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Abstract Previous video object segmentation appro-
aches mainly focus on simplex solutions linking appearance
and motion, limiting effective feature collaboration
between these two cues. In this work, we study a
novel and efficient full-duplex strategy network (FSNet)
to address this issue, by considering a better mutual
restraint scheme linking motion and appearance allowing
exploitation of cross-modal features from the fusion and
decoding stage. Specifically, we introduce a relational
cross-attention module (RCAM) to achieve bidirectional
message propagation across embedding sub-spaces. To
improve the model’s robustness and update inconsistent
features from the spatiotemporal embeddings, we adopt
a bidirectional purification module after the RCAM.
Extensive experiments on five popular benchmarks show
that our FSNet is robust to various challenging scenarios
(e.g., motion blur and occlusion), and compares well to
leading methods both for video object segmentation and
video salient object detection. The project is publicly
available at https://github.com/GewelsJI/FSNet.

Keywords video object segmentation (VOS); video
salient object detection (V-SOD); visual
attention

1 Introduction

Over the past three years, social platforms have
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accumulated a large number of short videos.
Analyzing these videos efficiently and intelligently
has become a challenging issue today. Video object
segmentation (VOS) [1, 2] is a fundamental technique
in addressing this issue; its purpose is to delineate
pixel-level moving object (foreground object or target
object) masks in each frame. Besides video analysis,
many other applications have also benefited from
VOS, such as robotic manipulation [3], autonomous
cars [4], video editing [5], action segmentation [6],
optical flow estimation [7], medical diagnosis [8],
interactive segmentation [9], referring VOS [10], and
video captioning [11].

Recently, we have witnessed rapid development
in video object understanding which exploits the
relationships between frames’ appearances [12, 13]
and is motion-aware [14, 15]. Unfortunately,
short-term dependency prediction [14, 15] generates
unreliable estimates and suffers from common
problems [16] (e.g., noise, deformation, and diffusion).
In addition, the capability of appearance-based
modelling, e.g., using recurrent neural networks
(RNNs) [17, 18], is severely hindered by blurred
foregrounds or cluttered backgrounds [19]. Such
issues are prone to lead to accumulating inaccuracies
and the propagation of spatiotemporal embeddings,
which cause the problem of short-term feature
drift [20].

As Fig. 1(a) shows, the direction-independent
strategy [17, 21–24] is the earliest solution; it
encodes appearance and motion features separately
and fuses them directly. However, this intuitive
approach implicitly causes feature conflicts since the
motion and appearance features are derived from
two distinctive modalities, extracted from separate
branches. An alternative approach is to integrate
them in a guided manner. As illustrated in Fig. 1(b),
several recent methods opt for a simplex strategy
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Fig. 1 Three strategies for embedding appearance and
motion patterns before the fusion and decoding stage. (a)
Direction-independent strategy [21] without information transmission.
(b) Simplex strategy [25] with only unidirectional information
transmission, with motion guiding appearance or vice versa. (c)
Our full-duplex strategy with simultaneous bidirectional information
transmission. This paper mainly focuses on discussing directional
modelling (b, c) in the deep learning era.

[16, 25–30], which can be either appearance-based or
motion-guided. Although these two strategies have
achieved promising results, they both fail to consider
mutual restraints between appearance and motion
features that guide human visual attention allocation
during dynamic observation, according to previous
studies in cognitive psychology [31, 32] and computer
vision [21, 33].

Intuitively, appearance and motion characteristics
should be homogeneous to a certain degree for the
same object within a short time. As Fig. 2 shows,
the foreground region of appearance and motion
intrinsically share correlated patterns of perception,
including semantic structure and movement trends.
Nevertheless, misguided knowledge in each individual
modality, e.g., a static shadow under the chassis and
small car in the background, produces inaccuracies

Fig. 2 Results using the simplex strategy (i.e., (a) appearance-
refined motion and (b) motion-refined appearance) and our full-duplex
strategy, which offers a collaborative way of using appearance and
motion cues under mutual restraints. It thus provides more accurate
structural details and alleviates the short-term feature drift issue [20].

during feature propagation. This easily taints the
results (see blue boxes).

To address these challenges, we introduce a novel
modality transmission strategy (full-duplex [34])
between spatial and temporal information, instead
of embedding them individually. The proposed
strategy is a bidirectional attention scheme across
motion and appearance cues, which explicitly
incorporates appearance and motion patterns in a
unified framework, as depicted in Fig. 1(c). As seen
in Fig. 2, our method visually performs better than
ones with a simplex strategy in Figs. 1(a) and 1(b).

In fully investigating simplex and full-duplex
strategies for our framework, we present the following
contributions:
• a unified framework full-duplex strategy network

(FSNet) for robust video object segmentation,
which makes full use of spatiotemporal repre-
sentations,

• a bidirectional interaction module, dubbed the
relational cross-attention module (RCAM), to
extract discriminative features from appearance
and motion branches, which ensures mutual
restraints between them, and to improve model
robustness, a bidirectional purification module
(BPM), which is equipped with an interlaced
decremental connection to automatically update
inconsistent features between the spatiotemporal
embeddings, and finally

• a demonstration that our FSNet achieves
favourable performance on five mainstream
benchmarks; in particular our FSNet (N=4,
CRF) outperforms the SOTA U-VOS model
(i.e., MAT [25]) on the DAVIS16 [35] leader board
by a margin of 2.4% in terms of mean-F score,
with less training data (13k for ours versus 16k
for MAT).

As an extension of our ICCV-2021 paper [36],
additions include:
• improved presentation, in particular Fig. 1, Fig. 2,

and Fig. 7), and discussions (see Section 4.5).
• an investigation of the self-purification mode of

BPM under our FSNet (see Fig. 9 and Section
4.5.4), the relation between RCAM and BPM
(see Section 4.5.5), and training effectiveness with
less data (see Section 4.5.3). The results further
demonstrate the validity and rationality of our
current design under various conditions.
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• extra details of the backbone (see Section 3.6.1),
evaluation metrics (see Section 4.2), prediction
selection (see Section 4.5.1), and post-processing
techniques (see Section 4.5.2).

• further results using different thresholds (PR
curve in Fig. 6). Additional test results
(DAVSOD19-Normal25, DAVSOD19-Difficult20)
on a recent challenging dataset confirm that our
framework is superior to existing SOTA models
(see Table 3).

2 Related work

Depending on whether or not the first frame of ground
truth is given, the VOS task can be divided into
two scenarios, i.e., semi-supervised or few-shot and
unsupervised or zero-shot. Typical semi-supervised
VOS models include Refs. [37–40]. This paper studies
the unsupervised setting [25, 41], leaving the semi-
supervised setting as future work.
2.1 Unsupervised VOS

Although there are many works addressing the VOS
task in a semi-supervised manner, supposing an
object mask annotation is given in the first frame,
other researchers have attempted to address the more
challenging unsupervised VOS (U-VOS) problem.
Early U-VOS models resort to low-level handcrafted
features for heuristic segmentation inference, such
as long sparse point trajectories [42, 43], object
proposals [44, 45], saliency priors [46, 47], optical
flow [26], or superpixels [48, 49]. These traditional
models have limited generalizability and thus low
accuracy in highly dynamic and complex scenarios
due to their lack of semantic information and high-
level content understanding. Recently, RNN-based
models [50–52] have become popular due to their
better ability to capture long-term dependencies and
their use of deep learning. In this case, U-VOS is
formulated as a recurrent modelling issue over time,
where spatial features are jointly exploited with long-
term temporal context.

How to combine motion cues with appearance
features is a long-standing problem in this field.
To this end, Tokmakov et al. [53] proposed to
simply use motion patterns acquired from the video.
However, their method cannot accurately segment
objects between two similar consecutive frames since
it relies heavily on the guidance of optical flow. To

resolve this, several works [17, 23, 54] have integrated
spatial and temporal features from parallel networks,
which can be viewed as plain feature fusion from
independent spatial and temporal branches with an
implicit modelling strategy. Li et al. [55] proposed
a multi-stage processing method to tackle U-VOS,
which first utilizes a fixed appearance-based network
to generate objectness and then feeds this into a
motion-based bilateral estimator to segment the
objects.

2.2 Attention-based VOS

The attention-based VOS task is closely related to
U-VOS since it extracts attention attracting object(s)
from a video clip. Traditional methods [56–59] first
compute single-frame saliency based on various hand-
crafted static and motion features, and then conduct
spatiotemporal optimization to preserve coherence
across consecutive frames. Recent works [60–62]
aim to learn a highly semantic representation and
usually perform spatiotemporal detection end-to-
end. Many schemes have been proposed that employ
deep networks that consider temporal information,
such as ConvLSTM [18, 50, 63], take optical-
flows and adjacent-frames as input [29, 60], use
3D convolutional information [61, 62], or directly
exploit temporally concatenated deep features [64].
Furthermore, long-term influences are often taken
into account and combined with deep learning.
Li et al. [65] proposed a key-frame strategy to
locate representative high-quality video frames with
salient objects [66, 67] and diffused their saliency
to ill-detected non-key frames. Chen et al. [68]
improved saliency detection by leveraging long-
term spatiotemporal information, where high-quality
beyond-the-scope frames are aligned with the current
frames. Both types of information are fed to deep
neural networks for classification. Besides considering
how to better make use of temporal information,
other researchers have attempted to address different
problems in video salient object detection (V-SOD),
such as reducing the data labelling requirements [69],
developing semi-supervised approaches [70], or
investigating relative saliency [71]. Fan et al. [18]
recently introduced a V-SOD model equipped with
a saliency shift-aware ConvLSTM, together with
an attention-consistent V-SOD dataset with high-
quality annotations. Zhao et al. [72] built a large-
scale dataset with scribble annotation for weakly
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supervised video salient object detection. They
proposed an appearance–motion fusion module to
aggregate the spatiotemporal features attentively.

3 Methodology

3.1 Overview

Suppose that a video clip contains T consecutive
frames {At}Tt=1. We first utilize an optical flow
field generator H, i.e., FlowNet 2.0 [14], to generate
T − 1 optical flow maps {M t}T−1

t=1 , each of which
is computed from two consecutive frames (M t =
H[At,At+1]). To ensure the inputs match, we discard
the last frame in the pipeline. Thus, the proposed
pipeline takes both appearance images {At}T−1

t=1 and
their paired motion maps {M t}T−1

t=1 as the input.
First, pairs M t and At pairs at frame t are fed
to two independent ResNet-50 [73] branches (i.e.,
motion and appearance blocks in Fig. 3). We now
omit the superscript t to simplify the notation. The
appearance features {Xk}Kk=1 and motion features
{Yk}Kk=1 extracted from K layers are then sent to
the relational cross-attention modules (RCAMs),
which allows the network to embed spatiotemporal
cross-modal features. Next, we employ N cascaded
bidirectional purification modules (BPMs). The
BPMs focus on distilling representative carriers from
fused features {F n

k }Nn=1 and motion-based features
{Gn

k}Nn=1. Finally, the predictions (i.e., St
M and St

A)
at frame t are generated from two decoder blocks.
3.2 Relational cross-attention module

As discussed in Section 1, a single-modality (i.e.,
motion or appearance) guided stimulation may cause
the model to make incorrect decisions. To alleviate
this, we design a cross-attention module (RCAM)
based on the channel-wise attention mechanism,
which focuses on extracting cues from the two
modalities and then using them to modulate each
other. As shown in Fig. 4(c), the two inputs of
RCAM are appearance features {Xk}Kk=1 and motion
features {Yk}Kk=1, which are obtained from the two
different branches of a standard ResNet-50 [73].
Specifically, for each level k, we first perform global
average pooling (GAP) to generate channel-wise
vectors VXk and VYk from each Xk and Yk. Next,
two 1×1 conv layers, i.e., φ(x; Wφ) and θ(x; Wθ),
with learnable parameters Wφ and Wθ respectively,
generate two discriminative global descriptors. The

sigmoid function σ[x] = ex/(ex + 1), x ∈ R, is
then applied to convert the final descriptors into
the interval [0, 1], i.e., into a valid attention vector
for channel weighting. Then, we perform an outer
product ⊗ between Xk and σ

[
θ(VYk ; Wθ)

]
to generate

a candidate feature QXk , and vice versa, as Eqs. (1)
and (2):

QXk = Xk ⊗ σ
[
θ(VYk ; Wθ)

]
(1)

QYk = Yk ⊗ σ
[
φ(VXk ; Wφ)

]
(2)

Next, we combine QXk , QYk , and lower-level
fused feature Zk−1 for in-depth feature extraction.
With element-wise addition ⊕, conducted in the
corresponding k-th level block Bk[x] in ResNet-50,
we finally obtain the fused features Zk that contain
comprehensive spatiotemporal correlations:

Zk = Bk
[
QXk ⊕QYk ⊕Zk−1

]
(3)

where k ∈ {1 : K} denotes different feature
hierarchies in the backbone. Note that Z0 denotes the
zero tensor. In our implementation, we use the top
four feature pyramid levels, i.e., K = 4, as suggested
by Refs. [74, 75].

3.3 Bidirectional purification module

In addition to the RCAM described above, which
integrates common cross-modality features, we fur-
ther introduce the bidirectional purification module
(BPM) to improve model robustness. Following
the standard in action recognition [76] and saliency
detection [77], our bidirectional purification phase
comprises N cascaded BPMs. As shown in Fig. 3, we
first employ the feature allocator ψ{F,G}(x; W

{F,G}
ψ )

to unify the feature representations from the previous
stage:

F n
k = ψF (Zk; WF

ψ ), Gn
k = ψG(Yk; WG

ψ ) (4)
where k ∈ {1 : K} and n ∈ {1 : N} denote different
features and BPMs, respectively. To be specific,
ψ{F,G}(x; W

{F,G}
ψ ) is composed of two 3×3 conv

layers, each with 32 filters to reduce the feature
channels. Note that the allocator is conducive
to reducing the computational burden as well as
facilitate various element-wise operations.

Here, we consider a bidirectional attention scheme
(see Fig. 5(c)) that contains two simplex strategies
(see Figs. 5(a) and 5(b)) in the BPM. On the one
hand, the motion features Gn

k contain temporal cues
and can be used to enrich the fused features F n

k

by concatenation. On the other hand, we would
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Fig. 3 Architecture of our FSNet for video object segmentation. The relational cross-attention module (RCAM) abstracts more discriminative
representations linking motion and appearance cues using the full-duplex strategy. Then four bidirectional purification modules (BPM) are
stacked to further resolve inconsistencies between the motion and appearance features. Finally, we utilize a decoder to generate our prediction.

Fig. 4 Relational cross-attention module (RCAM) with simplex (a, b) and full-duplex (c) strategy.

Fig. 5 Bidirectional purification module (BPM) with simplex and full-duplex strategy.

compress the distractors in the motion feature Gn
k by

multiplying the fused features F n
k . Besides providing

a robust feature representation, we introduce an
efficient cross-modal fusion strategy in this scheme,
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which broadcasts high-level, semantically strong
features to low-level, semantically weak features by
interlaced decremental connection (IDC) with a top–
down pathway [78]. Specifically, as the first part,
the spatiotemporal feature combination branch (see
Fig. 5(b)) is formulated as

F n+1
k = F n

k ⊕
K⋃
i=k

[F n
k ,P(Gn

i )] (5)

where P is an up-sampling operation followed by
a 1×1 convolutional layer (conv) to reshape the
candidate guidance to a consistent size with F n

k .
Symbols ⊕ and

⋃
respectively denote element-wise

addition and concatenation operations with an IDC
strategy, followed by a 1×1 conv with 32 filters. For
instance, Ḡn

2 =
⋃K=4
i=2 [F n

2 ,P(Gn
i )] = F n

2 �P(Gn
2 )�

P(Gn
3 ) � P(Gn

4 ) when k = 2 and K = 4. For
the other part, we formulate the temporal feature
re-calibration branch (see Fig. 5(a)) as

Gn+1
k = Gn

k ⊕
K⋂
j=k

[Gn
k ,P(F n

j )] (6)

where
⋂

denotes element-wise multiplication with an
IDC strategy, followed by a 1×1 conv with 32 filters.
3.4 Decoder

After feature aggregation and re-calibration with
multi-pyramidal interaction, the last BPM unit
produces two groups of discriminative features, FN

k

and GN
k , with a consistent number 32 of channels.

We integrate a pyramid pooling module (PPM) [79]
into each skip connection of the U-Net [80] as our
decoder, and only adopt the top four layers in our
implementation (K = 4). Since the features are fused
from high to low level, global information is well
retained at different scales of the designed decoder:

F̂N
k = C[FN

k � UP(F̂N
k+1)] (7)

ĜN
k = C[GN

k � UP(ĜN
k+1)] (8)

Here, UP indicates the upsampling operation after
the pyramid pooling layer, while � concatenates two
features. Then, a conv C is used to reduce the number
of channels from 64 to 32. Lastly, we use a 1×1 conv
with a single filter after the upstream output (i.e., F̂N

1
and ĜN

1 ), followed by a sigmoid activation function
to generate the predictions St

A and St
M at frame t.

3.5 Learning objective

Given a group of predictions St ∈ {St
A,S

t
M} and

the corresponding ground-truths Gt at frame t, we
employ standard binary cross-entropy loss Lbce to

measure the dissimilarity between the output and
target:
Lbce(St,Gt) =−

∑
(x,y)

[Gt(x, y) log(St(x, y)) +

(1−Gt(x, y)) log(1− St(x, y))]
(9)

where (x, y) indicates a coordinate in the frame. The
overall loss function is then formulated as

Ltotal = Lbce(St
A,G

t) + Lbce(St
M ,G

t) (10)
For final prediction, we use St

A since our experiments
show that it performs better when combining
appearance and motion cues.
3.6 Implementation details

3.6.1 Backbone details
Without any modification, three standard ResNet-
50 [73] backbones, removing the top-three layers
(average pooling, fully-connected, and softmax
layers), are adopted for the appearance branch, the
motion branch, and the merging branch. Each
ResNet-50 backbone results in K = 4 hierarchies
following previous work [74]. After removing the
top fully connected layers, the feature hierarchies
({Xk,Yk,Zk}, k ∈ {2 : 5}) from shallow to deep are
extracted from the conv2 3 (k = 2), conv3 4 (k = 3),
conv4 6 (k = 4), and conv5 3 (k = 5) layers of the
ResNet-50, respectively.

We also tried a two-branch setting, removing the
merging branch and letting Zk = QXk ⊕ QYk ⊕
Zk−1 instead of Zk = Bk[QXk ⊕ QYx ⊕ Zk−1] in
Eq. (3). Unfortunately, this leads to a 2.5% drop
in performance for Sα on the DAVIS16 [35] dataset.
This is because the third merging branch can
sequentially enhance and promote the spatiotemporal
features from RCAMs, leading to better segmentation
accuracy.
3.6.2 Training settings
We implemented our model in PyTorch [81],
accelerated by an NVIDIA RTX TITAN GPU. All
inputs were uniformly resized to 352×352. To
enhance the stability and generalizability of our
learning algorithm, we employed a multi-scale (i.e.,
{0.75, 1, 1.25}) training strategy [82] in the training
phase. As can be seen from the experimental results
in Table 5, the variant with N=4 (the number of
BPMs) achieves the best performance. We utilized
stochastic gradient descent (SGD) to optimize the
entire network, with a momentum of 0.9, a learning
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rate of 2e−3, and a weight decay of 5e−4. The learning
rate decreased by 10% per 20 epochs.
3.6.3 Testing settings and runtime
Given a frame along with its motion map, we resized
them to 352×352 and fed them into the corresponding
branch. Following Refs. [25, 51, 83], we employed a
conditional random field (CRF) [84] technique. The
inference time of our method is 0.08 s/frame, ignoring
flow generation and CRF post-processing.

4 Experiments

4.1 Experimental protocols

4.1.1 Datasets
We evaluated the proposed model on four widely used
VOS datasets. DAVIS16 [35] is the most popular
of these, and consists of 50 (30 training and 20
validation) high-quality and densely annotated video
sequences. MCL [85] contains 9 videos and is mainly
used as testing data. FBMS [86] includes 59 natural
videos, in which 29 sequences are used for training
and 30 for testing. SegTrack-V2 [44] is one of the
earliest VOS datasets and consists of 13 clips. In
addition, DAVSOD19 [18] was specifically designed
for the V-SOD task. It is the most challenging visual
attention consistent V-SOD dataset with high-quality
annotation and diverse attributes.
4.1.2 Training
Following a similar multi-task training setup as
Ref. [29], we divided our training procedure into three
steps:
• We first adopted a well-known static saliency

dataset DUTS [87] to train the spatial branch to
avoid over-fitting, as in Refs. [18, 50, 60]. This
step lasts for 50 epochs with a batch size of 8 under
the same training settings as in Section 3.6.2.

• We then train the temporal branch on the
generated optical flow maps. This step lasts for
50 epochs with a batch size of 8 under the same
training settings as in Section 3.6.2.

• We finally loaded the weights pre-trained on
the two sub-tasks into the spatial and temporal
branches, and then, the whole network was end-to-
end trained on the DAVIS16 (30 clips) and FBMS
(29 clips) training sets. This last step took about
4 hours and converges after 20 epochs with a mini-
batch size of 8 under same the training settings
as in Section 3.6.2.

4.1.3 Testing
We used standard benchmarks [18, 35] to test our
model on the validation set of DAVIS16 (20 clips),
the test set of FBMS (30 clips), the test set (Easy35
split) of DAVSOD19 (35 clips), the whole of MCL (9
clips), and the whole of SegTrack-V2 (13 clips).

4.2 Evaluation metrics

We define a predicted map at frame t as St
A and

its corresponding ground-truth mask as Gt. The
evaluation metrics used are given as follows.
4.2.1 Metrics for the U-VOS task
Following Ref. [20], we utilized two standard metrics
to evaluate the U-VOS models. Note that all
predicted maps are binary in in this task.
1. Mean Region Similarity. This metric, also

called Jaccard similarity coefficient, is defined as
the intersection-over-union of the predicted map
and the ground-truth mask:

J = |S
t
A ∩Gt|
|St
A ∪Gt|

(11)

where | · | is the number of pixels in an area. In
all of our experiments, we also report the mean
value, Mean-J , following Ref. [20].

2. Mean Contour Accuracy. The contour
accuracy metric we used is also called the contour
F-measure. We compute the contour-based
precision and recall between the contour points
of c(St

A) and c(Gt), where c(·) contains the
extracted contour points of a mask. F is defined
as

F = 2× Precisionc × Recallc
Precisionc + Recallc

(12)

where Precisionc = |c(St
A) ∩ c(Gt)|/|c(St

A)| and
Recallc = |c(St

A) ∩ c(Gt))|/|c(Gt)|. Following
Ref. [20], we also report the mean value, Mean-
F in all of our experiments.

4.2.2 Metrics for the V-SOD task
Unlike the U-VOS task, the predicted map can be non-
binary in V-SOD benchmarking: see Section 4.3.1.
1. Mean Absolute Error (MAE). This is a

typical pixel-wise measure, defined as

M = 1
WH

W∑
x

H∑
y

|St
A(x, y)−Gt(x, y)| (13)

where W and H are the width and height of
ground-truth Gt, and (x, y) are the coordinates
of a pixel in Gt.
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2. Precision–Recall (PR) Curve. Precision and
recall [88–90] are defined as

Precision = |S
t
A(T ) ∩Gt|
|St
A(T )| (14)

Recall = |S
t
A(T ) ∩Gt|
|Gt|

(15)

where St
A(T ) is the binary mask obtained by

directly thresholding the predicted map St
A with

threshold T ∈ [0, 255], and | · | is the total area
of the mask inside the map. By varying T , a
precision–recall curve can be obtained.

3. Maximum F-measure. This is defined as

Fβ = (1 + β2)Precision× Recall
β2 Precision + Recall (16)

where β2 is set to 0.3 to emphasise precision over
recall, as recommended in Ref. [90]. We convert
the non-binary predicted map into binary masks
with threshold values from 0 to 255. In this paper,
we report the maximum (i.e., Fmax

β ) of a series of
F-measure values calculated from the precision–
recall curve by iterating over all thresholds.

4. Maximum Enhanced-Alignment Measure.
As a recently proposed metric, Eξ [88] is used to
evaluate both local and global similarity between
two binary maps. Its formulation is as Eq. (17):

Eξ = 1
W ×H

W∑
x

H∑
y

φ
[
St
A(x, y),Gt(x, y)

]
(17)

where φ is the enhanced-alignment matrix. As
for Fmax

β , we report the maximum Eξ value
computed over all the thresholds in all of our
comparisons.

5. Structure Measure. Fan et al. [91] proposed
a metric to measure the structural similarity
between a non-binary saliency map and a ground-
truth mask:

Sα = (1− α)So(St
A,G

t) + αSr(St
A,G

t) (18)
where α balances the object-aware similarity
So and region-aware similarity Sr. We use the
default setting (α = 0.5) suggested in Ref. [91].

4.3 U-VOS and V-SOD tasks

4.3.1 Evaluation on DAVIS16 dataset
Table 1 compares results from our FSNet with 14 state
of the art (SOTA) U-VOS models on the DAVIS16
public leaderboard. We also compare it to 7 recent
semi-supervised approaches as reference. We use a
threshold of 0.5 to generate the final binary maps
to ensure a fair comparison, as recommended by
Ref. [20]. Our FSNet outperforms the best other
model (AAAI’20-MAT [25]) by a margin of 2.4% in
Mean-F and 1.0% in Mean-J . Notably, the proposed
U-VOS model also outperforms the semi-supervised
models (e.g., AGA [99]), even though they utilize an
initial ground-truth mask to locate objects.

We also compare FSNet against 13 SOTA V-
SOD models. All compared maps in the V-SOD
task, including ours, are non-binary. The non-
binary saliency maps are obtained from the standard
benchmark [18]. As can be seen from Table 2, our
method consistently outperforms all other models since
2018 on all metrics. In particular, for the Sα and Fmax

β

metrics, our method improves the results by about 2%
compared to the best AAAI’20-PCAS [108] model.
4.3.2 Evaluation on MCL dataset
This dataset has fuzzy object boundaries in the
low-resolution frames due to fast object movements.
Therefore, the overall performance is lower than on
DAVIS16. As shown in Table 2, our method still
stands out in these extreme circumstances, with a
3%–8% increase in all metrics compared to ICCV’19-
RCR [69] and CVPR’19-SSAV [18].

Table 1 Video object segmentation (VOS) results of our FSNet, compared to 14 state-of-the-art unsupervised models and 7 semi-supervised
models on the DAVIS16 [35] validation set. w/Flow: the optical flow algorithm was used. w/CRF: a conditional random field [84] was used for
post-processing. Best scores are marked in bold

Unsupervised Semi-supervised

Metric FSNet MAT AGNN AnDiff COS AGS EpO+ MOA LSMO ARP LVO LMP SFL ELM FST CFBI AGA RGM FEEL FA OS MSK

(ours) [25] [92] [20] [83] [51] [93] [54] [94] [95] [17] [53] [23] [96] [97] [98] [99] [100] [101] [102] [103] [104]

w/Flow X X X X X X X X X X X X X

w/CRF X X X X X X X X X X X X X

Mean-J 83.4 82.3 82.4 80.7 81.7 80.5 79.7 80.6 77.2 78.2 76.2 75.9 70.0 67.4 61.8 55.8 85.3 81.5 81.5 81.1 82.4 79.8 79.7

Mean-F 83.1 83.3 80.7 79.1 80.5 79.5 77.4 75.5 77.4 75.9 70.6 72.1 65.9 66.7 61.2 51.1 86.9 82.2 82.0 82.2 79.5 80.6 75.4
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Table 2 Video salient object detection (V-SOD) results for our FSNet, compared to 13 state-of-the-art models on three popular V-SOD
datasets, including DAVIS16 [35], MCL [85], and FBMS [86]. † indicates that we generate non-binary saliency maps without CRF [84] to enable
a fair comparison. N/A means results are not available

DAVIS16 [35] MCL [85] FBMS [86]

Model Sα ↑ Emax
ξ ↑ F max

β ↑ M ↓ Sα ↑ Emax
ξ ↑ F max

β ↑ M ↓ Sα ↑ Emax
ξ ↑ F max

β ↑ M ↓

20
18

MBN [55] 0.887 0.966 0.862 0.031 0.755 0.858 0.698 0.119 0.857 0.892 0.816 0.047
FGRN [63] 0.838 0.917 0.783 0.043 0.709 0.817 0.625 0.044 0.809 0.863 0.767 0.088
SCNN [70] 0.761 0.843 0.679 0.077 0.730 0.828 0.628 0.054 0.794 0.865 0.762 0.095
DLVS [60] 0.802 0.895 0.721 0.055 0.682 0.810 0.551 0.060 0.794 0.861 0.759 0.091

SCOM [105] 0.814 0.874 0.746 0.055 0.569 0.704 0.422 0.204 0.794 0.873 0.797 0.079

20
19

–2
02

0

RSE [58] 0.748 0.878 0.698 0.063 0.682 0.657 0.576 0.073 0.670 0.790 0.652 0.128
SRP [106] 0.662 0.843 0.660 0.070 0.689 0.812 0.646 0.058 0.648 0.773 0.671 0.134

MESO [107] 0.718 0.853 0.660 0.070 0.477 0.730 0.144 0.102 0.635 0.767 0.618 0.134
LTSI [68] 0.876 0.957 0.850 0.034 0.768 0.872 0.667 0.044 0.805 0.871 0.799 0.087
SPD [65] 0.783 0.892 0.763 0.061 0.685 0.794 0.601 0.069 0.691 0.804 0.686 0.125

SSAV [18] 0.893 0.948 0.861 0.028 0.819 0.889 0.773 0.026 0.879 0.926 0.865 0.040
RCR [69] 0.886 0.947 0.848 0.027 0.820 0.895 0.742 0.028 0.872 0.905 0.859 0.053

PCSA [108] 0.902 0.961 0.880 0.022 N/A N/A N/A N/A 0.868 0.920 0.837 0.040

FSNet† 0.920 0.970 0.907 0.020 0.864 0.924 0.821 0.023 0.890 0.935 0.888 0.041

4.3.3 Evaluation on FBMS dataset
This is one of the most popular VOS datasets
with diverse attributes, such as interacting objects,
dynamic backgrounds, and no per-frame annotation.
As shown in Table 2, our model achieves competitive
performance in terms of M. Further, compared to
the previous best-performing SSAV [18], it obtains
improvements in other metrics, including Sα (0.890
vs. SSAV=0.879) and Emax

ξ (0.935 vs. SSAV=0.926),
making it more suited to the human visual system
(HVS) as mentioned in Refs. [91, 109].

4.3.4 Evaluation on SegTrack-V2 dataset
This is the earliest VOS dataset from the traditional
era. Thus, only a limited number of deep U-VOS
models have been tested on it. We only compareour
FSNet against the top-3 models: AAAI’20-PCAS
[108] (Sα=0.866), ICCV’19-RCR [69] (Sα=0.842),
and CVPR’19-SSAV [18] (Sα=0.850). Our method
achieves the best results (Sα=0.870).
4.3.5 Evaluation on DAVSOD19 dataset
Recently published DAVSOD19 [18] is the most
challenging visual attention consistent V-SOD dataset
with high-quality annotation and diverse attributes.
It contains diverse challenging scenarios: the video
sequences contain shifts in attention. DAVSOD19
is divided into three subsets, according to difficulty:
DAVSOD19-Easy35 (35 clips), DAVSOD19-Normal25
(25 clips), and DAVSOD19-Difficult20 (20 clips). Note
that, in the saliency field, non-binary maps are

required for evaluation; thus, we only report the
results of FSNet without CRF post-processing when
benchmarking the V-SOD task. We adopt the four
metrics: Sα, Emax

ξ , Fmax
β , and M. To show the

robustness of FSNet, in Table 3, we also make the
first effort to benchmark all 11 SOTA models since
2018, at the three difficulty levels:
• Easy35 subset. Most of these video sequences

are similar to those in the DAVIS16 dataset,
with a large number having single video objects.
We see that FSNet outperforms all reported
algorithms across all metrics. As shown in Table 3,
compared to the recent method PCSA, our model
achieves a large improvements of 3.2% in Sα.

• Normal25 subset. This subset includes mul-
tiple moving salient objects. Thus, it is more
difficult than traditional V-SOD datasets due
to the attention shift phenomenon [18]. As
hoped, FSNet still provides the best results, with
significant improvementa, e.g., 6.4% for the Fmax

β

metric.
• Difficult20 subset. This is the most challenging

of existing V-SOD datasets since it contains a
large number of attention shifting sequences in
cluttered scenarios. Unsurprisingly, the quality of
results shown in Table 3 decrease dramatically for
all the compared models (e.g., Fmax

β 6 0.5). Even
though our framework is not specifically designed
for the V-SOD task, we still easily obtain the
best performance in two metrics (e.g., Sα and
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Table 3 Benchmarking results of 13 state-of-the-art V-SOD models on three subsets of DAVSOD19 [18]. † denotes that we generate non-binary
saliency maps without CRF [84] to enable a fair comparison. N/A means results are not available

DAVSOD19-Easy35 DAVSOD19-Normal25 DAVSOD19-Difficult20

Model Sα ↑ Emax
ξ ↑ F max

β ↑ M ↓ Sα ↑ Emax
ξ ↑ F max

β ↑ M ↓ Sα ↑ Emax
ξ ↑ F max

β ↑ M ↓

20
18

MBN [55] 0.646 0.694 0.506 0.109 0.597 0.665 0.436 0.127 0.561 0.635 0.352 0.140
FGRN [63] 0.701 0.765 0.589 0.095 0.638 0.700 0.468 0.126 0.608 0.698 0.390 0.131
SCNN [70] 0.680 0.745 0.541 0.127 0.589 0.685 0.425 0.193 0.533 0.677 0.345 0.234
DLVS [60] 0.664 0.737 0.541 0.129 0.599 0.670 0.416 0.147 0.571 0.687 0.336 0.128

SCOM [105] 0.603 0.669 0.473 0.219 N/A N/A N/A N/A N/A N/A N/A N/A

20
19

–2
02

0

RSE [58] 0.577 0.663 0.417 0.146 0.549 0.590 0.360 0.170 0.555 0.644 0.306 0.130
SRP [106] 0.575 0.655 0.453 0.146 0.545 0.601 0.387 0.169 0.555 0.682 0.341 0.123

MESO [107] 0.549 0.673 0.360 0.159 0.542 0.597 0.354 0.165 0.556 0.661 0.310 0.127
LTSI [68] 0.695 0.769 0.585 0.106 0.658 0.723 0.499 0.128 0.618 0.718 0.406 0.112
SPD [65] 0.626 0.685 0.500 0.138 0.596 0.633 0.443 0.171 0.574 0.688 0.345 0.137

SSAV [18] 0.755 0.806 0.659 0.084 0.661 0.723 0.509 0.117 0.619 0.696 0.399 0.114
RCR [69] 0.741 0.803 0.653 0.087 0.674 0.729 0.533 0.118 0.644 0.768 0.444 0.094

PCSA [108] 0.741 0.793 0.656 0.086 N/A N/A N/A N/A N/A N/A N/A N/A

FSNet† 0.773 0.825 0.685 0.072 0.707 0.764 0.597 0.104 0.662 0.752 0.487 0.099

Fmax
β ). Unlike the best two models, which utilize

additional training data (RCR leverages pseudo-
labels, SSAV utilizes the validation set), our
model does not use any additional training data
and still outperforms the SSAV model by 8.8%
(Fmax
β ), and achieves comparable performance to

the second-best RCR (ICCV’19) model. These
results are also supported by recent conclusions
that “human visual attention should be an

underlying mechanism that drives U-VOS and
V-SOD” (TPAMI’20 [33]).

4.3.6 PR curves
Figure 6 shows precision–recall curves for different
models on six V-SOD datasets: DAVIS16 [35],
MCL [85], FBMS [86], and DAVSOD19 [18] Easy35,
Normal25, and Difficult20. Note that the higher and
further to the right the PR curve, the more accurate
the results. Even though existing SOTA methods

Fig. 6 Precision–recall curves of SOTA V-SOD methods and our proposed FSNet across six datasets.
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have achieved significant progress in the V-SOD task
on three typical benchmark datasets, we still obtain
the best performance under all thresholds. While
the overall performances on the three subsets of the
recent and challenging DAVSOD19 [18] dataset are
relatively poor, our FSNet again achieves more better
results by large margins.
4.3.7 Qualitative results
Some qualitative results on five datasets are shown
in Fig. 7, validating that our method achieves high-
quality U-VOS and V-SOD results. As can be seen
in the first row, the camel in the background did
not move, so it does not get noticed: as our full-
duplex strategy model considers both appearance and
motion bidirectionally, it can automatically detect the
dominant camel in the centre of the video instead of
the camel behind. A similar outcome is also presented
in the 5th row, where our method successfully detects

dynamic skiers in the video clip rather than the static
man in the background. Overall, in these challenging
situations, e.g., dynamic backgrounds (1st and 5th
rows), fast-motion (4th row), out-of-view (6th and 7th
rows), occlusion (7th row), and deformation (8th row),
our model is able to infer the real target object(s)
with accurate details., demonstrating that FSNet is
a general framework for both U-VOS and V-SOD
tasks.

4.4 Ablation and other studies

We conduct ablation and related studies to analyse
our FSNet, including stimulus selection, effectiveness
of RCAM and BPM, number of cascaded BPMs, and
effectiveness of the full-duplex strategy.
4.4.1 Stimulus selection
We now explore the influence of different stimuli
(appearance only or motion only) in our framework.

Fig. 7 Qualitative results on five datasets, including DAVIS16 [35], MCL [85], FBMS [86], SegTrack-V2 [44], and DAVSOD19 [18].
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We use only video frames or motion maps (using
Ref. [14]) to train the ResNet-50 [73] backbone
together with the proposed decoder block (see
Section 3.4). As shown in Table 4, motion performs
slightly better than appearance in terms of Sα on
DAVIS16, which suggests that optical flow can learn
more visual cues than video frames. Nevertheless,
appearance outperforms motion in terms of the M
metric on MCL. This motivates us to explore how
to use appearance and motion cues simultaneously
effectively.
4.4.2 Effectiveness of RCAM
To validate the effectiveness of RCAM, we replaced
our fusion strategy with simple fusion using a
concatenate operation followed by a convolutional
layer to fuse the two modalities. As expected
(Table 4), RCAM performs consistently better than
the simple fusion strategy on both DAVIS16 and MCL
datasets. We would like to point out that our RCAM
has two important properties:
• It enables mutual correction and attention.
• It can alleviate error propagation within a

network to an extent, due to the mutual correction
and bidirectional interaction.

4.4.3 Effectiveness of BPM
To illustrate the effectiveness of BPM (with N = 4),
we derive two different models: RCAM and FSNet,
frameworks without and with BPM, respectively. We
observe that the model with BPM gains 2%–3%
over the one without BPM, according to the statistics
in Table 4. We attribute this improvement to BPM’s
introduction of an interlaced decremental connection,
enabling it to fuse the different signals effectively.
Similarly, we removed the RCAM to give another pair
of models (simple and BPM) to test the robustness of
BPM. The results show that even using the bidirectional

Table 4 Ablation studies for our components on DAVIS16 and MCL.
N = 4 for BPM. A=Appearance. M=Motion. S=Simple. RCAM=
RCAM only. BPM = BPM only

Component setting DAVIS16 MCL

A M RCAM BPM Sα ↑ M ↓ Sα ↑ M ↓

A X 0.834 0.047 0.754 0.038
M X 0.858 0.039 0.763 0.053
S X X 0.871 0.035 0.776 0.046

RCAM X X X 0.900 0.025 0.833 0.031
BPM X X X 0.904 0.026 0.855 0.023

FSNet† X X X X 0.920 0.020 0.864 0.023

simple fusion strategy (BPM) by itself can still enhance
the stability and generalization of the model. The whole
network benefits from the purification forward process
and re-calibration backward process.
4.4.4 Number of cascaded BPMs
Naturally, more cascaded BPMs should lead to better
boosting. This was investigated and results are
shown in Table 5, for N = {0, 2, 4, 6, 8}. Note
that N = 0 means that BPM is not used. The
improvements can be seen in Fig. 8 (red star),
which compares four variants of our FSNet, including
N=0 (Mean-J=76.4, Mean-F=76.8), N=2 (Mean-
J=80.4, Mean-F=81.4), N=4 (Mean-J=82.3, Mean-
F=83.3), and N=4 with CRF (Mean-J=83.4, Mean-
F=83.1). Using more BPMs leads to better results,
which saturate after N = 4. Further, too many
BPMs (i.e., N > 4) lead to high model-complexity
and increase the risk of over-fitting. As a trade-off,
we used N = 4 throughout our experiments.

Table 5 Effect of the number (N) of BPMs on results on
DAVIS16 [35] and MCL [85], focusing on number of parameters and
FLOPs for BPMs, and runtime of FSNet

Param. FLOPs Runtime DAVIS16 MCL

(M) (G) (s/frame) Sα ↑ M ↓ Sα ↑ M ↓

N = 0 0.000 0.000 0.03 0.900 0.025 0.833 0.031

N = 2 0.507 1.582 0.05 0.911 0.026 0.843 0.028

N = 4 1.015 3.163 0.08 0.920 0.020 0.864 0.023

N = 6 1.522 4.745 0.10 0.918 0.023 0.863 0.023

N = 8 2.030 6.327 0.13 0.920 0.023 0.864 0.023

Fig. 8 Mean contour accuracy (F) versus mean region similarity (J )
scores on the DAVIS16 dataset [35]. Circles indicate U-VOS methods.
Four variants of our FSNet are shown in bold-italic. N indicates
the number of bidirectional purification modules (BPM) and CRF
means CRF [84] post-processing was used. Compared to the best
unsupervised VOS model, MAT [25] also with CRF, the proposed
method FSNet (N=4, CRF) achieves the new SOTA by a large margin.
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4.4.5 Effectiveness of full-duplex strategy
To investigate the effectiveness of the RCAM and
BPM modules with the full-duplex strategy, we
studied two unidirectional (i.e., simplex strategies
in variants of our model in Fig. 4 and Fig. 5). In
Table 6, the symbols ⇒, ⇐, and ⇔ indicate the
feature transmission directions in the designed RCAM
or BPM. Specifically, A ⇐ M indicates that the
attention vector in the optical flow branch weights
the features in the appearance branch and vice versa.
A + M ⇐ M indicates that motion cues are used
to guide the fused features extracted from both
appearance and motion. The comparison shows
that our elaborately designed modules (RCAM and
BPM) jointly cooperate in a full-duplex fashion and
outperform all simplex (unidirectional) settings.

Table 6 Ablation study for the simplex and full-duplex strategies
on DAVIS16 [35] and MCL [85]. N = 4 for BPM

Direction setting DAVIS16 MCL

RCAM BPM Sα ↑ M ↓ Sα ↑ M ↓

simplex

A ⇒ M A + M ⇒ M 0.896 0.026 0.816 0.038

A ⇒ M A + M ⇐ M 0.902 0.025 0.832 0.031

A ⇐ M A + M ⇒ M 0.891 0.029 0.806 0.039

A ⇐ M A + M ⇐ M 0.897 0.028 0.840 0.028

self-purif. A ⇔ M A+M < M 0.899 0.026 0.854 0.023

full-duplex A ⇔ M A + M ⇔ M 0.920 0.020 0.864 0.023

4.5 Further discussion

4.5.1 Prediction selection
Which is the final prediction, St

A or St
M? As

mentioned in Section 3.5, we choose St
A as our

final segmentation result instead of St
M . The major

reasons for doing so can be summarized as
• we employ auxiliary supervision for the motion-

based branch to learn more motion patterns
inspired by Ref. [53], and

• more informative appearance and motion cues
are contained in another branch at the phase of
bidirectional purification.

As shown in Table 7, three experiments were
conducted to verify our assumption: choosing St

M ,
(St

A + St
M )/2, or St

A (as per our method) as the final
result. All three choices achieve very similar results,
but St

A performs slightly better than the other two.
Besides, considering the reduction of unnecessary
computational cost, we choose St

A as our final result
in our other tests.

Table 7 Choice of final segmentation result for DAVIS16 [35] and
MCL [85] datasets

Used as result
DAVIS16 MCL

Sα ↑ M ↓ Sα ↑ M ↓

StM 0.920 0.022 0.862 0.024
(StA + StM )/2 0.920 0.022 0.863 0.023

StA (ours) 0.920 0.022 0.864 0.023

4.5.2 Effectiveness of CRF
From Fig. 8 we can see that FSNet without CRF,
i.e., FSNet (N=4), still outperforms the best model
AAAI’20-MAT in terms of Mean-F metric. This
means that our initial method (i.e., FSNet without
CRF) can distinguish hard samples around the
object boundaries without post-processing techniques.
When equipped with CRF post-processing [84], our
FSNet (N=4, CRF) achieves the best performance
in terms of both Mean-J and Mean-F metrics.
4.5.3 Training effectiveness with less data
As shown in Fig. 8, the proposed method, FSNet
(N=4, CRF), surpasses the best U-VOS model
MAT [25] (also with CRF), while our FSNet uses
less labelled data in the training phase (13k versus
16k for MAT). We further observe that the recently
proposed 3DC-Seg method [110], based on a 3D
convolutional network, achieves the new state-of-the-
art (Mean-J=84.3, Mean-F=84.7), but relies on a
massive amount of labelled training samples for expert
knowledge in the fine-tuning phase, including 158k
images (from COCO [111], YouTube-VOS [112], and
DAVIS16 [35]). It requires about ten times more
training data than the best MAT model [25] (16k
images) in the fine-tuning phase. This demonstrates
the efficient training process in our pipeline.
4.5.4 Self-purification strategy in BPM
We provide more details on the different variants
mentioned in Section 4.4.5 including A+M ⇐ M,
A+M ⇒ M, and A + M ⇔ M in BPM. The
implementations of A ⇐ M and A ⇒ M in RCAM
are illustrated in Figs. 4(a) and 4(b), while the
implementations of A+M ⇐ M and A+M ⇒ M in
BPM are illustrated in Figs. 5(a) and 5(b). Note that
all of these variants indicate unidirectional refinement,
in contrast to our bi-directional schemes.

Last but not least, to validate that the gains of
bi-directional schemes in practice do come from the
bi-directional procedure and not more complex model
structures, we implemented another variant using the
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same structures but without any branch interactions
before the decoding stage. This is done by exchanging
the places of Gn

k and F n
k as illustrated in Fig. 9(b),

leading to a kind of self-purification strategy. Symbol
< in Fig. 9(a) means that there is no interaction
between the two branches, there is only interaction
within a branch itself. The uni- and bidirectional
strategies are compared in Table 6. The results
show that our carefully designed modules RCAM and
BPM jointly cooperate in a bidirectional manner and
outperform all unidirectional settings. Furthermore,
our bidirectional purification scheme (full duplex in
Table 6) also achieves very notable improvements
(2.1% and 1.0% gains in Sα on DAVIS16 [35] and
MCL [85], respectively) against the self-purification
variant (self-purif. in Table 6), which has a similarly
complex structure, further validating the benefit of
the bidirectional behavior claimed in this study.
4.5.5 Relation between RCAM and BPM
The two new modules, RCAM and BPM, focus
on using appearance and motion features while
ensuring information flow between them. They
can work collaboratively under the mutual restraint
of our full-duplex strategy, but they cannot be
substituted for one another. This is because RCAM
transmits the features at each level in a point-to-
point manner (e.g., X1 → Y1), and thus it fits in
with the progressive feature extraction in the encoder.
The BPM, on the other hand, broadcasts high-
level features to low-level features via an interlaced
decremental connection in a set-to-point manner
(e.g., {F n

2 ,F
n
3 ,F

n
4 } → Gn

2 ), which is more suitable
for the multi-level feature interaction.

Fig. 9 Self-purification strategy (a) and the proposed bidirectional
purification strategy (b) (the latter repeats Fig. 5(c) for convenience).
⊕, ⊗, and � denote element-wise addition, multiplication, and
concatenation, respectively.

5 Conclusions

In this paper, we presented a simple yet efficient
framework, termed full-duplex strategy network
(FSNet), that fully leverages the mutual constraints
on appearance and motion cues to address the video
object segmentation problem. It consists of two core
modules: a relational cross-attention module (RCAM)
in the encoding stage and an efficient bidirectional
purification module (BPM) in the decoding stage.
The former is used to abstract features from a
dual-modality, while the latter is utilized to re-
calibrate inconsistent features step-by-step. We
thoroughly validated the functional modules of our
architecture by extensive experiments, leading to
several interesting findings. Finally, FSNet acts as a
unified solution that significantly advances the state
of the art for both U-VOS and V-SOD tasks. In
future, we may extend our scheme to learn short-term
and long-term information in an efficient Transformer-
like framework [113, 114] to further boost accuracy.
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