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Abstract We present a simple yet effective method
for constructing 3D self-supporting surfaces with planar
quadrilateral (PQ) elements. Starting with a triangular
discretization of a self-supporting surface, we first
compute the principal curvatures and directions of each
triangular face using a new discrete differential geometry
approach, yielding more accurate results than existing
methods. Then, we smooth the principal direction
field to reduce the number of singularities. Next, we
partition all faces into two groups in terms of principal
curvature difference. For each face with small curvature
difference, we compute a stretch matrix that turns the
principal directions into a pair of conjugate directions.
For the remaining triangular faces, we simply keep their
smoothed principal directions. Finally, applying a mixed-
integer programming solver to the mixed principal and
conjugate direction field, we obtain a planar quadrilateral
mesh. Experimental results show that our method is
computationally efficient and can yield high-quality PQ
meshes that well approximate the geometry of the input
surfaces and maintain their self-supporting properties.
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1 Introduction
Self-supporting surfaces, as one of the most ancient
and elegant techniques for building curved shapes, can
be found in many architectural heritages, because of
their advantageous structural properties and efficient
use of material. A 3D surface is self-supporting if the
internal stresses are along the tangent directions so
that they balance the surface’s weight, and there is
no shear stress or bending moment within the surface
[1–3]. Designing self-supporting surfaces is an over-
constrained problem since there are 3 constraints in
the equilibrium equation whereas the surface has only
2 degrees of freedom, which are the isotropic stress
function and the z-coordinate.

Constructing self-supporting surfaces has received
considerable attention in architectural geometry [4]
this century, leading to several computational tools
[5–9]. Most existing self-supporting surface genera-
tion methods target triangle meshes, the dominant
representation in digital geometry processing thanks
to its flexibility and ease of construction. We
note that quadrilateral meshes are highly desired
in architectural geometry since most smooth surfaces
have two dominant local directions, associated with
principal curvature directions, and aligning quad
elements with given directions is a natural way
to capture shape features. Using triangle meshes,
however, necessitates an arbitrary choice of a third
edge direction. Moreover, triangle meshes require
more edges than quad meshes, so are heavier in
architectural design [4].

In this paper, we are interested in modeling
self-supporting surfaces with planar quadrilateral
(PQ) meshes which are highly desired for glass
structures [10–12]. Since PQ meshes are the discrete
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counterpart of conjugate curve networks [13, 14],
computing conjugate directions plays a critical role
in PQ mesh construction [4, 11]. Existing methods
[11, 12, 15, 16] apply global optimization to compute
conjugate directions on polygonal meshes. Though
they can yield smooth PQ meshes, these methods are
computationally expensive, and it is not easy to find
physically-valid solutions due to high non-linearity in
the optimization.

To overcome the aforementioned challenges in
existing methods, we propose a simple yet effective
method for constructing self-supporting surfaces
with planar quadrilateral elements. Our idea is to
parameterize an existing triangle-mesh-based self-
supporting surface and then extract a PQ mesh
from the parameterization. Our method takes a
triangular discretization of a self-supporting surface
as input, and the principal curvatures and directions
for each triangular face are calculated using a new
discrete differential geometry approach, yielding
more accurate results than existing methods. Then,
the principal direction field is smoothed to reduce
the number of singularities. Next, all faces are
partitioned into two groups in terms of principal
curvature differences. We compute a stretch matrix
for faces with similar principal curvatures; it turns
the principal directions into a pair of conjugate
directions. For faces with large curvature difference,
we keep the smoothed principal directions. Finally, a
mixed-integer programming solver is applied to the
mixed principal directions and conjugate directions
to compute a planar quadrilateral mesh.

Since our method does not require any non-linear
optimization for computing conjugate direction fields
(CDFs), it is easy to implement and computationally
efficient. Experimental results on various self-
supporting surfaces (including both height and
non-height fields) demonstrate the effectiveness
and computational efficiency of our method when
generating high-quality self-supporting surface with
planar quadrilateral elements. Figure 1 illustrates an
example generated by our method.

2 Related work

2.1 Self-supporting surfaces

Self-supporting surfaces are often designed by TNA,
a popular computational tool developed by Block

Fig. 1 Given a self-supporting surface as a triangular mesh, our
method converts it into a planar quadrilateral mesh that approximates
the input surface faithfully both geometrically and in physical
performance.

and his colleagues [8, 17]. TNA approximates the
stress field through uniaxial singular stresses and
factors the over-constrained 3D equilibrium problem
into horizontal and vertical sub-problems, making
it easier to solve. Vouga et al. [18] applied TNA
to approximate freeform shapes by self-supporting
ones. Since their method solves an over-constrained
linear system, it cannot guarantee convergence when
vertices have high valence and/or large deformation
is needed to make the reference mesh self-supporting.

Miki et al. [19] generalized the Airy stress function
in the planar elasticity problem to the 3D thin shell
problem and developed a method for computing
self-supporting spline surfaces with high-order
smoothness. However, the mean curvature of the thin
shell causes the Airy stress function to be inconsistent
with the true mechanical equilibrium. Therefore, this
method can only compute approximate solutions.

Both Liu et al. [6] and de Goes et al. [5] projected 3D
surfaces onto the 2D domain to simplify the problem.
De Goes et al.’s method allows the user to specify
the stress distribution, giving greater flexibility. Liu
et al.’s method uses regular triangulation to ensure
equilibrium in the x- and y-directions.

Ma et al. [9] proved that the hyper-generatrix of
a 4D minimal hyper-surface of revolution is a 3D
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self-supporting surface. As a result, constructing a
3D self-supporting surface is equivalent to 4D volume
minimization, which can be further converted into a
surface reconstruction problem with mean curvature
constraint [20, 21]. Ma et al. showed that their
method computes solutions of the over-constrained
equilibrium problem more accurately than the TNA-
based approaches [5, 6, 18]. The input of our method is
a 3D self-supporting surface represented by a triangle
mesh, as generated by Ma et al.’s method [9].

2.2 Conjugate direction fields
Conjugate direction fields are at the core of
constructing PQ meshes, and in discrete geometry
as counterparts of conjugate curve networks. The
first algorithm for designing PQ meshes, proposed
by Liu et al. [11], optimized the fairness of mesh
edges, with face planarity constraints. Zadravec et
al. [12] computed smooth CDFs by optimizing the
smoothness of the representation vector field. Their
method can produce high-quality quad-dominant
meshes with planar faces, but it is unable to handle
±k/4 (k ∈ Z

2) singularities, which are common for
surfaces with convex corners such as a rounded cube.
Liu et al.’s method [15] allows the presence of such
singularities, but at the cost of solving a non-linear
optimization problem.

3 Method
3.1 Overview
Our method takes a self-supporting surface repre-
sented by triangle mesh as input. We first compute
the principal curvatures and directions for each
triangular face using a new method for computing
the curvature tensor on triangle meshes. Then we
group the triangular faces whose principal curvature
difference is small. We call these faces free faces and
the remaining faces fixed faces. Since the principal

directions on fixed charts are already conjugate, our
goal is to construct a pair of conjugate directions for
each free chart. Towards this goal, we compute a
stretching matrix that turns the principal directions
of free charts into conjugate directions. The principal
directions of the fixed charts and the conjugate
directions of the free charts induce a conjugate
direction field on the input mesh. Applying the mixed
integer quadrangulation method [22] to the CDF, we
parameterize the triangle mesh and extract the planar
quadrilateral elements. We present the algorithmic
details in Sections 3.2–3.6. We show the algorithmic
pipeline of our method in Fig. 2 and pseudocode in
Algorithm 1. To ease reading, we list major notation
in Table 1.

Algorithm 1 Constructing 3D self-supporting surfaces with
planar quadrilateral elements

Require: A self-supporting surface as a triangular mesh
M = (V, E, F ) and the threshold ε of principal curvature
difference
Result: A planar quad mesh representing the surface
Compute the principal curvatures and directions using
Algorithm 2
Smooth the principal directions to reduce singularities
for each face f ∈ F do

if κ1κ2 < 0 then
Mark f fixed

else
Compute λ = min{|κ1|, |κ2|}/max{|κ1|, |κ2|}
if λ < ε then

Mark f free
Compute the stretch matrix S using Eq. (4)
Stretch the principal directions using S

else
Mark f fixed

end if
end if

end for
Apply the MIQ solver to the mixed cross and conjugate
direction fields
Extract quad mesh from the parameterization

Fig. 2 Algorithmic pipeline. The input is a 3D self-supporting surface represented by a triangle mesh. First, we compute principal curvatures
and principal directions for each triangular face. Then, we group the faces with similar principal curvatures, which are called free faces (green).
We compute a smooth cross field on the free faces and generate a pair of conjugate directions by stretching the principal directions. Next, we
parameterize the triangle mesh using the mixed principal direction field and conjugate direction field. Finally, we extract the planar quadrilateral
mesh from the parameterization.



574 L. Ma, S. Yao, J. Zheng, et al.

Table 1 Notations

Item Description
Ω ⊂ R

2 2D domain
u, v ∈ Ω Parameters

r(u, v) ⊂ R
3 3D surface

M = (V, E, F ) Input 3D triangular mesh
e1, e2 Local coordinate axes for each face

n Unit normal
C Curvature tensor

κ1, κ2 Principal curvatures
d1, d2 Principal directions

S Stretch matrix
u, v Conjugate tangent directions

3.2 Computing principal curvatures and
directions

Curvature is the amount by which a curve deviates
from a straight line, or a surface deviates from planar.
For a smooth 3D surface r(u, v), the curvature tensor
C satisfies Cru = −nu and Crv = −nv, where ru,
rv are the tangent vectors of S and nu, nv the partial
derivatives of unit normal n.

Since we deal with 3D self-supporting surfaces
represented by triangle meshes, we need to discretize
C. The key idea is to consider ru, rv as the movement
of observation points on the surface. Consider a
triangular face �ABC and its neighbors �CBD,
�ACF , and �BAE. Let n, ni (i = 1, 2, 3) be the
normals of �ABC, �CBD, �ACF , and �AEB,
and δni be the derivatives of these normals.

Observe that each face normal is the cross
product of two edge vectors, and each vertex
normal is computed as the weighted average of face
normals. Therefore, face normals are usually more
accurate than vertex normals on triangle meshes. Our
movement strategy is to use the centers O and Oi

Fig. 3 Difference between the observation point movement strategy
used in Rusinkiewicz’s method [23] and our method. (a) In Ref. [23],
the derivatives are δr1 =

−−→
CB, δr2 =

−→
AC, and δr3 =

−→
BA, and are

based on mesh vertices. (b) In our method, we define δri =
−−→
OOi,

where O and Oi are the centers of the circumscribed circles of �ABC

and its neighbors.

(i = 1, 2, 3) of the circumscribed circles of �ABC

and its neighbors �BCD, �ACF , and �BAE. We
compute the derivatives as

δri =
−−→
OOi (1)

and
δni = n − ni (2)

for i = 1, 2, 3. Since the curvature tensor C satisfies
Cδri =−δni (i=1, 2, 3), we form an over-constrained
linear system:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δr1 · e1 δr1 · e2 0
0 δr1 · e1 δr1 · e2

δr2 · e1 δr2 · e2 0
0 δr2 · e1 δr2 · e2

δr3 · e1 δr3 · e2 0
0 δr3 · e1 δr3 · e2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δn1 · e1

δn1 · e2

δn2 · e1

δn2 · e2

δn3 · e1

δn3 · e2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

where e1 and e2 are the axes of the local coordinate
system on �ABC. Then we compute xi (i = 1, 2, 3)
by solving a linear least squares problem. After that,
we can form the curvature tensor C:

C =
[
x1 x2

x2 x3

]

since C is symmetric. The eigenvalues κi and
eigenvectors di (i = 1, 2) of C are the principal
curvatures and directions of face �ABC. Algorithm 2
gives pseudocode for computing principal curvatures
and directions on triangle meshes.

Algorithm 2 Computing principal curvatures and directions
on triangle meshes

Data: A triangular mesh M = (V, E, F )
Result: Principal curvatures and directions for each
triangular face f ∈ F

for each f ∈ F do
Compute the circumscribed circle center of f

Compute the per-face normal using cross product
Construct a local coordinate system for f

end for
for each face f ∈ F do

for i = 1 to 3 do
Compute δri and δni using Eqs. (1) and (2)

end for
Solve Eq. (3) using linear least squares
Form matrix C

Compute the eigenvalues and eigenvectors of C

end for

3.3 Smoothing principal directions
The computed principal directions are usually not
smooth due to discretization. As a result, the
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principal direction fields contain many undesired
singularities, which compromises the parameteri-
zation quality. To reduce singularities, we apply
an iterative method to locally adjust singularities.
Specifically, the method moves singularities based
on their indices: singularities of the same index
repel, and of opposite index attract. When a pair
of opposite-index singularities meet, they cancel
each other out, reducing the number of singularities
by two. After all singularities stop moving, we
obtain a smoothed principal direction field with
fewer singularities than the original. Figure 4 shows
such a principal curvature direction field before and
after optimization. We observe that the number of
singularities is significantly reduced using this local
smoothing method.

3.4 Distinguishing fixed and free faces
On a self-supporting surface, some parts typically
exist which are spherical or nearly so (see Fig. 5(a)).
It is difficult to calculate principal directions on these
parts, and the direction field produced in Section 3.2
is inaccurate there. However, using the ideas of Liu
et al. [11, 15], principal direction fields are not the
only way to make a PQ mesh: conjugate direction
fields can also be used for this purpose. Thus we
need to manipulate these cross vectors into conjugate
directions.

Regions with large principal curvature differences
can be ignored, since we can directly use the
computed principal directions, as they are already
conjugate. We need to pay attention to regions
with small principal curvature differences (i.e.,
almost spherical regions), on which principal
directions are ill-defined. A face is classified as
a free face when its principal curvatures satisfy

Fig. 4 Smoothing principal directions. (a) There are many
singularities in the principal direction field. (b) The singularities
are reduced significantly after smoothing. The red and blue spheres
are singularities with index 1/4 and −1/4, respectively.

Fig. 5 Distinguishing fixed and free faces. (a) We compute the
quantity λ from principal curvatures κ1 and κ2 on each triangular
face, λ = min{|κ1|, |κ2|}/max{|κ1|, |κ2|}. (b) Faces with λ � ε are
marked as fixed (brown) and the remainder are free faces (green).

min{|κ1|, |κ2|}/max{|κ1|, |κ2|} < ε, where ε is a user-
specified threshold. In our implementation, we set
ε =

√
3. See Fig. 5 for two examples showing

classification of fixed and free faces.

3.5 Computing the stretch matrix S

To generate conjugate directions for free faces, we
compute a matrix S, which stretches the principal
directions.

Let u and v be the tangent vectors at point p on
the surface. If p, p + su, p + tv, and p + su + tv

form a planar quadrilateral for some scalars s and t,
they satisfy the following constraint:

(su + tv)TC(su + tv) = s2uTCu + t2vTCv

where C is the curvature tensor at p. This implies
the tangent directions u and v satisfy:

uTCv = 0
so are conjugate directions. If the edges of each
quadrilateral face follow conjugate directions, its
vertices are thus co-planar. Therefore, conjugate
directions are often used in constructing planar
quadrilateral meshes [11, 12, 15].

The surface curvature tensor C is
C = Lru ⊗ ru + M(ru ⊗ rv + rv ⊗ ru) + Nrv ⊗ rv

where L, M , and N are the coefficients of the second
fundamental form, and ⊗ is tensor product. It is well
known that the principal directions d1 and d2 are
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perpendicular and satisfy dT
1 Cd2 = 0. Furthermore,

the principal curvatures κ1 and κ2 are the eigenvalues
of C: Cdi = κidi (i = 1, 2).

Consider a unit vector v. v⊗v is a second order
tensor. For an arbitrary vector r, we have (v⊗v)r =
(v·r)v. If r and v have the same or opposite direction,
the result is equal to r. If r and v are perpendicular,
the result is the zero vector 0. Intuitively speaking,
the tensor v⊗v, when applied to r, computes the
projection of r onto v.

Now consider the matrix I − v⊗v, where I ∈ R
2×2

is the identity matrix. Applying this matrix to vector
r yields

(I − v⊗v)r = r − (v·r)v

Since vector r − (v·r)v is perpendicular to v, the
tensor I − v ⊗ v, when applied to r, extracts its
component perpendicular to v.

Therefore, the combination
(I + (s − 1)v⊗v)r = (I − v⊗v)r + s(v⊗v)r

works to stretch vector r by a factor s ∈ R+ along
the direction of v while keeping fixed r’s component
perpendicular to v. From the above analysis, the
matrix I + (s − 1)v⊗v stretches a vector r by a
factor s along v’s direction when acting on r.

Now we stretch the cross vectors on free faces along
the principal directions di by a factor of 1/

√
κi. The

stretch matrix Si for each direction di is defined as

Si = I +
(

1√
κi

− 1
)

1
di · di

di ⊗ di, i = 1, 2 (4)

Since d1 and d2 are perpendicular, multiplying by
S1 and S2 does not influence each direction.

Multiplying S1 and S2 yields the stretch matrix S:

S = S1S2 = I +
2∑

i=1

(
1√
κi

− 1
)

1
di · di

di ⊗ di (5)

since (d1 ⊗ d1)C(d2 ⊗ d2) = 0. Also note that
1

d1 · d1
d1 ⊗ d1 +

1
d2 · d2

d2 ⊗ d2 + n ⊗ n = I

where n is the unit normal. We can thus re-write S

as

S =
2∑

i=1

1√
κi

1
di · di

di ⊗ di + n ⊗ n (6)

Matrix S is symmetric. Now we show that the matrix
S turns two perpendicular tangent directions into
a pair of conjugate directions. Since the principal
curvatures κi and principal directions di satisfy the

following equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(d1 ⊗ d1)C(d1 ⊗ d1) = κ1(d1 · d1)d1 ⊗ d1

(d2 ⊗ d2)C(d2 ⊗ d2) = κ2(d2 · d2)d2 ⊗ d2

(d1 ⊗ d1)C(d2 ⊗ d2) = 0
(d2 ⊗ d2)C(d1 ⊗ d1) = 0

we obtain

SCS =
2∑

i=1

1
di · di

di ⊗ di = I − n ⊗ n

Given two arbitrary perpendicular tangent vectors u

and v, we can easily verify that the stretched vectors
Su and Sv are conjugate because
(Su)TC(Sv) = uT(STCS)v = uTv−uT(n⊗n)v = 0
See Fig. 6 for an illustration. Therefore, the stretch
matrix S turns perpendicular tangent directions into
conjugate directions. In our implementation, we
stretch the cross vectors on free faces to generate
conjugate directions.

Fig. 6 Consider a circle (blue) with two perpendicular diameters.
Stretching the circle with matrix S yields an ellipse and the two
perpendicular diameters are conjugate.

As a local operation, computing stretch matrix S is
computationally efficient. Figure 7 shows examples of
conjugate directions generated by stretching principal
directions.

Fig. 7 Computing conjugate directions on free faces. (a) Smoothed
principal directions. (b) Conjugate directions.
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3.6 Parameterization & generating PQ meshes
Let (u, v, −u, −v) be the directional field, consisting
of principal directions on fixed faces and conjugate
directions on free faces. It is used as a guide to
parameterize the triangle mesh and extract PQ elements.

We need to cut the input mesh into a topological
disk so that the singularities of the directional
field lie on the disk boundary. To do that, we
take the singularities as seeds and apply Dijkstra’s
algorithm to compute a Voronoi diagram on the input
mesh. The dual graph of the Voronoi diagram is a
triangulation with singularities as vertices. We then
segment the triangle mesh into patches along the
edges of the Delaunay triangulation. Then, starting
with an arbitrary patch, we iteratively glue the
patches together by traversing them in breadth-first-
search order. Since each patch is used only once, the
resulting shape is a topological disk with singularities
on its boundary.

To compute the parameterization, we adapt the
global parametrization used in Liu et al.’s work [15].
Denote by (s, t) the parameters assigned to each
vertex of the input triangle mesh. We minimize the
following energy function:

Ep =
∑

fi∈F

Ai

[(
∇si

‖∇si‖ · u⊥
i

)2
+

(
∇ti

‖∇ti‖ · v⊥
i

)2
]

(7)

where Ai is the area of face fi and ⊥ denotes
90◦ rotation about the normal. To make the
parameterization seamless, for each edge on the
cut graph, we require the projections of parameter
gradients on the two adjacent faces to match, leading
to integer translations on the parameters.

Equation (7) is a nonlinear energy function with
integer variables introduced at the topology cut and
singularities [22]. Like in Liu et al.’s method [15],
we solve the mixed integer programming using a
greedy heuristic. We perform three operations in
each iteration. First, we relax the integer constraints
and minimize the function using the L-BFGS method
[24]. Second, we pick an integer variable that is closest
to integer, round it off, and fix it. We repeat the first
two steps until all integer variables are fixed.

4 Experimental results
We implemented our algorithm in C++ and evaluated
it on a laptop with a 2.90 GHz Intel Core i7 CPU
and 8 GB memory.

4.1 Principal curvatures and directions
To calculate the curvature tensor C, our method uses
the observation point movement strategy, based on
the centers of circumscribed circles. Here we compare
our method to Rusinkiewicz’s method [23] in terms
of accuracy and robustness on a torus model:

((R + r cos v) cos u, (R + r cos v) sin u, r sin v)T

setting R =
√

10 and r = 1. The principal curvatures
are κ1 = cos v/(R + r cos v) and κ2 = 1/r, while
the principal directions are d1 = (− sin u, cos u, 0)T

and d2 = (− sin v cos u, − sin v sin u, cos v)T. We
generated two sets of triangle meshes with different
degrees of anisotropy τ and resolutions. The
anisotropy degree τ for a triangle f is defined
as τ(f) = PH/(2

√
3A), where P , H, A are the

half-perimeter, longest edge length, and area of f ,
respectively. τ � 1 for all triangles and equality
holds for equilateral triangles. The numerical results
show that both methods converge with increasing
number of resolutions. However, our method is
more accurate and robust than theirs, especially
for anisotropic meshes. See Fig. 8. Our method
has better accuracy than Rusinkiewicz’s method [23]
since we adopt per-face normals in computing the
curvature tensor C, while Rusinkiewicz’s method [23]
uses per-vertex normals, which are more sensitive to
triangulation quality than per-face normals and often
result in large accumulation errors on anisotropic
meshes.

4.2 Evaluation
We evaluated our method and other approaches in
terms of both physical and geometrical properties.
Like Ref. [9], we adopt three physical measures:
normal displacement θ, stress tensor error σS, and
differential stress σD, to evaluate the stability of self-
supporting surfaces. We also measure the smoothness
of parameter lines and the planarity of the resulting
PQ meshes.

We define the smoothness measure by averaging the
discrete geodesic curvatures of the parameter lines
(see Fig. 9):

φ =
1

2n

n∑
i=1

(|π − αi| + |π − βi|) (8)

where n is the number of vertices of the quad mesh.
Given a PQ mesh with m patches, we define the
planarity measure γ by averaging the volume-to-base
ratio:
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Fig. 8 Comparison with Rusinkiewicz’s method [23] in terms of accuracy and convergence plots. We generate sequences of isotropic (first two
rows) and anisotropic meshes (last two rows) with increasing number of faces. The heat colour map shows the angle differences δθ between the
computed principal directions and the ground-truth; warmer colors are larger errors. For each model, we show our results above and theirs
below. τ is the anisotropy measure and |F | is the face count.

Fig. 9 Discrete geodesic curvatures of the iso-parameter lines.

γ =
1
m

m∑
i=1

Vi√
A3

i

(9)

where Vi is the volume of the tetrahedron formed by
the four vertices of the i-th quad patch and Ai is the
area of the patch. Obviously γ = 0 for a completely
planar quad mesh. Therefore, the lower the value
γ, the better the quality of a PQ mesh in terms of
planarity.

4.3 Comparison
We compared our method to the mixed integer
quadrangulation (MIQ) method [22] using the above
physical and planarity measures. Table 2 shows
that the MIQ method produces quad meshes with
higher self-supporting performance than that of our
method. However, our method outperforms MIQ in
terms of planarity. This comparison indicates that a
conjugate direction field is important for constructing
self-supporting surfaces with planar quadrilateral
elements. Without a conjugate direction field, the
resulting meshes are far from PQ meshes, and so
difficult to construct using glass structures.

We also compared our method with Ma et al.’s

Table 2 Evaluation of the physical measures θ, σD, and σS, and
planarity measure γ. For each model, we show the MIQ result above
and our result below. For each measure, the lower the value, the
higher the quality

Model θ (10−3) σD σS γ (10−5)

Eich
(Fig. 10, row 1, right)

1.51 0.79% 0.88% 9.64
4.04 0.91% 1.27% 2.11

Tea
(Fig. 10, row 3, left)

2.09 0.46% 0.73% 12.06
3.38 0.81% 0.79% 2.56

Oct
(Fig. 10, row 4, left)

2.41 0.33% 0.53% 2.92
3.11 0.38% 1.08% 0.45

method [9] and Liu et al.’s method [15] using the
aforementioned physical and geometrical measures.
Table 3 shows that Ma et al.’s method produces the
most accurate self-supporting surfaces in terms of
the three physical measures, but their results are
triangular meshes. Both Liu et al.’s method and ours
produce planar quadrilateral meshes. To make a
fair comparison with their method, we generated PQ
meshes with a similar number of quads. We observe
that Liu et al.’s results are smoother than ours, since
their method minimizes a global smoothness energy.
Also, the two methods yield results with comparable
planarity. However, our method is more accurate
in terms of physical measures. Furthermore, Liu et
al.’s method solves a complex non-linear optimization
problem, which typically takes 1–3 s, to compute
CDF. In contrast, our method computes CDF using
local computation, which takes less than 1 s for all
test models. Our method is more computationally
efficient than theirs.
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Table 3 Comparison of physical measures θ, σD, and σS, geometric
measures φ and γ, and running time tCDF and tP. For each model,
we show Ma et al.’s result (first row), our result (second row), and
Liu et al.’s result (third row). For each quality measure, lower values
indicate higher quality. #� is the number of quadrilateral elements.
tCDF is the running time (in second) to calculate the CDF and tP is
the running time (in second) to extract the PQ mesh

Model θ σD σS #� γ (10−5) φ tCDF tP

Coin
Fig. 10

(row 1, L)

2.36‰ 2.59% 5.34% — — — — —

2.28‰ 1.29% 3.54% 1,662 1.05 0.210 0.18 1.07

7.19‰ 3.46% 3.20% 1,666 0.95 0.207 2.72 1.07

Eich
Fig. 10

(row 1, R)

0.51‰ 0.37% 0.41% — — — — —

4.04‰ 0.91% 1.27% 2,410 2.88 0.217 0.115 0.43

13.3‰ 3.42% 4.21% 2,378 2.11 0.228 2.910 0.43

Snow
Fig. 10

(row 2, L)

0.36‰ 0.26% 0.29% — — — — —

1.31‰ 0.58% 0.70% 2,377 0.67 0.309 0.146 1.82

13.9‰ 0.63% 1.09% 2,458 0.72 0.302 1.250 1.82

Star
Fig. 10

(row 2, R)

1.96‰ 1.28% 2.83% — — — — —

8.46‰ 2.27% 2.16% 1,850 1.92 0.349 0.049 0.37

11.5‰ 1.67% 4.60% 1,832 1.79 0.331 0.510 0.37

Tea
Fig. 10

(row 3, L)

0.46‰ 0.29% 0.39% — — — — —

3.38‰ 0.81% 0.79% 1,830 2.56 0.199 0.101 0.72

11.3‰ 1.46% 3.79% 1,865 2.59 0.194 1.180 0.72

Hall
Fig. 10

(row 3, R)

1.48‰ 1.68% 1.89% — — — — —

10.5‰ 1.83% 2.47% 1,951 4.07 0.275 0.178 2.11

33.2‰ 4.15% 5.16% 1,953 4.13 0.260 2.720 2.11

Oct
Fig. 10

(row 4, L)

0.48‰ 0.16% 0.22% — — — — —

3.11‰ 0.38% 1.08% 2,532 0.45 0.190 0.134 0.74

27.4‰ 2.18% 5.86% 2,516 0.60 0.172 1.520 0.74

Bottle
Fig. 10

(row 4, R)

0.67‰ 0.51% 0.62% — — — — —

2.02‰ 0.61% 0.82% 3,109 1.34 0.188 0.187 0.68

9.89‰ 5.11% 7.55% 3,130 0.99 0.178 2.230 0.68

Ring
Fig. 11

(row 4, R)

3.96‰ 2.33% 3.50% — — — — —

8.49‰ 0.99% 1.61% 2,027 2.37 0.265 0.184 1.02

70.8‰ 5.65% 2.13% 2,091 3.10 0.238 1.810 1.02

It is worth noting that our method and Liu et al.’s
method [15] adopt different strategies to deal with
faces with small principal curvature difference. Their
method solves a global optimization problem to find a
pair of conjugate directions vp and wp for each point
p that satisfy
κp,1(vp ·ep,1)(wp ·ep,1)+κp,2(vp ·ep,2)(wp ·ep,2) = 0
where κp,1 and κp,2 are the principal curvatures at
p, and ep,1, ep,2 are the corresponding principal
directions. Since the principal directions are not
accurate in sphere-like regions, the errors may
accumulate as the iterative algorithm proceeds. To

improve planarity, Liu et al. [15] introduced a
planarity term in the objective function. However, the
side effect of this term is larger shape approximation
error, which in turn may compromise the equilibrium
condition of the generated shape. In contrast,
our method generates conjugate directions by
manipulating the principal directions using a stretch
matrix. We calculate smooth conjugate directions
without planarity optimization. Therefore, our
method is able to well approximate the input
geometry and yields better results in terms of both
geometric and physical properties.

Figures 10 and 11 show results for height and non-
height fields, respectively. We visualize the physical
measures using color maps; warmer colors indicate
larger errors or distortion. We observe that our
results are comparable to Ma et al.’s method [9] that
produces triangle meshes and are better than Liu et
al.’s method [15] that produces PQ meshes.

We may also qualitatively compare our method
to Vouga et al.’s method [7]. Their method allows
the user to design self-supporting surfaces using a
reference surface. To generate PQ meshes, they solve
a complicated non-linear optimization problem that
takes equilibrium condition, shape smoothness, and
planarity into consideration. Our method is based on
local computation of a conjugate direction field and
then constructs PQ meshes via mixed integer based
parameterization. Our method aims to preserve the
geometry of the input shape which is already self-
supporting, so does not need a reference surface.
Our method (including both CDF computation
and global parameterization) is more efficient than
theirs.

5 Conclusions and future work
We have developed a simple yet effective method
for generating 3D self-supporting surfaces with
planar quadrilateral elements. Our method takes
a triangular discretization of a 3D self-supporting
surface as input and generates a PQ mesh by
constructing a conjugate direction field. In contrast
to existing methods that compute conjugate direction
fields using global optimization, our method is a light-
weight approach since it computes a local stretch
matrix for each triangular face with small principal
curvature difference and turns principal directions
into conjugate directions. Computational results
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Fig. 10 Results and comparisons. For each model, the three rows show the triangle mesh produced by Ma et al.’s method and the PQ meshes
produced by our method and Liu et al.’s method respectively. We visualize the quality of the results using 3 quantitative measures: normal
displacement θ, stress tensor error σS, and differential stress σD. The lower the measures, the higher the quality of the resulting PQ meshes.
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Fig. 11 Non-height fields. Row 1: the triangle meshes generated by
Ma et al.’s method [9]; Rows 2 and 3: the PQ meshes produced by
our method and Liu et al.’s method [15], respectively.

show that the generated PQ meshes approximate the
input shape very well, thereby satisfying the balance
constraints. Comparisons with existing methods
demonstrate the effectiveness of our method.

There are a few interesting directions for future
work. First, our method requires the input shape
to be self-supporting. From the application point
of view, it is highly desirable to either construct
PQ meshes directly from user-specified boundary
curves or to take a reference surface as input and
then optimize its geometry to fulfil the physical
requirements of being self-supported. To make the
method more flexible, we will also take the user-
specified soft and/or hard directional constraints into
consideration.
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