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Abstract Image-based virtual try-on systems have
significant commercial value in online garment shopping.
However, prior methods fail to appropriately handle
details, so are defective in maintaining the original
appearance of organizational items including arms, the
neck, and in-shop garments. We propose a novel
high fidelity virtual try-on network to generate realistic
results. Specifically, a distributed pipeline is used
for simultaneous generation of organizational items.
First, the in-shop garment is warped using thin plate
splines (TPS) to give a coarse shape reference, and
then a corresponding target semantic map is generated,
which can adaptively respond to the distribution of
different items triggered by different garments. Second,
organizational items are componentized separately
using our novel semantic map-based image adjustment
network (SMIAN) to avoid interference between body
parts. Finally, all components are integrated to generate
the overall result by SMIAN. A priori dual-modal
information is incorporated in the tail layers of SMIAN
to improve the convergence rate of the network.
Experiments demonstrate that the proposed method can
retain better details of condition information than current
methods. Our method achieves convincing quantitative
and qualitative results on existing benchmark datasets.
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1 Introduction
With the rapid development of the Internet apparel
industry, more and more people shop for garments
online. Traditional offline garment shopping allows
assessment of fit through physical try-on. However,
online garment shopping only permits a visual
assessment by browsing models, which cannot give first-
hand experience. Therefore, more and more researchers
are trying to find effective online solutions. Existing
virtual try-on strategies are either 2D image-based [1–5]
or 3D model reconstruction-based [6–10] methods.

3D model reconstruction-based methods use
computer graphics to reconstruct a 3D human model,
which can make the result more plausible by controlling
model joints. However, 3D model reconstruction-based
methods need intensive computation and require a
high degree of precision in model construction. They
are unaffordable for general users.

Therefore, 2D image-based methods are a better
choice for universal online garment try-on. On the
one hand, image synthesis techniques can reduce
calculation costs, so are suitable for customers
without a high-performance processing device. On
the other hand, image processing techniques based
on deep learning can produce very realistic fitting
results. If the shape of an in-shop garment is the
same as a garment worn a person, the in-shop
garment only needs to be deformed and joined in
corresponding regions of the person’s image. In other
cases, however, arm lengths inevitably clash with
sleeve lengths, causing problems such as textural
confusion. Similarly, collar type of the result can be
affected by the collar of the garment worn by a person
(e.g., a V-neck is changed to a crew-neck). We need
to find an effective approach to solve these problems.
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Other issues must also be considered in the try-
on process: (i) body invariant characteristics (e.g.,
head, pants) need to be preserved, (ii) embroidery and
textures of the in-shop garment need to be transformed
accurately, and (iii) the resulting image must be
seamless, clear, and free from visible defects and noise.

Early researchers conducted pioneering studies.
Zheng et al. [11] proposed an image-based garment
changing system, which utilizes body factor extraction
and content-aware image distortion, and determines
joint positions by a neural network. The shape of
the model is warped to the body’s shape, and head
swapping is performed to produce realistic virtual
results. Neuberger et al. [12] proposed an outfit try-on
approach (O-VITON), which accurately synthesizes
the outfit on a body by an online optimization
scheme. It has the ideal effect of fitting to the
outfit, and in particular, it expands the try-on
application to other parts such as pants. To save
time and fit all kinds of garments one by one, virtual
try-on network (VITON) [2] proposed a coarse-to-
fine framework to transfer the in-shop garment to
the corresponding area of the human body. First,
VITON composites the result by coarsely fusing the
in-shop garment to the corresponding part of a person.
Then, it refines unclear areas of the coarse garment
by a refinement network. In contrast to VITON,
characteristic-preserving image-based virtual try-on
network (CP-VTON) [4] trained a special geometric
matching network [13] to be used with thin plate
spline (TPS) [14] to warp the in-shop garment so as
to retain rich details. Then it finely integrates the
warped garment with the body by a try-on network.
Later, CP-VTON+ [15] improved the warping effect
of CP-VTON to give better results. Adaptive content
generating and preserving network (ACGPN) [16]
proposed an effective architecture, which solves the
preservation of image details by generative adversarial
networks (GAN) [17] and produces realistic fitting
results with careful alignment of the garment. However,
its results may be flawed due to failure to preserve
collar type, sleeve shape, and arm details.

To overcome the challenges above, we propose a
novel virtual try-on framework. Its key processes
are as follows: (i) Geometric matching network
(GMN) [13] coarsely warps the in-shop garment and
uses the warped garment to generate target semantic
map, then (ii) SMIAN generates the refined warped
garment and body components (arms and neck) using

the target semantic map, and (iii) SMIAN integrates
the generated body components to obtain the final
virtual try-on result.

The main contributions of the paper are:
• a novel image-based virtual try-on framework

which effectively synthesizes the in-shop garment
and the reference image by componentizing the
garment and person,

• a novel component generating network, SMIAN,
which generates and integrates high-quality body
components, which avoids texture confusion by
refined generation of body parts individually, and

• to prevent the garment covering the arms,
and incorrect collar type and sleeve shape,
an anti-covering map and neck semantic map
are introduced, which effectively increases the
authenticity of generated images.

The remainder of the paper is organized as follows:
Section 2 presents related work. Section 3 describes
the proposed virtual try-on framework in detail.
Section 4 reports experimental results. Section 5
draws brief conclusions.

2 Related work
2.1 Conditional image synthesis

The contribution of GAN [17, 19] to fashion
image processing is enormous. Conditional GAN
(CGAN) [20–23] makes generated images controllable
according to given conditions. Cui et al. [24] proposed
an end-to-end virtual garment display method to
render sketches and garment fabric. Jetchev et
al. [1] proposed conditional analogy GAN (CA-GAN),
which defines the virtual try-on task as an image
analogy problem and adds a cyclic consistency loss
function. However, it can only roughly transform
properties and cannot adapt to geometric deformation
in generating image details. Lee et al. [3] introduced
the adversarial mechanism to the warping and try-
on stages. It adds GAN loss to optimize the fit
of the garment, making the generated image more
plausible. Our method enhances the visual effect of
the generated results based on GAN.

2.2 Human parsing and understanding

Estimation of human pose [25–27] and human semantic
segmentation [28–30] are widely used in human-centered
image research. Long et al. [31] first proposed a
CNN-based method called fully convolutional networks
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(FCN) for semantic segmentation. Gong et al. [28]
proposed a new benchmark, Look into Person (LIP)
providing a significant advance in terms of target
diversity. Moreover, they studied self-supervised
structure-sensitive learning for body parsing and body
estimation. In the virtual try-on task, a human semantic
map segments the human image to obtain the body
parts needed for the experiment. The human pose can
provide a warping guide for the shape of the in-shop
garment and arms. Therefore, in our method, both are
necessary data for generating virtual try-on results.

2.3 Virtual try-on

Current virtual try-on methods are divided into
2D image-based and 3D model reconstruction-based
tasks. Mir et al. [7] proposed a method to transfer
textures of garment images to 3D skinned multi-
person linear (SMPL) model [32]; it is more accurate
and faster than methods based on TPS. Zhao et
al. [33] proposed a novel monocular-to-3D virtual
try-on network, M3D-VTON, which generates a non-
parametric 3D mesh model based on the generated 2D
try-on result, creating a new virtual try-on mode. Yang
et al. [16] proposed a content generation preservation
network, ACGPN, which can adaptively determine
which parts of a person’s image should be preserved.
It dramatically reduces artefacts and blurring in the
generated results. However, it still does not entirely
solve the excessive dependence of the generated result
on the garment worn by a person, so the sleeve shape
and collar type of the result do not match the in-
shop garment. Cui et al. [34] proposed a flexible
person generation framework, DiOr. It effectively
performs the work of virtual try-on through a recurrent
generation pipeline. Choi et al. [35] proposed a three-
module framework using a high-resolution dataset and
synthesizes the in-shop garment using an improved

residual module. However, it is insufficient for good
arm retention. Our method overcomes these challenges
by body componentization.

In Table 1, we compare various state-of-the-art
methods in terms of implementation and performance.
Our method splits the virtual try-on problem
into a multi-component problem, which has some
superiority in virtual try-on tasks.

3 Methodology
3.1 Overview

In this section, we first illustrate how to estimate a
semantic segmentation map from an in-shop garment,
which is used to guide the generation of human
components (see Section 3.2). Secondly, we explain
the general structure and sub-modules of SMIAN,
which is used to generate components and synthesize
the result (see Section 3.3). Thirdly, we explain the
generation strategy for each component and specific
implementation details (see Section 3.4). Finally,
we describe the training loss functions of GMN and
SMIAN (see Section 3.5). The whole framework is
shown in Fig. 1.

Given a reference image I ∈ R3×H×W , an in-
shop garment c ∈ R3×H×W , a reference pose map
pt ∈ R18×H×W , and a reference semantic map
s ∈ R1×H×W , the task of virtual try-on is to transfer
the in-shop garment c to corresponding areas in
the reference image I to generate an output image
Î ∈ R3×H×W , that is, the virtual try-on result. For
this task, we propose a novel framework T:

Î = T < I, pt, c, s > (1)

3.2 Segmentation generation

Recently, image-to-image translation [36, 37] has been
widely employed to generate desired images due to its

Table 1 Comparison of various state-of-the-art methods in terms of implementation and performance

CA-GAN [1] VITON [2] CP-VTON [4] VTNFP [18] CP-VTON+ [15] ACGPN [16] Ours

Uses rough shape × √ √ √ √ × ×
Uses pose × √ √ √ √ √ √

Uses semantics × × × √ √ √ √

Body parts × × × √ √ √ √

Texture × √ √ √ √ √ √

Componentization × × × × × × √

Occlusion handling × × × × × × √

Garment over-warping × × × × √ √ √

Character retention × √ √ √ √ √ √

Collar shape × × × × √ × √
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Fig. 1 Framework; the execution proceeds from (a) to (d). Module (a) coarsely warps in-shop garment c through GMN, and then predicts the
target semantic map st using warped garment c̃ and the mixed semantic map sm. Module (b) pre-processes arms and neck for generation of the
corresponding components in module (c) by SMIAN to give the garment ĉ, with arms Îu and neck În. Module (d) combines the components by
SMIAN to give the final try-on result Î. The discriminator belongs to SMIAN. ⊕ denotes channel-wise concatenation and � denotes an AND
operation.

remarkable effectiveness. Inspired by this approach,
we first need to generate a semantic segmentation map
of a person to guide subsequent image generation.

Generating a segmentation aims to produce a target
semantic map st ∈ R20×H×W containing the shape of
the in-shop garment c. Specifically, in the virtual try-
on task, the semantic map remains unchanged except
for the garment, neck, and arm areas. Therefore, we
combine the garment, neck, and arms in the reference
semantic map s into one region in a reallocated
semantic map sm. This enables other parts of sm

to be used as boundary conditions for warping: the
combined area is the range of warping. In the target
semantic map st, sm is reallocated according to the
shape of the warped garment c̃.

However, the human pose is flexible, and there are
many poses in which the arms and garment overlap.
During training with these poses, it is difficult for the
network to learn which part represents the arms in the
semantic map, causes the arms’ semantic map to be
occupied by the garment’s semantic map. To enable
the network to easily locate the arms in general, we
create an anti-cover map Ac ∈ R1×H×W (connecting
the shoulder, elbow, and wrist with a one-pixel
wide short line) as input conditioning information
to highlight the arms’ positions for more accurate

segmentation.
As shown in Fig. 1(a)(below), we adopt U-Net [38]

as the generation network. Furthermore, sm, Ac, and
the coarsely warped in-shop garment c̃ (see later) are
used as inputs, and the weighted cross-entropy loss
Ls [28] is used to optimize the network.
3.3 Semantic map-based image adjustment

network (SMIAN)
3.3.1 Basics
We propose a novel semantic map-based image
adjustment network (SMIAN), which aggregates
dual-modality features from the source image to
reconstruct body components through the semantic
map. As Fig. 2 shows, SMIAN consists of three
modules: a parsing module, a content module, and an
integration module. Unlike the generator in Ref. [39],
which adds several style blocks between the encoder
and decoder, the decoder of SMIAN consists of several
AdaIN ResNet blocks (ARBs).
3.3.2 Parsing module and content module
The content and parsing modules have the same
structure, and both consist of five down-sampled
convolutional layers. However, their roles are different.
The parsing module is used to obtain the feature
map of the varying semantic map of components for
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Fig. 2 Overview of SMIAN structure.

input to the integration module. The content module
is used to obtain content information (e.g., colour,
texture, embroidery) of the components and spatial
information from the semantic map. It provides the
basis for the ARB in the integration module.
3.3.3 Integration module
The integration module analyses the feature map
extracted by the parsing module to reconstruct
component. It consists of seven ARBs and five
up-sampled convolutional layers. StyleGAN [19]
successfully applied adaptive instance normalization
(AdaIN) to the progressive generative model, which
distributes the features to the latent variables.
Inspired by this, we introduce several ARBs to
finely reconstruct body components, using AdaIN
to restructure the spatial distribution information of
the semantic map and the content information of the
component image. The AdaIN calculation is

AdaIN(x, y) = γ(y)
(

x − μ(x)
σ(x)

)
+ μ(y) (2)

where x is the feature map produced by the previous
ARB or the previous convolution layer, and y is the
feature map produced by the multi-layer perceptron
(MLP). σ and μ denote mean and standard deviation,
respectively. The formula adjusts the mean and
standard deviation of the semantic map to the
component image.

We define the input feature map of the ARB as
Fr−2 and Fm (from the MLP). Note that the input
signals from the content module are all the same
in the ARB. As shown in Fig. 2, feature processing
operations in the overall ARB can be defined as

F mid
r−1 = φr−2σr−2AdaIN(Fr−2, Fm) (3)
F ∗

r = φr−1σr−1AdaIN(F mid
r−1 , Fm) (4)

where r = 3, . . . , R, and R is the number of execution
steps. φr−1 denotes the convolution operation in step
r−1, and σr−1 denotes the Relu activation function in
step r − 1. Following the standard ResNet block [40],

a skip connection structure was added to fuse the
input and output feature maps using:

Fr = Fr−2 + F ∗
r (5)

where Fr is the output of the ARB.

3.4 Body component generation

We now describe how we create the human’s arms,
garment, and neck as body components by SMIAN to
minimize mutual interference in the resulting image
distribution.
3.4.1 Garment component (GC)
As shown in Fig. 1(a)(above), the in-shop garment
mask Mc (see Fig. 3, additional shape information),
the reference pose map pt (see Fig. 3), and the
reallocation semantic map sm are used as the inputs
to the GMN [13], to warp the in-shop garment to
generate the coarsely warped garment c̃.

Because there are only a few controlled parameters
θ in GMN that manipulate the warping of the
garment, an error in one of the parameters θ can
lead to over-warping (unnatural excessive partial
distortion of the garment) or under-warping (garment
not fully aligned with the garment semantic map).

To overcome over-warping, we introduce a sampling
interval consistency loss Lsic [3, 15] into the GMN
to limit the spacing between sampling points; it is
given by
Lsic(Ĝx, Ĝy) =

∑
i=−1,1

∑
x

∑
y

|Ĝx(x + i, y) − Ĝx(x, y)|

+
∑

j=−1,1

∑
x

∑
y

|Ĝy(x, y + j) − Ĝy(x, y)|

(6)
where Ĝx and Ĝy are the x and y coordinates of the
sampled grid, respectively, and the absolute difference
|a − b| measures the distance between two adjacent
nodes a and b. Lsic totals the distances of all points
to adjacent points in the sampled grid.

Fig. 3 Training and test set samples from VITON.
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As shown in the garment part of Fig. 1(c), to
overcome under-warping, the predicted garment
semantic map sc

t and the warped garment c̃ are
processed by SMIAN to repair missing areas and
remove redundant areas. In this way, the garment
component ĉ is obtained via

ĉ = SMIAN < concat(c̃, sc
t), sc

t > (7)
where concat(·) denotes channel-wise concatenation.
3.4.2 Arms component (AC)
Different in-shop garments have different sleeve
shapes. Therefore, the arms Iu in the reference image
cannot be directly reused as input. The simplest way
to handle this is as follows: (i) reusing the correct
arms directly, (ii) repairing missing areas in the arms
using the generator, and (iii) removing unnecessary
areas in the arms using the generator.

However, as Fig. 3 shows, while the arms and
in-shop garment correspond in the training set, in
practice, they do not always correspond due to the
different garment shape. As shown in Fig. 4 and the
arms part of Fig. 1(b), to overcome this problem,
during training, we randomly crop the arms Iu to
provide input to enable the generator to learn an
inpainting capability. Furthermore, we perform an
AND operation between the randomly cropped Iu

and the arms semantic map su
t to remove possible

background.
During testing, only the AND operation is

performed between su
t and the arms Iu to remove

unnecessary areas of arms Iu. This maximally retains
Īu of the original arms, which can be expressed as

Īu =
{

rand(Iu) � su
t , training

Iu � su
t , testing

(8)

where � denotes an AND operation, and rand(·)
denotes random cropping.

Finally, the arms component Îu is obtained by
SMIAN. It can be formulated as

Îu = SMIAN < concat(su
t , Īu), su

t > (9)

3.4.3 Neck component (NC)
As Fig. 3 shows, the reference semantic map s of the
VITON dataset does not contain a neck semantic
map, so the neck’s shape is unchanged before and
after try-on. Therefore, we add a neck semantic map
to s to remove limitations due to neck shape.

The neck component is handled similarly to the
arms component. As shown in Fig. 5 and the neck
part of Fig. 1(b), during training, the neck In in
the reference image is randomly cropped to learn an
inpainting capability. During testing, only the AND
operation is performed between sn

t and the randomly
cropped neck to remove unnecessary areas of the neck
In. This maximally retains Īn of the original neck,
which can be expressed as

Īn =
{

rand(In) � sn
t , training

In � sn
t , testing

(10)

In this way, the collar shape of the in-shop garment
determines the neck shape in the result. Finally, the
neck component În is obtained by SMIAN. It can be
formulated as

În = SMIAN < concat(sn
t , Īn), sn

t > (11)
3.4.4 Component synthesizer (CS)
All the components (ĉ, În, and Îu) and unchanged
parts Iinv in the reference image I are spliced to
generate the try-on result Î. However, in the actual
splicing operation, cracks occur between boundaries

Fig. 4 Overview of the arms component generation process. ⊕ denotes channel-wise concatenation and � denotes an AND operation.
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Fig. 5 Overview of neck component generation. ⊕ denotes channel-wise concatenation and � denotes an AND operation.

of the components due to edge errors in the semantic
map. As Fig. 1(d) shows, we use SMIAN to repair
the cracks with guidance from the target semantic
map st. This allows a natural transition between
components to be realised, and noise in the image is
also reduced. This can be described as

Î = SMIAN < concat(st, ĉ, Îu, În, Iinv), st > (12)

3.5 Training

During training, pixel-wise L1, perceptual loss
Lper [41], and Lsic are used to optimize the GMN,
which can be expressed as

Lcw = λ1L1 + λperLper + λsicLsic (13)
where λ are trade-off hyper-parameters for the
corresponding loss functions.

The SMIAN in the framework need to be trained
separately. The total loss LSMIAN consists of L1, Lper,
Ladv [37], and Lfm [37]. It can be expressed as
LSMIAN = λ1L1+λperLper+λadvLadv+λfmLfm (14)

4 Experiments and analysis
In this section, we first introduce the experimental
dataset, VITON [2], and describe the implementation
details of the experiment. We then verify the
execution performance of SMIAN, and qualitatively
and quantitatively compare our results with those
of other state-of-the-art networks. We also conduct
ablation experiments to demonstrate the effectiveness
of each submodule in the framework. Finally, we
conduct a user study to demonstrate the practicality
of the proposed method.
4.1 Dataset

The experimental dataset is from the VITON [2]
dataset. It contains 16,253 image groups. Each

group consists of a front-view female image I, an
in-shop garment image c and its mask Mc, a reference
semantic map s, and a reference pose pt. The size
of each image is 256 pixels × 192 pixels. The dataset
contains 14,221 groups in the training set and 2032
groups in the test set. Figure 3 shows a sample
from the training set and another from the test set
in VITON. It can be seen that the in-shop garment
and the garment worn on paper are the same in the
training set, while in the test set they are different.

4.2 Implementation details

Our experiments were carried out on 2 Tesla V100
GPUs with 32 G RAM. By default, the learning rate
for the generator and the discriminator were 0.0001,
reduced linearly to 0 over half of the epochs with a
batch size of 4. The experiment adopted the ADAM
optimizer [42], with parameters set to β1 = 0.5, β2 =
0.999. In the loss function, λ1 = λper = 1, λsic = 40
in Lcw. λ1 = 1, λper = 10, λadv = 1, and λfm = 10 in
LSMIAN.

The discriminator in SMIAN is the one from
pix2pixHD [37], as shown in the discriminator in
Fig. 1.

4.3 Performance

To assess the execution performance of SMIAN,
we compared the convergence rate during training
and differences of test results, using L1, Lper, Ladv,
Lfm, and LSMIAN (vertical axis) as an indirect
representation to compare performance between
SMIAN and the U-Net (used in CP-VTON, CP-
VTON+, and ACGPN).

In Fig. 6, to show the effect clearly, we test the
result once every four images (horizontal axis). The
total loss LSMIAN of the proposed method stands
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Fig. 6 Losses in SMIAN and U-Net during training and testing.

at about 2.0 after iterating, while that for U-Net
remains at about 3.5. The convergence rate of the
other sub-losses is also better than for U-Net. During
testing, the proposed method also has lower total loss:
LSMIAN of each image from the proposed method
stands at about 4.65, and for U-Net, about 6.75. In
the other sub-losses, the loss differences in each batch
of images show a remarkable distance. The pixel-
wise L1 loss represents a slight difference between
the image generated by SMIAN and ground truth.
Lper, Ladv, and Lfm indicate more realistic images
are generated by SMIAN.

The above results demonstrate that our method
has significantly improved network performance and
better generated image quality.

4.4 Qualitative results

We next provide qualitative results of the proposed
method and compare visual outputs with those from

three state-of-the-art models, CP-VTON [4], CP-
VTON+ [15], and ACGPN [16].

4.4.1 Semantic map correctness
Figure 7(above) shows the effect after adding the
neck semantic map. Column 5 (for CP-VTON) is
the effect without the neck semantic map, where the
reference image limits collar type. The neck semantic
map in column 6 (for ACGPN) is in error. The last
column is the effect of the proposed method, where
the collar type dependence from the garment worn
on the person is eliminated. The collar type, which
changes to the shape of the in-shop garment, has a
more natural appearance in the result.

Fig. 7(below) shows the effect after adding the anti-
cover map Ac (column 3). Column 5 (for CP-VTON)
is the effect without the anti-cover map; the garment
covers the arms. The arms semantic map in column
6 (for ACGPN) is in error. The last column shows

Fig. 7 Influence of semantic map correctness. Column 3 is the anti-cover map Ac, while column 7 shows parts in the target semantic map st.
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the arms part is generated clearly to prove that the
anti-cover map works as intended.
4.4.2 Garment alignment
Figure 8 compares our method with state-of-the-art
methods in terms of garment alignment, using a
grid image (column 2) as a visual representation
of the degree of warping. CP-VTON (column 4)
exhibits over-warping because it does not impose
constraints. In addition, it uses the rough shape
as condition information causing the absence of
warp boundaries. Although CP-VTON+ (column 6)
incorporates constraints, its input contains a rough
shape, and the network lacks perceptual loss as an
optimisation function, leading to local over-warping.
ACGPN (column 8) excessively limits the spacing by
second-order-difference constraints, which results in
an almost uniform degree of warping throughout the
garment. It enhances the sleeve area in the garment,
which as a result is extremely unnatural. Specifically,
we show the result without Lsic in column 10, where
the garment shows over-warping. In contrast, our
proposed method shows a more natural warping

effect without over-warping by using Lsic, sm, and
perceptual loss in column 12.
4.4.3 Comparison of try-on results
As Fig. 9 shows, CP-VTON, CP-VTON+, and
ACGPN have defective garment alignment which
affects the final result. The way the garment and
body are integrated in CP-VTON leads to problems
such as texture confusion. Although CP-VTON+
works well on restoration of collar type, the lack of a
strategy for retaining original details causes problems
such as occlusion and loss of detail. There are many
errors in the ACGPN semantic map, which produce
unsatisfactory results.

Our method uses interval consistency loss and
perceptual loss to overcome over-warping, making the
results more realistic. Under-warping and mismatches
of sleeve shape and collar type between the result and
in-shop garment are avoided by semantic adaptive
componentization. Finally, our method preserves
the most original content in the reference image
and in-shop garment. Compared to CP-VTON, CP-
VTON+, and ACGPN, our method works better.

Fig. 8 Garment warping effects from state-of-the-art methods and the proposed method.
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Fig. 9 Qualitative comparison of the baselines on VITON, the dashed box highlighting improvements from our proposed method.

4.4.4 Coupling study
The application goal of the virtual try-on task is to
try on the desired garment online, so we chose four
different garments for a coupling study. As shown in
Fig. 10, the proposed method works well.

4.5 Quantitative results

We further analyzed performance using benchmark
metrics for image quality, adopting structural

Fig. 10 Coupling performance in multi garment try-on.

similarity (SSIM) [43] defined in Eq. (15) and Fréchet
inception distance (FID) [44] defined in Eq. (16) to
measure the similarity between the try-on result and
ground truth. The inception score (IS) [45] defined
in Eq. (17) and peak signal to noise ratio (PSNR)
defined in Eq. (18) are adopted to measure the image
quality between the try-on result and ground truth.

SSIM =
(2μXμY + C1)(2σXY + C2)

(μ2
X + μ2

Y + C1)(σ2
X + σ2

Y + C2)
(15)

where μX is the mean of X, μY is the mean of Y , σ2
X

is the variance of X, σ2
Y is the variance of Y , σXY is

the covariance of X and Y , and C1 and C2 are two
variables to ensure stability.

FID =‖ μr − μg ‖2 +Tr[Σr + Σg − 2(ΣrΣg)
1
2 ] (16)

where Tr denotes matrix trace , μ is the mean, and
Σ is covariance.

IS(G) = exp(Ex∼pg DKL(p(y | x)) ‖ p(y))) (17)
where p(y | x) is a particular classification obtained
from the generated data x, p(y) is the edge
distribution of the obtained classification, and DKL

denotes relative entropy.
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PSNR = 10 log10
2552

ε
(18)

where ε denotes mean square error (MSE) between
the ground truth and generated image.

Table 2 summarizes the performance of state-of-
the-art methods. Our method improves IS from 2.85
(for DCTON [47]) to 2.86, which reflects the fact that
the distribution of the generated image is closer to the
ground truth distribution. Original detail retention
strategy for arms and garment component improves
SSIM from 0.83 (for DCTON) to 0.87. Also, PSNR
increased by around 10% from 23.067 (for ACGPN)
to 25.423. The component synthesizer contributes
to defect-free fusion between components, reducing
noise and improving FID (for DCTON) from 14.82 to
12.63. The experimental data shows that our method
provides convincing virtual try-on results.

4.6 Discussion and ablation study

We performed an ablation study to verify the utility
of each part of our framework. The ablation study

Table 2 Quantitative evaluation of different methods

Method IS↑ SSIM↑ PSNR↑ FID↓
CA-GAN [1] 2.56±0.09 0.74 — 47.34

VITON [2] 2.29±0.07 0.74 — 55.71

CP-VTON [4] 2.59±0.13 0.72 16.956 24.45

CP-VTON+ [15] 2.75±0.14 0.75 16.956 21.08

SieveNet [46] 2.82±0.09 0.77 16.98 14.65

VTNFP [18] 2.78±0.10 0.80 — —

ACGPN [16] 2.69±0.12 0.81 23.067 15.67

DCTON [47] 2.85±0.15 0.83 — 14.82

Ours 2.86±0.07 0.87 25.423 12.63

Real 2.88±0.12 1 N/A 0

considered in turn: removing the ARB, removing
the AC, removing the GC, and removing the CS.
We observe from the ablation experiment results in
Fig. 11 that: (i) the ARB preserves rich component
details by correlating the spatial distribution between
component and semantic map, (ii) the AC preserves
arm details from the reference image very well, with
fingers and arms distinguished, (iii) the GC effectively
prevents any mismatch between arm length and sleeve
length of the in-shop garment, and details of the
garment are well preserved, and (iv) the CS fuses
all components through semantic map guidance, gaps
between components are repaired, and noise is reduced,
making the results more natural and realistic.

Table 3 provides the same metrics as before for
these four cases, the data in the table once again
confirming the points above.

4.7 User study

To further evaluate the effectiveness of our approach,
we designed a user study using a questionnaire. First,
the results obtained from three virtual try-on methods
on the test set were mixed. Then, we invited two
volunteers from fashion design and computer vision to
score all test images (in the range 0 to 1). Finally, we

Table 3 Ablation study results

Method IS↑ SSIM↑ PSNR↑ FID↓
w/o ARB 2.78±0.11 0.83 23.812 25.78

w/o AC 2.84±0.11 0.86 23.845 15.46

w/o GC 2.82±0.12 0.84 23.649 18.56

w/o CS 2.86±0.13 0.87 23.963 14.85

Ours 2.86±0.07 0.87 25.423 12.63

Real 2.88±0.12 1 N/A 0

Fig. 11 Ablation study: visual results obtained by different methods, dashed boxes indicating areas with poorer results.
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calculated the average score as the satisfaction for each
image and plotted the scores as a statistical graph.

The results in Fig. 12 indicate that the image
quality obtained by the proposed method provide
a better sensory experience than CP-VTON and
ACGPN, intuitively indicating that our method is a
superior method for virtual try-on field.

Fig. 12 User satisfaction results for three methods.

5 Conclusions
In this work, we have proposed a novel virtual try-
on framework. To preserve details of the human
body and garment, SMIAN is proposed to accelerate
network convergence rate and optimize the generation
effect. It improves the performance of the virtual
try-on framework. Moreover, the body parts
to be synthesized are componentized for local-to-
global generation, solving existing problems such as
occlusion and loss of detail. The componentization
of the body area also reduces coupling in the result,
which helps the network pay more attention to local
details. Compared to the state-of-the-art works,
our pipeline provides quantitatively better results
and visual effects. User satisfaction is increased to
83.5%. In future, we plan to expand our framework
to deal with image-based pose transfer with complex
appearance-aware information.
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