via a cross-enhanced
integration module.
2.2 RGB-D salient object detection
Early RGB-D based SOD methods often extracted
hand-crafted features from the input RGB-D data.
For example, Lang et al. [53] in the first RGB-D SOD
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work utilized Gaussian mixture models to model the
distribution of depth-induced saliency. Subsequently,
several methods explored different principles, such as
center-surround difference [19, 54], contrast [1, 16, 55],
a center/boundary prior [56, 57], and background
enclosure [58]. However, these methods typically
provide poor results due to the limited expressivity
of handcrafted features. Benefiting from the rapid
development of deep convolutional neural networks
(CNNs), several deep learning-based works [7, 12,
30, 59, 60] have recently obtained promising results.
For example, Qu et al. [59] used a CNN model
to fuse saliency cues from different low levels into
hierarchical features to boost SOD abilities. Chen
and Li [22] proposed a complementarity-aware fusion
module to effectively integrate cross-modal and
cross-level features for RGB and depth modalities.
Piao et al. [60] proposed a depth-induced multi-
scale recurrent attention network to enhance cross-
modality feature fusion. Fan et al. [7] designed a
depth purification unit to remove some low-quality
depth maps. Most other models [23–26, 61, 62]
employ cross-modal fusion at multiple scales using
different integration strategies.

2.3 Multi-modal learning

Recently, multi-modal (or multi-view) learning has
attracted increasing attention: much data can be
collected from multiple sources or represented using
different types of features. One traditional strategy
directly concatenates feature vectors from such multi-
modal data into a feature vector. However, this
may fail to exploit the complex correlations within
multi-modal data. Thus, several multi-modal learning

methods have been developed to explicitly fuse the
complementary information from different modalities
to improve model results. These popular methods can
be divided into three types: (i) co-training [63, 64]
tries to minimize the disagreement between different
modalities, (ii) multiple kernel learning [65] utilizes a
predefined set of kernels for multiple modalities and
integrates these modalities using the learned kernel
weights, and (iii) subspace learning [66, 67] assumes
that a latent subspace exists shared by different
modalities, with one underlying latent representation.
To effectively fuse multi-modal data, several deep
learning-based models have also been explored. For
example, Ngiam et al. [68] proposed to learn a shared
representation from audio and video inputs. Eitel
et al. [69] adopted two separate CNN streams for
RGB and depth, combining them using a late fusion
network for RGB-D object recognition. Hu et al. [34]
presented a shared and individual multi-view learning
algorithm to explore further properties of multi-modal
data. Lu et al. [35] presented a shared-specific feature
transfer framework to perform a cross-modal person
ReID task.

3 Methodology
In this section, we first present the overall SPNet.
Then we describe the two key components in our
model, the modality-specific learning network and
shared learning network, and finally provide the
overall loss function.
3.1 Overview

Figure 2 shows the framework of our proposed
specificity-preserving network for RGB-D SOD. First,

Fig. 2 Architecture of SPNet, consisting of two modality-specific learning networks and a shared learning network. The former preserve
individual properties for RGB or depth, while the shared network fuses cross-modal features and explores complementary information. Skip
connections combine hierarchical features between encoder and decoder layers. Learned features from the modality-specific decoder are integrated
into the shared decoder to provide rich multi-modal complementary information, boosting saliency detection. C denotes feature concatenation.
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RGB and depth images are fed into two stream
modality-specific learning networks to obtain their
multi-level feature representations, and a CIM learns
their shared feature representation. Secondly, the
individual and shared decoder subnetworks are each
utilized to generate saliency prediction maps. The
original features from the encoder networks are
integrated into the decoder via skip connections.
Finally, to make full use of the features learned by
using the modality-specific decoder, an MFA module
integrates these features into the shared decoder. We
detail each key part below.

3.2 Modality-specific learning network

As Fig. 2 shows, the modality-specific subnetwork
is built upon Res2Net-50 [70], pretrained on the
ImageNet [71] dataset. Thus, there are five multi-
level features, i.e., FR = {fR

m,m = 1, · · ·, 5]} and
FD = {fD

m,m = 1, · · ·, 5}, in the modality-specific
encoder subnetworks for RGB and depth, respectively.
The input resolution of the modality-specific encoder
subnetwork is W × H. Thus, we have a feature
resolution of (H/8)× (W/8) for the first layer, and a
general resolution of (H/2m)× (W/2m) (for m > 1).
The number of channel features in the m-th layer is
denoted Cm, where Cm = [64, 256, 512, 1024, 2048].

After obtaining the high-level features fR
5 and

fD
5 , they are then fed into the modality-specific

decoder subnetworks to generate individual saliency
maps. We further utilize a U-Net [38] structure to
construct the modality-specific decoder, where the
skip connections between encoder and decoder layers
are used to combine hierarchical features. Moreover,
the concatenated features (only fR

5 and fD
5 in the

first stage of the decoder subnetwork) are fed to the
receptive field block (RFB) [72] to capture global
context information. This modality-specific learning
network enables us to learn effective and powerful
individual features for each modality by retaining
its specific properties. These features are then
integrated into the shared decoder subnetwork to
improve saliency detection.

3.3 Shared learning network

3.3.1 Structure
As Fig. 2 shows, in the shared learning network, we
fuse the cross-modal features from the RGB and
depth modalities to learn their shared representation,
which is fed into the shared decoder to generate the

final saliency map. We again adopt skip connections
between the encoder and decoder layers to combine
hierarchical features. Moreover, to make full use of
the features learned by the modality-specific decoder,
we integrate them into the shared decoder to improve
saliency detection.
3.3.2 Cross-enhanced integration module
Our CIM is used to effectively fuse cross-modal
features. Let the width, height, and number of
channels for the m-th layer be denoted Wm, Hm,
and Cm, respectively. Taking fR

m ∈ RWm×Hm×Cm

and fD
m ∈ RWm×Hm×Cm as an example, we use a

1 × 1 convolutional layer to reduce the number of
channels to Cm/2 for speed. The CIM has two parts,
for cross-modal feature enhancement and adaptive
feature fusion. First, we use a cross-enhanced strategy
to exploit correlations between the two modalities
by learning their enhanced features. Specifically,
as shown in Fig. 3, the two features are fed into
a 3× 3 convolutional layer with a sigmoid activation
function to obtain the normalized feature maps, wR

m =
σ(Conv3(fR

m)) ∈ [0, 1] and wD
m = σ(Conv3(fR

m)) ∈
[0, 1], where σ is the logistic sigmoid activation
function. To exploit correlations between the two
modalities, the normalized feature maps can be
regarded as feature-level attention maps to adaptively
enhance the feature representation. In this way,
the feature map from one modality can be used to
enhance the other modality. To preserve the original
information of each modality, a residual connection
is used to combine the enhanced features with the
original features. Thus, the cross-enhanced feature
representations for the two modalities are as Eq. (1):{

fR′

m = fR
m + fR

m ⊗ wD
m

fD′

m = fD
m + fD

m ⊗ wR
m

(1)

where ⊗ denotes element-wise multiplication.

Fig. 3 Cross-enhanced integration module (CIM). C, +, ×, and M
denote feature concatenation, element-wise addition, multiplication,
and maximization, respectively.
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Having obtained the cross-enhanced feature
representations fR′

m and fD′

m , the critical task is
to effectively fuse them. Various strategies can
be used to fuse features from different modalities,
including element-wise multiplication and maximiza-
tion. However, it is unclear which is best for
specific tasks. In order to benefit from the advantages
of different strategies, we apply element-wise
multiplication and maximization, and concatenate
the results. Specifically, the two features fR′

m and
fD′

m are first fed into a 3 × 3 convolutional layer to
obtain smooth representations, and then we carry out
element-wise multiplication and maximization, giving{

pmul = BConv3(fR′

m )⊗ BConv3(fD′

m )

pmax = max(BConv3(fR′

m ),BConv3(fD′

m ))
(2)

where BConv(·) is a sequential operation that applies
3 × 3 convolution followed by batch normalization,
then a ReLU function. Then, we concatenate the
results as pcat = [pmul, pmax] ∈ RWm×Hm×Cm , and
obtain p1

cat = BConv3(pcat) through a BConv3
operation to adaptively weigh the two parts. Further,
the output p1

cat is concatenated with the previous
output fS

m−1 of the (m − 1)-th CIM, and fed into
the second BConv3 operation. Finally, we obtain
the output fS

m of the m-th CIM. Note that, when
m = 1, we do not need to use a 1× 1 convolutional
layer to reduce the number of channels. Furthermore,
there is no previous output fS

m−1 when m = 1, so we
only feed the concatenated features into a BConv3
operation.

We note that our CIM can effectively exploit
correlations between the two modalities via
cross-enhanced feature learning, and fuse them
by adaptively weighting the different feature
representations. The fused feature representation
fS
m is propagated to the next layer to capture

and integrate cross-level information. Some
works [1, 17, 18] directly integrate RGB images and
depth maps to form four-channel input (cascaded
operation), and other methods carry out cross-modal
fusion strategies, e.g., using attention-based fusion
modules [24, 26], fusion-refinement modules (e.g.,
using summation) [23], etc. Unlike these methods,
our proposed CIM mainly exploits the correlation
between RGB and depth images, and then adaptively
integrates enhanced cross-modal features to obtain a
fused feature representation.

3.3.3 Multi-modal feature aggregation
To make full use of the features learned in the
modality-specific decoder, we propose a simple but
effective MFA module to integrate them into the
shared decoder. Specifically, in the m-th layer of the
shared decoder, we have the shared representation gS

m,
and the learned features gR

m and gD
m in the modality-

specific decoder. As Fig. 4 shows, two features gR
m and

gD
m are multiplied by the shared features of the current

layer: gRS
m = gS

m ⊗ gR
m and gDS

m = gS
m ⊗ gD

m. The two
features are further concatenated ([gDR

m , gDS
m ]) and

then fed into a BConv(·) operation to obtain gSc
m .

Finally, we obtain the output of the MFA module
to combine the convolutional feature gSc

m with the
original feature gS

m via an addition operation.
In the MFA, the learned modality-specific features

are used to enhance the shared features and provide
rich and complementary cross-modal information.
Specifically, we use the two modality-specific features
gR
m and gD

m to enhance gS
m. More importantly,

the modality-specific decoder is given a supervision
signal to guide feature learning for modality-specific
property preservation, which benefits the final
prediction results when integrating them in the shared
decoder. We also note the differences between the
CIM and the MFA: the CIM is used to learn the fused
multi-modal (RGB and depth) feature representation,
while the MFA utilizes the learned modality-specific
features to form an aggregate feature representation
in the shared decoder.

3.4 Loss function

We may now formulate a unified, end-to-end trainable
framework. The overall loss function has two parts,
Lsp and Lsh, for the modality-specific and decoders,
respectively. For convenience, SR and SD denote
the prediction maps for RGB and depth images,
respectively, Ssh denotes the prediction map using
their shared representation, and G denotes the ground

Fig. 4 Multi-modal feature aggregation (MFA) module. C, +, and ×
denote feature concatenation, element-wise addition, and element-wise
multiplication respectively.
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truth map. Therefore, the overall loss function can
be formulated as Eq. (3):
Ltotal = Lsh(Ssh, G) + Lsp(SR, G) + Lsp(SD, G)

(3)
Here, we utilize the pixel position-aware loss [73] for
Lsp and Lsh, which can pay different attention to
hard and easy pixels to improve results.

4 Experimental results and analysis

In this section, we first give the experimental
setup, including datasets, evaluation metrics, and
implementation details. Then we carry out a
quan-titatively and qualitatively evaluation, as
well as conducting ablation studies to validate the
effectiveness of each key component. Finally, we
conduct an attribute-based evaluation to show the
effectiveness of our model in dealing with different
challenges.
4.1 Experimental setup

4.1.1 Datasets
To validate the effectiveness of the proposed model,
we have evaluated it on six public RGB-D SOD
datasets: NJU2K [54], NLPR [1], DES [74], SSD [75],
STERE [76], and SIP [7]. Details of each dataset
can be found at https://github.com/taozh2017/
RGBD-SODsurvey.

For a fair comparison, we utilized the same protocol
to form the training and test sets as introduced in
Refs. [7, 60]. The training set includes 2195 samples
in total, with 1485 samples from NJU2K [54] and
700 samples from NLPR [1]. The remaining samples
from NJU2K (500) and NLPR (300), and the entire
DES (135), SSD (80), STERE (1000), and SIP (929)
datasets were used for testing.
4.1.2 Evaluation metrics
We adopt four widely used metrics to evaluate the
effectiveness of the proposed model. Their definitions
are as follows.
• Structure Measure. The S-measure Sα [77]

assesses the structural similarity between regional
perception (Sr) and object perception (So), and
is defined as

Sα = αSo + (1− α)Sr (4)
where α ∈ [0, 1] is a trade-off parameter, set to
0.5 by default [77].

• F-measure. Given a saliency map S, we convert

it to a binary map M , and then compute the
Precision and Recall [41] using

Precision = |M ∩G|
|M |

, Recall = |M ∩G|
|G|

(5)

where G denotes the ground truth. A popular
strategy is to partition S using a set of thresholds
varying from 0 to 255. For each threshold, we
calculate a pair of recall and precision scores, and
then combine all scores to obtain a PR curve.

The F-measure Fβ [41] combines both
precision and recall, via a weighted harmonic
mean:

Fβ =
(
1 + β2) Precision× Recall

β2Precision + Recall (6)

where β2 is set to 0.3 to emphasize precision [41].
We use different fixed [0, 255] thresholds to
compute the F-measure. This yields a set of
F-measure values; we report the maximum Fβ
values from our experiments.

• Enhanced-alignment Measure. Eφ [78] is
used to capture image-level statistics and local
pixel matching information. It is defined as

Eφ = 1
WH

W∑
i=1

H∑
i=1

φFM (i, j) (7)

where φFM denotes the enhanced-alignment
matrix [78].

• Mean Absolute Error (M). It is adopted
to evaluate the average pixel-level relative error
between the ground truth (i.e., G) and normalized
prediction (i.e., S), which is defined by

M = 1
W ∗H

W∑
i=1

H∑
i=1
|S (i, j)−G (i, j)| (8)

where W and H denote the width and height of
the map, respectively. M estimates the similarity
between the saliency map and the ground-truth
map, and normalizes it to [0, 1].

4.1.3 Implementation details
Our proposed model was implemented with the
PyTorch library, and trained on an nVidia Tesla V100
GPU with 32 GB memory. Res2Net-50 [70], pre-
trained on ImageNet [71], was used as the backbone
network. Since RGB and depth images have different
numbers of channels, the input channel for the depth
encoder was modified to 1. We utilized the Adam
algorithm to optimize the proposed model. The initial
learning rate was set to 10−4 and divided by 10 every
60 epochs. The input RGB and depth images were

https://github.com/taozh2017/RGBD-SODsurvey
https://github.com/taozh2017/RGBD-SODsurvey
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resized to 352×352. To enhance the generalizability of
the proposed learning algorithm, we adopted multiple
data augmented strategies: random flipping, rotation,
and border clipping. The batch size was set to 20
and the model was trained over 200 epochs.

For testing, the RGB and depth images were first
resized to 352× 352 and then fed into the model to
obtain the predicted saliency map. The predicted
saliency map was then resized back to the original
size of the input images. The output of the shared
decoder is regarded as the final prediction of our
model.
4.2 Comparison

4.2.1 Models compared
We compared our proposed SPNet with 31 RGB-D
saliency detection methods, including 8 handcrafted
traditional models: LHM [1], ACSD [54], LBE [58],
DCMC [80], SE [19], MDSF [17], CDCP [56], and
DTM [81], and 23 deep models: DF [59], CTMF [25],
PCF [22], AFNet [20], CPFP [30], MMCI [29], TANet
[24], DMRA [60], cmSalGAN [82], ASIFNet [83], ICNet

[84], A2dele [85], JLDCF [11], S2MA [86], UCNet [12],
SSF [87], HDFNet [88], Cas-GNN [89], CMMS [61],
D3Net [7], CoNet [90], DANet [91], and PGAR [92].
See also the survey in Ref. [10].

4.2.2 Quantitative evaluation
As Table 1 shows, our method is superior to the eight
traditional methods LHM [1], ACSD [54], LBE [58],
DCMC [80], SE [19], MDSF [17], CDCP [56], and
DTM [81] by a large margin, on all six datasets. Our
method furthermore outperforms all compared state-
of-the-art methods and obtains the best performance
in terms of the four evaluation metrics on NJU2K,
DES, and SIP datasets. It is worth noting that our
model obtains better results on STERE and NLPR
than most compared RGB-D saliency detection
methods. Our model is also comparable with CoNet
on the STERE dataset, and JLDCF and PGAR on
the NLPR dataset. Overall, our proposed SPNet
obtains promising results in locating salient object(s)
in a given scene. We further show PR curves in Fig. 5
and F-measure curves in Fig. 6, giving results for

Table 1 Benchmarking results using 8 representative traditional models and 23 deep models on six public RGB-D saliency detection datasets
using four widely used evaluation metrics: Sα [77], max Eφ [78], max Fβ [41], and M [79]). ↑, ↓ indicate that larger or smaller is better. The
subscript for each model denotes the publication year. Best results are highlighted in bold

Model
NJU2K [54] STERE [76] DES [74] NLPR [1] SSD [75] SIP [7]

Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓
LHM14 [1] 0.514 0.632 0.724 0.205 0.562 0.683 0.771 0.172 0.562 0.511 0.653 0.114 0.630 0.622 0.766 0.108 0.566 0.568 0.717 0.195 0.511 0.574 0.716 0.184
ACSD14 [54] 0.699 0.711 0.803 0.202 0.692 0.669 0.806 0.200 0.728 0.756 0.850 0.169 0.673 0.607 0.780 0.179 0.675 0.682 0.785 0.203 0.732 0.763 0.838 0.172
LBE16 [58] 0.695 0.748 0.803 0.153 0.660 0.633 0.787 0.250 0.703 0.788 0.890 0.208 0.762 0.745 0.855 0.081 0.621 0.619 0.736 0.278 0.727 0.751 0.853 0.200
DCMC16 [80] 0.686 0.715 0.799 0.172 0.731 0.740 0.819 0.148 0.707 0.666 0.773 0.111 0.724 0.648 0.793 0.117 0.704 0.711 0.786 0.169 0.683 0.618 0.743 0.186
SE16 [19] 0.664 0.748 0.813 0.169 0.708 0.755 0.846 0.143 0.741 0.741 0.856 0.090 0.756 0.713 0.847 0.091 0.675 0.710 0.800 0.165 0.628 0.661 0.771 0.164
MDSF17 [17] 0.748 0.775 0.838 0.157 0.728 0.719 0.809 0.176 0.741 0.746 0.851 0.122 0.805 0.793 0.885 0.095 0.673 0.703 0.779 0.192 0.717 0.698 0.798 0.167
CDCP17 [56] 0.669 0.621 0.741 0.180 0.713 0.664 0.786 0.149 0.709 0.631 0.811 0.115 0.669 0.621 0.741 0.180 0.603 0.535 0.700 0.214 0.595 0.505 0.721 0.224
DTM20 [81] 0.706 0.716 0.799 0.190 0.747 0.743 0.837 0.168 0.752 0.697 0.858 0.123 0.733 0.677 0.833 0.145 0.677 0.651 0.773 0.199 0.690 0.659 0.778 0.203
DF17 [59] 0.763 0.804 0.864 0.141 0.757 0.757 0.847 0.141 0.752 0.766 0.870 0.093 0.802 0.778 0.880 0.085 0.747 0.735 0.828 0.142 0.653 0.657 0.759 0.185
CTMF18 [25] 0.849 0.845 0.913 0.085 0.848 0.831 0.912 0.086 0.863 0.844 0.932 0.055 0.860 0.825 0.929 0.056 0.776 0.729 0.865 0.099 0.716 0.694 0.829 0.139
PCF18 [22] 0.877 0.872 0.924 0.059 0.875 0.860 0.925 0.064 0.842 0.804 0.893 0.049 0.874 0.841 0.925 0.044 0.841 0.807 0.894 0.062 0.842 0.838 0.901 0.071
AFNet19 [20] 0.772 0.775 0.853 0.100 0.825 0.823 0.887 0.075 0.770 0.729 0.881 0.068 0.799 0.771 0.879 0.058 0.714 0.687 0.807 0.118 0.720 0.712 0.819 0.118
CPFP19 [30] 0.878 0.877 0.923 0.053 0.879 0.874 0.925 0.051 0.872 0.846 0.923 0.038 0.888 0.867 0.932 0.036 0.807 0.766 0.852 0.082 0.850 0.851 0.903 0.064
MMCI19 [29] 0.859 0.853 0.915 0.079 0.873 0.863 0.927 0.068 0.848 0.822 0.928 0.065 0.856 0.815 0.913 0.059 0.813 0.781 0.882 0.082 0.833 0.818 0.897 0.086
TANet19 [24] 0.878 0.874 0.925 0.060 0.871 0.861 0.923 0.060 0.858 0.827 0.910 0.046 0.886 0.863 0.941 0.041 0.839 0.810 0.897 0.063 0.835 0.830 0.895 0.075
DMRA19 [60] 0.886 0.886 0.927 0.051 0.886 0.886 0.938 0.047 0.900 0.888 0.943 0.030 0.899 0.879 0.947 0.031 0.857 0.844 0.906 0.058 0.806 0.821 0.875 0.085
cmSalGAN20 [82] 0.903 0.896 0.940 0.046 0.900 0.894 0.936 0.050 0.913 0.899 0.943 0.028 0.922 0.907 0.957 0.027 0.791 0.735 0.867 0.086 0.865 0.864 0.906 0.064
ASIFNet20 [83] 0.889 0.888 0.927 0.047 0.878 0.878 0.927 0.049 0.934 0.935 0.974 0.019 0.906 0.888 0.944 0.030 0.857 0.834 0.884 0.056 0.857 0.859 0.896 0.061
ICNet20 [84] 0.894 0.891 0.926 0.052 0.903 0.898 0.942 0.045 0.920 0.913 0.960 0.027 0.923 0.908 0.952 0.028 0.848 0.841 0.902 0.064 0.854 0.857 0.903 0.069
A2dele20 [85] 0.871 0.874 0.916 0.051 0.878 0.879 0.928 0.044 0.886 0.872 0.920 0.029 0.898 0.882 0.944 0.029 0.802 0.776 0.861 0.070 0.828 0.833 0.889 0.070
JLDCF20 [11] 0.903 0.903 0.944 0.043 0.905 0.901 0.946 0.042 0.929 0.919 0.968 0.022 0.925 0.916 0.962 0.022 0.830 0.795 0.885 0.068 0.879 0.885 0.923 0.051
S2MA20 [86] 0.894 0.889 0.930 0.053 0.890 0.882 0.932 0.051 0.941 0.935 0.973 0.021 0.915 0.902 0.953 0.030 0.868 0.848 0.909 0.052 0.872 0.877 0.919 0.057
UCNet20 [12] 0.897 0.895 0.936 0.043 0.903 0.899 0.944 0.039 0.933 0.930 0.976 0.018 0.920 0.903 0.956 0.025 0.865 0.854 0.907 0.049 0.875 0.879 0.919 0.051
SSF20 [87] 0.899 0.896 0.935 0.043 0.893 0.890 0.936 0.044 0.904 0.884 0.941 0.026 0.914 0.896 0.953 0.026 0.845 0.824 0.897 0.058 0.876 0.882 0.922 0.052
HDFNet20 [88] 0.908 0.911 0.944 0.038 0.900 0.900 0.943 0.041 0.926 0.921 0.970 0.021 0.923 0.917 0.9630.023 0.8790.870 0.9250.045 0.886 0.894 0.930 0.047
Cas-GNN20 [89] 0.911 0.903 0.933 0.035 0.899 0.901 0.930 0.039 0.905 0.906 0.947 0.028 0.919 0.904 0.947 0.028 0.872 0.862 0.915 0.047 0.875 0.879 0.919 0.051
CMMS20 [61] 0.900 0.897 0.936 0.044 0.895 0.893 0.939 0.043 0.937 0.930 0.976 0.018 0.915 0.896 0.949 0.027 0.874 0.864 0.922 0.046 0.872 0.877 0.911 0.058
CoNet20 [90] 0.895 0.893 0.937 0.046 0.908 0.905 0.949 0.040 0.909 0.896 0.945 0.028 0.908 0.887 0.945 0.031 0.853 0.840 0.915 0.059 0.858 0.867 0.913 0.063
DANet20 [91] 0.899 0.910 0.935 0.045 0.901 0.892 0.937 0.043 0.924 0.928 0.968 0.023 0.915 0.916 0.953 0.028 0.864 0.866 0.914 0.050 0.875 0.892 0.918 0.054
PGAR20 [92] 0.909 0.907 0.940 0.042 0.907 0.898 0.939 0.041 0.913 0.902 0.945 0.026 0.9300.916 0.961 0.024 0.865 0.838 0.898 0.057 0.876 0.876 0.915 0.055
D3Net21 [7] 0.900 0.900 0.950 0.041 0.899 0.891 0.938 0.046 0.898 0.885 0.946 0.031 0.912 0.897 0.953 0.030 0.857 0.834 0.910 0.058 0.860 0.861 0.909 0.063
SPNet (ours) 0.925 0.935 0.954 0.028 0.907 0.915 0.944 0.037 0.945 0.950 0.980 0.014 0.927 0.9250.959 0.0210.871 0.8830.915 0.0440.8940.9160.9300.043
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Fig. 5 PR curves for six datasets: NJU2K [54], STERE [76], DES [74], NLPR [1], SSD [75], and SIP [7].

Fig. 6 F-measure curves for different thresholds, for NJU2K [54], STERE [76], DES [74], NLPR [1], SSD [75], and SIP [7].

29 RGB-D saliency detection methods, including 28
state-of-the-art models with complete saliency maps.

The superiority of our model is clearly visible on these
datasets.
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In addition, we compared our SPNet to 13 recent
state-of-the-art models on the ReDWeb-S dataset.
Results for the other methods are from https://
github.com/nnizhang/SMAC, while results for our
method were obtained by testing the model (trained
using NJU2K [54] and NLPR [1]) on the ReDWeb-S
dataset. The comparison is shown in Table 2. Our
method works better than most compared methods,
and is comparable to UCNet and JLDCF on the
ReDWeb-S dataset.

We further compared using different backbone
networks in the proposed model, with the results
shown in Table 3. The proposed model works better
when using Res2Net-50 as the backbone, yet the

model using ResNet-50 as backbone still performs
better than other methods (see Table 1).
4.2.3 Qualitative evaluation
Figure 7 shows several representative samples of
results comparing our model with those from eight
state-of-the-art methods. The first row shows a scene
with a small object. Our method, A2dele, PGAR,
and D3Net accurately detect the salient object,
while JLDCF, S2MA, SSF, and UCNet predict some
non-object regions. Rows 2 and 3 show two examples
of scenes with complex backgrounds. Our method
and S2MA produce reliable results, while other RGB-
D saliency detection models fail to locate the object or
confuse the background with a salient object. In row

Table 2 Results from our model and 13 state-of-the art methods: CTMFF [25], PCF [22], AFNet [20], MMCI [29], CPFP [30], DMRA [60],
TANet [24], A2dele [85], UCNet [12], JLDCF [11], S2MA [86], SSF [87], and D3Net [7]) on the ReDWeb-S dataset

Model CTMF PCF AFNet MMCI CPFP DMRA TANet A2dele UCNet JLDCF S2MA SSF D3Net Ours

Sα ↑ 0.641 0.655 0.546 0.660 0.685 0.592 0.656 0.641 0.713 0.734 0.711 0.595 0.689 0.710
Fβ ↑ 0.607 0.627 0.549 0.641 0.645 0.579 0.623 0.603 0.710 0.727 0.696 0.558 0.673 0.715
Eφ ↑ 0.739 0.743 0.693 0.754 0.744 0.721 0.741 0.672 0.794 0.805 0.781 0.710 0.768 0.800
M ↓ 0.204 0.166 0.213 0.176 0.142 0.188 0.165 0.160 0.130 0.128 0.139 0.189 0.149 0.129

Table 3 Results from our model using different backbone networks

Backbone
NJU2K [54] STERE [76] DES [74] NLPR [1] SSD [75] SIP [7]

Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓

ResNet-50 0.922 0.934 0.952 0.030 0.904 0.914 0.942 0.037 0.936 0.944 0.974 0.016 0.930 0.931 0.965 0.020 0.869 0.876 0.906 0.044 0.896 0.916 0.934 0.041
Res2Net-50 0.925 0.935 0.954 0.028 0.907 0.915 0.944 0.037 0.945 0.950 0.980 0.014 0.927 0.925 0.959 0.021 0.871 0.883 0.915 0.044 0.894 0.916 0.930 0.043

Fig. 7 Visual comparison of results from our method and eight state-of-the-art methods: A2dele [85], JLDCF [11], S2MA [86], UCNet [12],
SSF [87], D3Net [7], DANet [91], and PGAR [92].

https://github.com/nnizhang/SMAC
https://github.com/nnizhang/SMAC
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4, the compared methods other than D3Net locate
a non-salient and small object. In row 5, we show
an example with multiple salient objects, where it
is challenging to accurately locate them all. Our
method locates all salient objects and segments them
more accurately, generating sharper edges than other
approaches. We show an example under low-light
conditions in the last row. While some approaches
fail to detect the entire extent of the salient object,
our model suppresses background distractors and
gives good saliency detection results.
4.2.4 Inference time and model size
We tested the inference time for different methods on
an NVIDIA TESLA P40 GPU with 24 GB memory.
The inference time and model size of different methods,
including our SPNet, JLDCF [11], S2MA [86], UCNet
[12], SSF [87], and HDFNet [88], are shown in
Table 4. Because our model adopts two modality-
specific networks and a shared learning network to
generate individual and shared saliency prediction
maps, it has a relatively large model size and takes
more inference time for saliency prediction than other
methods. We thus hope to design light-weight networks
to improve the efficiency of SPNet in future work.

4.3 Ablation studies

To verify the relative importance of different key
components of our model, we conducted ablation
studies by removing or replacing them.
4.3.1 Effectiveness of CIM
Since the proposed CIM is used to fuse cross-modal
features and learn their shared representation, we
compared it to an alternative of a direct concatenation
strategy. Specifically, the two features fR

m and
fD
m (see Fig. 3) are directly concatenated and then

fed into a 3 × 3 convolutional layer to obtain the
fused representation in each layer. We denote this
approach as A1 in Table 5, which shows that our
model performs better when using the proposed CIM
than using a simple feature concatenation strategy.

Table 4 Comparisons of inference time and model size for different
methods

Method Ours JLDCF S2MA
Model size (MB) 175.3 124.5 82.7
Inference time (ms) 91.7 21.8 22.1
Method UCNet SSF HDFNet
Model size (MB) 31.3 32.9 153.2
Inference time (ms) 31.8 45.7 57.1

This also indicates the contribution of the CIM in
improving the saliency detection results. Going
further, there are two parts to CIM: cross-modal
feature enhancement and adaptive feature fusion.
Thus, to evaluate the contribution of each part,
we modified CIM to have only cross-modal feature
enhancement or adaptive feature fusion, with results
denoted A2 and A3, respectively. When comparing
them to the full version of CIM, we can see the
effectiveness of the proposed CIM. Moreover, in CIM,
the features of the last layer are propagated to the
next layer to capture cross-level correlations. To
validate the effectiveness of the propagation strategy,
we removed this propagation in the CIM, with results
denoted A4, showing that the propagation strategy
does improve saliency detection results.
4.3.2 Effectiveness of MFA
In the proposed framework, the MFA is proposed
to make full use of the features learned in the
modality-specific decoder, which are then integrated
into the shared decoder to provide more multi-
modal complementary information. To validate its
effectiveness, we deleted this module in an approach
denoted B1. We also considered two other feature
fusion strategies: see Fig. 8. One provides cross-
modal feature enhancement fusion; the other is
a simple concatenation strategy. Results for the
two strategies are denoted B2 and B3. Table 5
demonstrates, by comparing results of B1 and our full
model, the effectiveness of integrating the features
learned into the shared decoder. Comparing results of
B2 and B3 with our full model, we can see that the
MFA module outperforms both other fusion strategies.
4.3.3 Effectiveness of modality-specific decoders
We deleted the two modality-specific decoders, with
results shown in C1 in Table 5. Performance degrades
when not using the two parts. This indicates the
effectiveness of the modality-specific decoders, which
provide supervision signals to ensure that modality-
specific properties can be learned.

Fig. 8 Comparison of MFA module with other fusion strategies.
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Table 5 Quantitative evaluation for ablation studies

NJU2K [54] STERE [76] DES [74] NLPR [1] SSD [75] SIP [7]

Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓
Ours 0.925 0.028 0.907 0.037 0.945 0.014 0.927 0.021 0.871 0.044 0.894 0.043
A1 0.916 0.034 0.898 0.042 0.939 0.016 0.926 0.022 0.869 0.047 0.892 0.044
A2 0.921 0.031 0.895 0.042 0.938 0.016 0.925 0.022 0.865 0.051 0.896 0.042
A3 0.919 0.032 0.895 0.043 0.938 0.016 0.929 0.020 0.864 0.049 0.887 0.048
A4 0.924 0.029 0.903 0.038 0.930 0.019 0.927 0.023 0.867 0.049 0.888 0.046
B1 0.918 0.034 0.901 0.041 0.939 0.017 0.922 0.024 0.858 0.050 0.885 0.048
B2 0.924 0.029 0.900 0.041 0.941 0.015 0.926 0.022 0.864 0.049 0.893 0.044
B3 0.921 0.031 0.903 0.039 0.938 0.016 0.925 0.022 0.863 0.050 0.891 0.045
C1 0.913 0.037 0.900 0.047 0.935 0.019 0.922 0.025 0.861 0.055 0.880 0.051
C2 0.916 0.034 0.906 0.040 0.923 0.021 0.924 0.022 0.866 0.049 0.882 0.051

To further evaluate the effectiveness of the
combination of the two modality-specific decoders,
we added an experiment to compare the SOD results
when using the output from the shared decoder and
the combination of the two modality-specific decoders.
Results are shown in C2 of Table 5. We can see that
the shared decoder outperforms the combination of
the two modality-specific decoders, indicating that
the shared decoder can combine multi-modal shared
information and modality-specific characteristics to
improve SOD results.
4.3.4 Effects of varying numbers of CIMs
To investigate the effects of changing the numbers of
CIMs, we compare our full model using five CIMs with
two degraded versions, CIM1, which only applies a
CIM to the features from the last layer in the encoder
network, and CIM3, using CIMs on the features from
each of the last three layers in the encoder network.
Table 6 shows the results; our model with five CIMs
works better for most datasets.

4.4 Attribute-based evaluation

There are several challenging factors that may affect
results from RGB-D saliency detection models, such
as the number of salient objects, indoor versus
outdoor environments, lighting conditions, and so
on. Thus, we evaluated saliency detection results
under different conditions, to show the strengths

and weaknesses of state-of-the-art models in handling
these challenges.
4.4.1 Single vs. multiple objects
In this evaluation, we constructed a hybrid dataset
with 1229 images from the NLPR [1] and SIP [7]
datasets. Results using Sα are shown in Fig. 9(a).
As can be observed, it is easier to detect a single
salient object than several. Our model outperforms
other state-of-the-art methods in locating single and
multiple objects.
4.4.2 Indoor vs. outdoor
We evaluated the results of different RGB-D SOD
models on indoor and outdoor scenes. As DES [74]
and NLPR [1] include indoor and outdoor scenes, we
constructed a hybrid dataset collected from the two
datasets. Results are shown in Fig. 9(b). As can
be observed, many models find it harder to detect
salient objects in indoor scenes than outdoor scenes,
while JLDCF, S2MA, UCNet, ICNet, SSF, DANet,
and our model work a little better on outdoor scenes.
4.4.3 Lighting conditions
We carried out this evaluation on the SIP dataset [7],
with examples grouped into two categories, sunny
and low-light. Results are shown in Fig. 9(c). All
models struggle to detect salient objects in low-
light conditions, confirming that low-light negatively
impacts SOD performance.

Table 6 Results for different numbers of CIMs

NJU2K STERE DES NLPR SSD SIP

Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓

CIM1 0.918 0.034 0.908 0.039 0.929 0.019 0.928 0.022 0.865 0.047 0.889 0.046

CIM3 0.920 0.032 0.900 0.041 0.935 0.017 0.928 0.021 0.857 0.049 0.891 0.045

Ours 0.925 0.028 0.907 0.037 0.945 0.014 0.927 0.021 0.871 0.044 0.894 0.043
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Fig. 9 Attribute-based evaluation with respect to (a) number of salient objects (one or multiple), (b) indoor versus outdoor environments,
and (c) lighting conditions (low-light versus sunny).

4.4.4 Object scale
To characterize the scale of a salient object, we
compute the ratio r of the size of the salient region
to the whole image, and define three object scales:
small, when r < 0.1, large, when r > 0.4, and medium
otherwise. To evaluate how different methods handle

scale variation, we constructed a hybrid dataset with
2444 images from STERE [76], NLPR [1], SSD [75],
DES [74], and SIP [7]. Figure 10 shows results of
this attribute-based evaluation with respect to the
scales of the salient objects. All methods work better
at detecting small salient objects and relatively at

Fig. 10 Attribute-based evaluation with respect to scale of the salient object.
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detecting large salient objects. The most recent
models, JLDCF, DANet, PGAR, and our model,
obtain the promising results.

4.5 Failures and discussion

Our proposed SPNet shows good RGB-D saliency
detection in most cases. However, it fails to detect
salient objects in some challenging scenes such as
those with complex backgrounds and low-quality
depth data. Some failures of our model are shown
in Fig. 11. In the first row, the depth data quality
is very poor, so our model can only roughly locate
the boat without fine details. This suggests that it
is helpful to enhance or filter depth maps to improve
saliency detection results. In the second row, the
annotated salient object has a similar appearance
to other objects in the scene, so it is challenging to
accurately detect the salient object. In the third row,
the object has fine details, but our model only locates
the main regions without the fine details. There
is still considerable room to improve our model to
handle such scenes with fine structures.

4.6 Application to RGB-D camouflaged object
detection

SPNet was originally designed for the RGB-D SOD
task, which can be easily extended to other related
RGB-D tasks, e.g., RGB-D based camouflaged object
detection (COD). The aim of COD is to identify
objects that are “seamlessly” embedded in their
background surroundings. This is a very challenging
task due to the high intrinsic similarities between the
target object and the background [100–102]. Recent

Fig. 11 Cases in which our model fails.

research [103] suggests that depth can provide useful
spatial information to improve COD results. Thus,
we extended SPNet to the RGB-D COD task.

We conducted this experiment on three public
benchmark datasets for camouflaged object detection:
(i) CHAMELEON [100], consisting of 76 camouflaged
images, (ii) CAMO [104], with 1250 images (1000
for training, 250 for testing) in 8 categories, and (iii)
COD10K [100], with 5066 camouflaged images (3040
for training, 2026 for testing) in 5 super-classes and 69
sub-classes. Following the same setting in Ref. [105],
we divided the training and testing sets and then
trained our model on the training set.

We compare our method to other existing COD
models, including FPN [93], MaskRCNN [94],
PSPNet [95], PiCANet [46], BASNet [96], PFANet
[97], CPD [98], EGNet [99], and SINet [105] (results
are from Ref. [105]). Since there are few works
for RGB-D camouflaged object detection, we also
compared two recent RGB-D salient object detection
methods, DANet [91] and HDFNet [88], in this
experiment. We re-trained the two RGB-D SOD
models and our model using RGB and depth images.

Table 7 shows quantitative results for three public
datasets. Our model performs better than the other
COD methods. Our model and the two RGB-D COD
methods use depth cues, and work better than other
methods which do not, indicating that depth cues can
provide spatial information to improve COD results.
Figure 12 shows qualitative results for different COD

Table 7 Results for camouflaged object detection models on
benchmark datasets using evaluation metrics Sα [77] and M [79].
↑, ↓ indicate that larger or smaller is better

Model
CHAMELEON CAMO COD10K

Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓

FPN [93] 0.794 0.075 0.684 0.131 0.697 0.075

MaskRCNN [94] 0.643 0.099 0.574 0.151 0.613 0.080

PSPNet [95] 0.773 0.085 0.663 0.139 0.678 0.080

PiCANet [46] 0.769 0.085 0.609 0.156 0.649 0.090

BASNet [96] 0.687 0.118 0.618 0.159 0.634 0.105

PFANet [97] 0.679 0.144 0.659 0.172 0.636 0.128

CPD [98] 0.853 0.052 0.726 0.115 0.747 0.059

EGNet [99] 0.848 0.050 0.732 0.104 0.737 0.056

SINet [100] 0.869 0.044 0.751 0.100 0.771 0.051

DANet [91] 0.874 0.043 0.752 0.100 0.765 0.051

HDFNet [88] 0.875 0.032 0.778 0.085 0.779 0.045

SPNet (ours) 0.895 0.027 0.795 0.082 0.797 0.042
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Fig. 12 COD results of our SPNet and three state-of-the-art COD methods: SINet [105], DANet [91], and HDFNet [88].

methods. Compared to other COD models, our
SPNet achieves better results by detecting more
accurate boundaries of camouflaged objects.

5 Conclusions

In this paper, we have presented a novel RGB-D
salient object detection framework, SPNet. Unlike
most existing RGB-D SOD methods, which focus
on learning shared representations, SPNet not only
explores shared cross-modal information but also
uses modality-specific characteristics to improve SOD
results. To learn the shared representations for
the two modalities, we introduce a cross-enhanced
integration module (CIM) to fuse the cross-modal
features, and the output of each CIM is propagated to
the next layer to explore rich cross-level information.
We further adopt a multi-modal feature aggregation
(MFA) module to integrate the learned modality-
specific features to enhance the complementary multi-
modal information. Extensive results on benchmark
datasets show the effectiveness of our model in
comparison to other state-of-the-art RGB-D SOD
methods. Moreover, we have thoroughly validated
the effectiveness of key components of our framework,
and an attribute-based evaluation was conducted

to study the ability of many cutting-edge RGB-
D SOD approaches to meet different challenges.
Finally, we extended SPNet to the recently proposed
RGB-D camouflaged object detection task, and its
effectiveness was verified.
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