Computational Visual Media
https://doi.org/10.1007/s41095-021-0233-9

Review Article

Vol. 7, No. 3, September 2021, 289-318

Inversion-free geometric mapping construction: A survey

Xiao-Ming Fu! (X)), Jian-Ping Su', Zheng-Yu Zhao'!, Qing Fang', Chunyang Ye!, and Ligang Liu'

© The Author(s) 2021.

Abstract A geometric mapping establishes a
correspondence between two domains. Since no real
object has zero or negative volume, such a mapping is
required to be inversion-free. Computing inversion-free
mappings is a fundamental task in numerous computer
graphics and geometric processing applications, such as
deformation, texture mapping, mesh generation, and
others. This task is usually formulated as a non-convex,
nonlinear, constrained optimization problem. Various
methods have been developed to solve this optimization
problem. As well as being inversion-free, different
We
expand the discussion in two directions to (i) problems
imposing specific constraints and (ii) combinatorial
problems. This report provides a systematic overview
of inversion-free mapping construction, a detailed
discussion of the construction methods, including their
strengths and weaknesses, and a description of open
problems in this research field.

applications have various further requirements.

Keywords inversion-free mapping; Jacobian matrix;
distortion; first-order methods; second-

order methods

1 Introduction

In computer graphics and geometric processing, a
geometric mapping f : 2 C R™ — R” transforms
The task of
computing geometric mappings is expected and
essential. For example, the difficulty of geometric

its domain €2 into another domain.
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processing tasks can be significantly reduced in
the mapped domains. In texture mapping, the
parameterization is used to map an existing 2D image
onto the 3D model. In FEM simulation, the geometric
mapping is optimized to improve the mesh quality,
thereby improving the simulation accuracy.

There is no zero or even negative volume in
any natural material. Intuitively, any physical
deformation will not result in zero or even negative
volume. Thus, the determinant of the Jacobian
matrix of f at any « € 2, which indicates the ratio
between the original volume and the transformed
volume, must be positive. This constraint is called
an inversion-free condition. In other literature, other
names are used, such as flip-free constraint, foldover-
free constraint, and orientation-preserving constraint.
We are interested in surveying the body of work that
focuses on the active creation of such mappings.

If not specified, the models we focus on are all the
d-dimensional simplicial meshes on R", which will
be introduced in Section 2. The mapping we deal
with then will be the piecewise linear mapping on the
simplicial meshes:

flx) =Jixz+1;,

where @ is a point on the simplex s; of a mesh, and

Vx € s;

J; is the discrete Jacobian matrix, which is constant
on s;. t; is a transformation vector.

Q

Fig. 1 [Illustration for the geometric mapping f.

o\ .
@\@ rgnslvlell:]sgvlgnlé?s @ Springer



290

X.-M. Fu, J.-P. Su, Z.-Y. Zhao, et al.

DN
2oyt
v‘mﬂ'ﬁ!&ﬂ

} SR v“"hﬂ

.*AEV)‘ SN SRR PR

sini it W s O S

W) N 7

\(Las s Rt ey
« Aé REK ()

K
R

;’@'ﬁ

N |

Y vava Aﬁ‘g&ﬁﬂ
G

Fig. 2 Illustration for the piecewise linear mapping.

1.1 Common applications

An increasing number of computer graphics and
geometry processing methods rely on inversion-free
Here, we first discuss three
typical applications, including deformation, mesh

geometric mappings.

parameterizations, and mesh quality improvement [1].

Deformation. Given the desired positions of the
manipulation handles in shape deformation, we seek
a new shape that satisfies the following properties:
e The shape distortion is small.

e The resulting model meets the positional
constraints of the handles.

e The deformation from the input shape to the
result is inversion-free.

Parameterizations. Parameterizations map 3D
By building
a local coordinate frame on each triangle, the

triangular surfaces onto the plane.

parameterization is a continuous piecewise affine map.

The Jacobian matrix on each triangle is constant
and is a 2 x 2 matrix. In addition to satisfying
the inversion-free constraint, the parameterization
is also required to contain small distortion. As a
consequence, the texture image can be projected
onto the 3D surface with small distortion. Figure 3

shows a comparison between parameterizations with

Without

With

Fig. 83 Parameterizations with/without inversion-free constraints.
The yellow triangles in the left image indicate the inverted triangles.
The color on triangles encodes the distortion, with white being optimal.
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and without inversion-free constraints. The inverted
triangles cause significantly visual artifacts in texture
mapping.

Mesh quality improvement. To improve the
accuracy in FEM simulation, the mesh elements
are required to approach their ideal shapes. Since
the element degeneration threatens the robustness
and realism of FEM, the element should be with
positive volume. Thus, the mesh quality improvement
problem can also be treated as an inversion-free
mapping construction problem.

1.2 General formulation

Based on the introduction of the three common
problems, inversion-free geometric mappings can be
constructed by a computational model that optimizes
mapping objectives while satisfying inversion-free

constraints.
min  E(u)
st. detJ(z) >0, Vo € Q (1)

Au=>b

where J(x) is the Jacobian matrix of f at x, u
indicates the vector representation of the optimization
variables, E'(u) means the optimization objective, and
Awu = b denotes the linear constraint.

For example, in shape deformation, E(u) represents
the shape distortion, and the linear constraint
indicates the positional constraint of handles.

1.3 Overview

To provide a comprehensive overview of the recent
contributions that have been made to this topic, we
study problem (1) in the following aspects:
Variables. Different representations of u
have various algorithm performances. The mesh
vertex positions are commonly used variables in
geometric mapping computation.
more appropriate representation can significantly

However, a

improve the algorithm’s efficiency and robustness
for dedicated geometric process tasks. We introduce
these representations in Section 2.

Objectives. Different applications have their own
goals. For example, shape deformation and mesh
parameterizations usually optimize the distortion
from the reference mesh. In general, a lot of distortion
metrics exist. Various optimization objective metrics
are covered in Section 3.

Inversion-free constraints. The inversion-free

constraint is nonlinear. The method of handling
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constraints determines the difficulty of the algorithm.
More mathematical analyses of the inversion-free
constraints and different approaches to realize the
inversion-free goal are described in Section 4.
Methods.
to solve the problem (1) to construct inversion-

Many methods have been proposed
free geometric mappings. If the initial geometric
mappings are inversion-free, keeping the mappings
always staying in the inversion-free space can
theoretically guarantee the inversion-free constraint
to be satisfied. Otherwise, various methods are
presented to push the invalid mappings into the
inversion-free space. We analyze their strengths and
weaknesses in Section 5.

More constraints. The formulation (1) is
not suitable for all applications. For the special
applications, it should be added with some other
constrains that are linear or non-linear. There are
more specific constraints demanded by applications.
In Section 6, we outline the bijective, bijective inter-
surface, axis-aligned, and global seamless constraints.
These constraints present more difficulties in
constructing geometric mappings, thereby requiring
the design of dedicated algorithms.

Combinatorial problems.
or constraints may arise in geometric mapping

Discrete variables

construction problems, such as cone singularity
detection, cut construction for parameterizations,
and hex mesh structure simplification.  These
combinatorial problems are difficult to be resolved.
We present these problems and their existing
solutions in Section 7.

Open questions. By discussing open problems,
shortcomings, and remaining questions, we conclude
in Section 8.

2 Variables

Many representations of the variable u have been
used for computing inversion-free mappings. Each
representation has its strengths and weaknesses.
Thus, given a geometric process task, an appropriate
representation can significantly improve algorithm
efficiency and robustness.

2.1 Mesh-based mappings

We first study mappings on simplicial meshes (2D
triangular meshes or 3D tetrahedral meshes). The
domain €2 of the mapping f is a d-dimensional

Fig. 4 Illustration for the symbols.

simplicial mesh M containing N, vertices {v;,i =
1,--+, Ny}, No edges {e;,i = 1,--- N}, and N
simplices {s;,i = 1,---,N}. The mapping [ is a
continuous piecewise linear mapping. The Jacobian
matrix of f on each simplex s; is constant, denoted
as J;. We denote the image of the mesh, vertex,
edge, and simplex under the mapping f as M ,U, €, 8,
respectively.

2.1.1

Manipulating mesh vertex positions v is a common
approach in mapping computation.
Jacobian matrices.

Vertex positions

We denote the simplex
s; with (d + 1) corresponding vertices as s; =
Avig, -
Then, we get a simple form of the Jacobian matrix J;:

,v;.q and its image as §; = Av; 0, , Vj 4.

Ji= [@'70—@'71,' ) @'70—@‘@] [vi,O_vi,la' ) vi,O_vi,d]_l
The Jacobian matrix J; is a linear function of the
vertex positions v.

Discussions. If the initial mapping is inversion-
free, vertex positions are very appropriate. We can
use the explicit checks in combination with line search
to always satisfy the inversion-free constraint when
performing mapping distortion reduction. However,
the initializations with inverted simplices increase the
difficulty of creating inversion-free results. As the
inversion-free constraint concerning vertex positions
is nonlinear and non-convex, eliminating the inverted
simplices is difficult and non-trivial.

2.1.2 Jacobian matrices

Motivation. To effectively handle the inverted
initializations, Jacobian matrices are used [2]. Since
the Jacobian matrices become the variables, we can
easily project inverted Jacobian matrices of the initial
mapping into the inversion-free space. Then, the

explicit checks combined with line search can keep
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Jacobian matrices inside the inversion-free space

during the mapping construction process.

Assembly constraints. However, the individual
Jacobian matrices disassemble the input mesh into
disjoint simplices. To assemble disjoint simplices, two
assembly constraints should be satisfied [2]:

o Fdge assembly constraints. For any two neigh-
boring simplices s; and s; who share an edge ey,
the mapping images of any end points of e; by
the individual mappings should be the same.

e Positional assembly constraints. For any simplex
s; which contains positional constraints, the
individual mapping should satisfy the positional
constraints.

Recover M. When the optimal Jacobian matrices,
which satisfy the edge assembly constraints and
positional assembly constraints, are achieved, the
vertex positions of M can be recovered by solving
the following least squares problem:

Ne
_min_ Y ([[Ji(va = vs) — (Ba — Bb) |3
V1 Un p—q

+ [ (va — vp) = (Ve — ) |3)
Here the edge 7,0y is adjacent to simplices s; and sj,
and the positional constraints are fixed.
2.1.3 Angles

In addition to vertex positions, other geometric
concepts can also be used to compute inversion-
free mappings. Triangle angles are used to compute
inversion-free parameterizations with small conformal
distortion [3, 4]. For tetrahedral meshes, dihedral
angles are used to compute inversion-free mappings [5].
Angle-based flattening. To reconstruct a valid
parameterized mesh from angles, the following
consistency conditions are required [3]:
e Triangle consistency. For each triangular face
with angles a, E, ~:
a+ B+ N=m
e Vertex consistency. For each internal vertex v,
with central angles ay, - -

n
E az' =27
i=1

o Wheel consistency.
v with left angles (1,---, 3, and right angles

?17' * Ynt

+y Olp
For each internal vertex

ﬁ sin@ _q

in~;
i=1 S IYZ

/ .
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To satisfy the inversion-free constraint, the angles
are required to be positive. There are two common
methods to recover a parameterized mesh from the
angles:

e The ABF technique [3] proposes an unfolding
mechanism that constructs the parameterization
coordinates for one vertex at a time in a front
propagation procedure. This method suffers from
error accumulation that breaks the parameterized
mesh.

e The ABF++ technique [4] formulates the
reconstruction problem as a global linear
system and computes all the vertex coordinates
simultaneously by the least-square method.

Dihedral angles of tetrahedral

Dihedral angles are used to determine the

shape of a tetrahedral mesh [5]. To obtain

this mapping for tetrahedral meshes, three types

meshes.

of structural constraints and some inequalities are
needed. Then the dihedral angle determination
process is formulated as a constrained nonlinear
optimization problem. Finally, a robust linear
spectral reconstruction method, which distributes
numerical errors uniformly across the mesh, is

proposed to recover positions.
2.1.4 Metrics

Metric scaling, i.e., scalings of mesh edge lengths, is
another good representation for conformal embedding
[6-9].

Discrete conformality. According to Refs. [10, 11],
two discrete metrics I; and [; on M are conformally

equivalent if the metrics are related by
I; =eutuel, e =T,
where u; € R is the conformal factor assigned for
v;. This metric is called piecewise linear metric (PL
metric). Actually, I; is the edge length of e;.
Conformal parameterizations via intrinsic
flow. Since the parameterized mesh is planar,
its curvature is zero everywhere. From Gauss’s
Theorema Egregium, Gaussian curvature is an
intrinsic invariance of a surface determined by a
metric. The conformal parameterizations can be
achieved by intrinsic flows (e.g., Ricci flow, Calabi
flow, Yamabe flow) that evolve the surface metric
into a flat one. The final parametrization is obtained
by embedding the surface of the flat metric to the

2D plane.
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Recovering vertices. After the convergence of
the intrinsic flows, we achieve a new length 1; for
each edge e; = v,v; to reconstruct a parameterized
mesh. The first reconstruction method assembles the
triangle one by one [12]; however, it accumulates the
numerical error so that the resulting parameterized
mesh breaks.
evenly, a novel extrinsic shape optimization procedure
is proposed in Ref. [8]. It optimizes the edge length

To distribute the numerical errors

to the target and minimizes the mean curvatures to
zero by a local-global solver. Nevertheless, its solver
cannot theoretically guarantee no inverted triangles.
To this end, we propose a new optimization problem
to recover vertices:

Ne N
__min_ Z dﬁ + Z d;’ (2)
Jj=1

V1, VUn j—1

d! measures the length difference:

= = >
dl — |'Ua — 'Ub|% lz
' 2

2

B0 — O[3
d? is a triangle inequality-based barrier function [13]
defined on the triangle 5, = Av; o, v; 1, Vi 2 to avoid

inversion.
db = 1
J Vi1 — Vi2| + Vi1 — Vi3] — |Vi2 — U 3]
B 1
|Vio — 01| + |Vi2 — i3] — Vi1 — U 3]
1

Vi3 — Vi1| + |Vis — Vi2| — |Vi1 — Ui 2]
Starting from an inversion-free parameterization,
solving Eq. (2) can achieve a desired result.

2.2 Meshless mappings

In general, the mesh-based mapping is C° and lacks
high-order smoothness. To this end, we then study
meshless mappings to achieve high-order smoothness
(Fig. 5).

Handles Meshless-AMIPS

AMIPS

Fig. 5 3D meshless deformation of a spherical tet mesh using
AMIPS. Deformed meshes and their cut-views are shown. The meshless
deformation generates smooth results. Reproduced with permission
from Ref. [14], © ACM 2015.

Mapping representation. A meshless mapping
f is usually defined as

f@) =3 e;B(@)

where B = {B;}]., is a set of basis functions and
the coefficients of basis functions ¢ = [¢y1, - - -, ¢, are
unknowns. For example, the uniform cubic tensor
product B-splines and RBF basis functions can be
used as the basis functions.

Jacobian matrices. Then, the Jacobian matrix
of f at x has the form:

Jm = Z ijmBj(iﬂ)
j=1

Based on Ref. [15], a meshless mapping is considered
to be inversion-free if the mapping is inversion-free on
dense sampling points. Without loss of generality, we
denote the sampling points as {p; € Q,i =1,...,N}
and the Jp, as J;. J; is also a linear function of the
unknown coefficients c.

Discussions. In shape deformation [15-19], the
rest pose indicates an identity map that is inversion-
free and contains the least distortion. Then, after
the handles are moved to the desired positions, we
optimize ¢ to reduce shape distortion while satisfying
the inversion-free constraints. The size of ¢ is usually
small enough to enable real-time interaction.

In isogeometric analysis [20], domain parame-
terizations are generated by mapping parametric
domains (generally unit cubes) to computational
domains.  Usually, the basis functions of the
parameterizations are formulated as spline functions.
Inversion-free parameterizations are required to
improve the subsequent accuracy and computational
robustness for solving partial differential equations.
However, the initial parameterizations often contain
inverted regions, so the challenges are to eliminate
them [21, 22].

Smooth mappings are used to seamlessly transform
the floor plan of a large virtual scene into a small
physical space for real walking in virtual reality [23—
25]. The mapping is required to be inversion-free for
avoiding visual artifacts and be with low isometric
distortion for keeping the real sence of walking.

3 Objectives

The distortion of the input domain 2 under the
mapping f is expected to be as small as possible

@ ’Euslvlsgsﬁvfglg?s @ Springer
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and often treated as the optimization objective.

To measure the distortion, Jacobian matrices are
commonly used in the variable representations of
Other
representations have their own methods to define
the distortion objectives.

vertex positions and Jacobian matrices.

3.1 Jacobian matrix-based energies

Except for three commonly used distortion metrics,
e., (1) conformal distortion, (2) area-preserving
distortion, and (3) isometric distortion, other types of
distortions still exist. These three types of distortion
energies are formulated by the singular values of the
Jacobian matrices.
Signed singular value decomposition. The
singular value decomposition (SVD) of J; is
denoted as

Ji = U;S;V;*

where U; and V; are the orthogonal matrices, and
S; = diag(oiq,...,0:,4) is a diagonal matrix with
Without loss of
7] <k <d.

To define inversion-free constraints and mapping

singular values on the diagonal.
generality, we assume o;; > 0,4, V1 <

distortions, signed singular value decomposition
(SSVD) [26] is introduced. If detJ; < 0, U;
and V; are modified to be rotation matrices, and
the smallest singular value o; 3 becomes negative;
otherwise, SSVD is the same as SVD. Then, the
squared Frobenius matrix norm ||J;||3 of J; is equal
to 2?21 U%j and det J; = H?zl Oij-
Conformal distortion metrics. Conformal
distortion energies measure the deviation of the
Jacobian matrices J; from similar transformations.
When o;1 = 054, the energy reaches the optimal.

0=
I fo

02

—
S

Fig. 6 Illustration for the SVD.
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Commonly used energies are proposed in literature:
e Conformal distortion [27]: 0;1/0; 4
e MIPS energy [28]:
d
Zj:l Uz‘g,j
d
d(15= 0i5)%/¢
o As-similar-as-possible energy [29, 30]:
> (0i
7k
For 3D MIPS energy, Fu et al. [16] propose a

different formulation:
1 /o1 042 Oi2 | 0i3 0i3  0Oi1
8\oi2 01 0i3  0i2 oi1  0i3
Preserving area in

Area distortion metrics.

- Ui,k)2

mapping construction is important. As we know, the
determinant of the Jacobian matrix indicates the ratio
between the original volume and the mapped volume.
An area-preserving mapping requires the determinant
to be 1.
compute the difference from 1:
e Area distortion: max{H;l:

There are three common approaches to

1055 ﬁ}
e Ratio form [16]: H] 1065+ ﬁ

=193
e Difference form: (H;l:1 oij—1)?
The ratio form penalizes degenerate simplices since it
goes to infinity when det J; approaches to zero. Thus,
the ratio form is more popular than the difference
form.

Isometric distortion metrics. A mapping is
isometric if and only if it is both conformal and area-
preserving. Thus, when o; 1 = 0; ¢ = 1, the isometric
energy reaches the optimal.

e Isometric distortion: max{o; 1, o_ld}

o Symmetric dirichlet energy [31, 32]:
d

pC

-2
o)
J=1

AMIPS energy [16]:

d
1 ( Zj:l"z‘%j ) H o

ij T
d (H;‘lzl i j)?/?

e As-rigid-as-possible energy [30]:
d
> (o0 —1)°
j=1
The AMIPS energy linearly combines the MIPS
energy and the ratio form of the area distortion
metric.

] 1 Jld

Other energy metrics. There are many other
energy metrics:
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e Dirichlet energy: Z?Zl Jf’j

o Green—Lagrange energy: Z;i:l(azj —1)?

e Hencky strain energy: ||log JXJ;||%

e  The difference from a given mapping [26]: ||J; —
Jnit|2 where JMt is the Jacobian matrix of the
initial mapping.

For a mesh or all sampling points, the energy should
be added up over all elements.

3.2 Energies without Jacobian matrices

For the angle-based and metric-based representations,
the distortion energy is usually defined as the
difference from the ideal reference.

Angle-based flattening. As reported in Ref. [3],
the energy function is simply:

3
3OS (@ - al)

s; j=1""J

where @; ; are the unknown planar angles, and o7 ;
are the optimal angles. The weights w; ; are set
to (af;)~* to reflect relative rather than absolute
angular distortion. In general, a7 ; is computed as
follows [3, 4]:

af jnziﬂo, around an interior vertex
* ) Z o)y
o; = k=11,
oy 5, around a boundary vertex
where af ; is the angle in the input mesh. As shown

in Ref. [5], the objective function for dihedral angles
in the tetrahedral mesh is similarly defined.
Metric-based flattening. The intrinsic flows
for conformal parameterizations output a metric
to agree with the input Gaussian curvature. For
example, the Calabi energy is squared difference
between current Gaussian curvature vector and target

Gaussian curvature:

N,

Y (K (@) — K)?

i=1
where K (v;) is the Gaussian curvature at v; and K}
is the target Gaussian curvature at v;. The Calabi
energy can be minimized by the Calabi flow [12].

4 Inversion-free constraints

4.1 Relationship with volume

Here we study the mappings on simplicial meshes
and remind that no zero or negative volume exists
in the real world. For a transformed simplex §; =

AV, o, ,V; q, its signed volume is computed as a

determinant:

lBi B, B — Bio
Note that the signed volume may be negative. Thus,
the inversion-free constraint requires that the sign of
the signed volume before and after the transformation
is unchanged. The signed volume is a polynomial with

degree d and is non-convex.
4.2 Relationship with singular values

Here we study the inversion-free constraints using the
Jacobian matrices.

Determinant and conformal distortion. If
det J; > 0,i=1,---, N, the map f is inversion-free.
From the view of SSVD, the inversion-free constraint
requires the smallest singular value of each Jacobian
matrix to be positive. If the conformal distortion
7(J;) = 04,1/0i,a < 0,3 € [1,N], the map f has
negative o; 4. Thus, inversion-free property requires
T(J;)) =2 1,i=1,--- ,N.

Bounded conformal distortion. Bounded

conformal distortion mappings require:

1<7(J;) <k, i=1,---,N
Here, k; denotes the upper bound of the conformal
distortion 7(J;).
0i1 = |oidl, the bounded conformal distortion

Since o, is always positive and

constraint 1 < 7(J;) < k; is equivalent to require
05,1 < kiai,d- If 0;,1 < kiai,(b it means that
0;q4 > 0 indicating the mapping is inversion-free.
If det J; > 0, it is trivial to choose k; that makes
the constraint 7(J;) < k; hold,
ki = 7(J;). Accordingly, inversion-free constraints

for example,

can be converted to bounded conformal distortion
constraints.
More analyses for 2D case. Similar to Ref. [33],

we rewrite the 2 x 2 Jacobian matrix J; as

|:ai + ¢ dz — bl:|

di+b; a;—c¢
Then, we have analytical expressions for the two
singular values:

oi1 = a2 + 02+ [+ &

012 = a2 + 02—/ + &

Then inversion-free condition can be rewritten as
Va2 402>\ /e + a2 3)

The bounded conformal distortion constraint is

similarly reformulated as [33]:

ki—1 2 2 2 2
: ; ; ; 4
" 1\/az+bl> c; +d; (4)

/ .
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These two constraints are nonlinear and non-convex.
For 3D case, the condition formulations are more
complicated due to the complex forms of roots of a
cubic equation.

5 Methods

In this section, we focus on the recent works
closely related to generating inversion-free geometric
mappings.
been proposed to deal with the challenging inversion-
free constraint:

Three main families of methods have

maintenance-based methods for
inversion-free initializations, elimination of foldovers
for inverted initializations, and expanding the feasible
region by connectivity-updated methods.

5.1 Inversion-free initializations

If the initial geometric mappings are inversion-
free, keeping the mappings always staying in the
inversion-free space can theoretically guarantee the
A few
methods use maintenance-based methods to optimize
“barrier”-type energies, in which the objective function

inversion-free constraint to be satisfied.

includes terms that grow asymptotically as an element
becomes degenerate.

5.1.1 Pipeline

Starting from initializations x,
maintenance-based methods minimize objective
The
optimization approach is very simple and is described
in Algorithm 1.

inversion-free

functions which avoid inverted elements.

Algorithm 1 Maintenance-based methods

Input: inversion-free initialization xo;
Initialize: Set iteration number n = 0;
while not converged do
Compute descent direction py;
Find max step size amax;
Perform line search to find step size «;
Tl < Tn + « Pn;
n+n+1;
end while

It is an iterative algorithm producing a sequence of
approximations «,, to the optimal point &*. There are
three intermediate steps in each iteration: computing
descent direction (p, ), finding max step size (max),
and performing a line search to find step size («)
starting from aax-

Generating initializations. Tutte’s embedding

/ .
@ IN$VL§5§Y'1¥§ @ Sprlnger

[34] is guaranteed to create bijective mappings under
the minimal assumptions that both domains are
simply connected and the target planar domain
Since Tutte’s embedding guarantees
inversion-free, it has achieved great success in the
field of mesh parameterizations [32, 35-37]. Although
several works extended it [38, 39] to other specific

is convex.

classes of mappings, its essential limitations remain:
it can only map injectively to a prescribed convex
boundary, without any interior constraints.

Furthermore, it is very challenging to compute
inversion-free initializations in 3D. For example, a
tetrahedral mesh can be bijectively mapped to a
cube or a ball [40]; but it cannot be used for general
boundary shapes. For tetrahedral mesh deformation,
they use the meshes in the rest-pose as initializations
and treat the handle positions as soft constraints.

Barrier functions. Barrier functions diverge
to infinity when elements become degenerate, thus
inhibiting inversion. Ref. [41] used the log of the
determinant as a barrier term and Ref. [42] followed
a similar path by solving a sequence of convex
programs. Instead of using an auxiliary injectivity
barrier, several methods directly optimize distortion
metrics that explode near degeneracies, such as the
MIPS energy, the AMIPS energy, and the symmetric
Dirichlet energy in Section 3.

Descent directions. These non-linear energies
are difficult to minimize.
algorithms

Existing optimization
typically produce a sequence of
approximations, designed to converge to
an optimal point x*. To this end, most approaches

use a local quadratic approximation of the objective

:B’FH

function, or proxy:

E,(x) =E(x,) + (& — x,)"VE(x,)

+ %(m — :cn)THn(m —x,)

where F(x) is the objective function and H,, is a
symmetric matrix, named the proxy matriz. Thus,
E, () is an osculating convex quadric approximation
to E at x,, and its minimization determines the next
approximation x,,1. From this point of view, the
difference between the various methods lies in the
choice of E,(x), or more precisely, the choice of
its proxy matrix H. Broadly, existing methods for
the local energy approximation fall into three rough
categories that vary in the construction of proxy
matrix H.
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e [First-order methods (Section 5.1.2): the methods
use only first derivatives and do not directly use
second order derivatives of the energy;

e Quasi-Newton methods (Section 5.1.3): the
methods iteratively update H to approximate
second derivatives using just differences in
gradients;

e Newton-type methods (Section 5.1.4):  the
methods exploit expensive second-order derivative
information.

Line search. Consider a non-degenerate 2D
triangle with vertices wq, us, u3 with corresponding
search direction vectors wi,wvs,vs3. The triangle
becomes degenerate when its signed area becomes

zero [32]:

det ( (UQ + Ugt) — (u1 + ’Ult) ) _ (5)
(’LL3 + ’Ugt) — (’LL1 + ’Ult)
Fortunately, Eq. (5) is quadratic in ¢ and the max step
sizes are simply given by the roots of this quadratic.
Given that we are only concerned with searches in
the positive direction, the smallest positive root gives
the max step size for this triangle. The max step
size tmax for the line search is given by computing
the minimum parameter over all triangles [32]. For a
tetrahedron, it is also easy to generalize by replacing
the signed area with the signed volume.
Termination conditions. The iteration continues
until we are able to stop with a “good enough”
solution, but the termination requires a precise
computational definition. The common termination
conditions are:
e The gradient is small [|[VE| < ¢, for a specified
tolerance € > 0;
e A fixed number of iterations [43];
The absolute or relative error in energy || Ey+1—FEn ||
and/or position ||&,+1 — @, || are small [37, 44].
However, an appropriate value of e¢ for a given
application is highly dependent on the other
conditions, such as the mesh and the energy. To
provide reassuring termination criteria in practice,
the Blended Cured Quasi-Newton (BCQN) method
develops a gradient-based stopping criterion [45]. The
proposed termination condition remains consistent
for optimization problems even as we vary scale,
mesh resolution and energy type:

IVE|| < eW)[[I(T)]] (6)
where (W) is the 2-norm of a matrix related to
W () and I(T) ia a vector. The specific definitions

can reference Section 6 in Ref. [45]. The gradient-
based stopping criterion allows users to set a default
convergence tolerance € in the solver once and leave it
unchanged, independent of scale, mesh, and energy.
5.1.2  First-order methods

Block coordinate descent solvers. The Block
Coordinate Descent (BCD) method is a popular
optimization tool suitable for solving large-scale
problems. Considering the optimization problem:
mminE(Blf“ ,Bi,---,Bn)

where F is the objective energy and the variable x is
partitioned into m blocks {B;,i =1,---,m}. In each
iteration, for every [, [ € {1,---,m}, a subproblem is
solved by treating the block B; as the free variables
of the optimization problem while keeping the rest
variables fixed.

The BCD method is categorized into two types:
exact BCD and inexact BCD. The MIPS energy is
locally convex with respect to each vertex around
its 1-ring region. The standard MIPS algorithm [46]
employs the exact BCD where each vertex forms a
block of variables and the Newton method is adopted
to solve each subproblem exactly. However, solving
the subproblem exactly is usually time-consuming,
and seeking an approximate solution is a common
way to accelerate the algorithm. The inexact BCD
method is employed to optimize the AMIPS energy
by applying only one step of gradient descent [16].
The experiment demonstrates that exact BCD is
easily trapped in local minimum early while inexact
BCD always yields lower energy. Note that the BCD
method can be accelerated using parallel technology
by partitioning the variables into blocks where any
two variables in the same block are independent.

AQP. Given the current iteration «x,, the
Accelerated Quadratic (AQP) method
computed the next iteration x, 1 by an intermediate

Proxy

guess Yn+1 [47]. AQP used an affine combination
of current iteration x, and previous iteration @, 1
with a constant 6 > 0 to produce y,,+1, namely:
Yn =1+ 0)xp_1 —0x)H_2

An optimal choice € leads to an optimal convergence
rate, which is proved by Lemma 2 in Ref. [47].
Then, AQP uses a quadratic polynomial proxy, whose
Hessian is taken to be the Laplacian, to compute a
descent direction p,,.

AQP utilizes the common structure of optimization
problems over meshes to improve iteration efficiency

/ .
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and incorporate acceleration in an almost universal
way (i.e., insensitive to different energy types and
mesh sizes). However, AQP does not have a
principled way of determining how effective the
Laplacian approximation for Hessian of arbitrary
energy. Besides, the optimal choice 6 requires the
condition number of a matrix, which is challenging
to obtain.

SLIM. The local/global method is used in Ref. [30]
to minimize the ARAP energy:

Dyrar(J) = ||J — R|%

where R is the closest rotation to J in the Frobenius
norm and || - ||p denotes the Frobenius norm. The
local/global algorithm iteratively alternates between
a local step and a global step. In the local step, each
element is individually perfectly mapped (without any
distortion), and in the global step, a linear system is
solved to stitch all elements back together.

The Scalable Locally Injective Mappings (SLIM)
method extends the local-global strategy to a
wide range of distortion energies [43].
the local/global paradigm and enriches it with a
reweighting scheme to efficiently minimize nonlinear
and flip-preventing energies. The proxy functions is

Pw(J) = [W(J - R)|}
where W is the weighted matrix.

SLIM is a scalable approach for optimizing flip-
preventing energies in the general context of simplicial

It uses

mappings. The central theoretical limitation and
advantage of SLIM are both inherited from the
local/global method. The algorithm is high-speed
while approaching a local minimum, but it requires
many iterations to converge to a numerical minimum.
Besides, the proxy energy definition only works for
the rotation invariant distortion energies.

AKVF. The Approximate Killing Vector Fields
(AKVF) method formulates a new preconditioner
specifically designed for parameterization problems,
using the language of vector field design [36]. The
Killing operator K (x) measures the deviation of a
vector field on @ from being a rigid motion, and
AKVF applies the Moore—Penrose pseudoinverse
K(x)" of Killing vector field operator K(x) as the
proxy matrix. Then the descent direction —V o F/(x)
is transformed into an approximately rigid motion
—K(z)"V4E(z) by the proxy matrix K (z)" when
possible.

For planar case and volumetric case, K(x) can
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Fig. 7 Comparison for four competing methods, including CM [37],
PP [35], AKVF [36], and SLIM [43]. Reproduced with permission
from Ref. [35], © ACM 2018.

be computed as Eq. (6) and Eq. (10) in Ref. [36],
respectively.

SLIM and AKAP converge faster than AQP.
However, they require re-assembly and factorization
of their proxies for each iteration. Besides, they do

not match the convergence quality of the second-order
methods, such as CM and PN.

5.1.3  Quasi-Newton method

L-BFGS. L-BFGS directly approximates the inverse
of the Hessian, requiring only the position and
gradient information of a few previous iterations.
While L-BFGS iterations are fast, they typically
L-BFGS
convergence can be improved with the choice of a

require many iterations to converge.

preconditioner, such as the diagonal of the Hessian
[48], application-specific structure [49], or even the
Laplacian [50]. However, so far, for distortion
optimization problems, L-BFGS has consistently
and surprisingly failed to perform competitively
irrespective of the choice of preconditioner [43, 47].
Moreover, Ref. [48] points out that the secant
approximation can implicitly create a dense proxy,
unlike the sparse true Hessian, directly and incorrectly
coupling distant vertices.

BCQN. For the aforementioned issue of a dense
proxy incorrectly coupling distant vertices in L-BFGS,
the Laplacian provides the correct structure for the
proxy essentially. It only directly couples neighboring
elements in the mesh and is well-behaved initially
when far from the solution. However, the Laplacian is
constant, and thus it ignores valuable local curvature
information, thereby leading to prohibitively slow
convergence.

Fortunately, the L-BFGS offers superlinear con-
vergence near solutions, and Ref. [45] develops a
new quasi-Newton method, which adaptively blends
gradient information with the matrix Laplacian at
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each iteration. Then, it can regain improved and
robust convergence with efficient per-iterated storage
and computation across scales while avoiding the
current pitfalls of L-BFGS methods.

5.1.4 Second-order methods

Overview. Second-order methods generally can
achieve the most rapid convergence but require the
costly assembly, factorization, and backsolve of new
linear systems per step. At each iteration, second-
order methods use the energy Hessian, V2FE, to form a
proxy matrix H. This works well for convex energies,
but it requires modification for non-convex energies
[51] to ensure that H is at least positive semi-definite
(PSD).

A general solution is to add small multiples of the
identity and project the Hessian to the PSD cone, but
this generally damps convergence too much [37, 51].
The global Hessian matrix of the objective function is
constructed from the element Hessian matrix, which
is based on locally individual elements (triangle or
tetrahedra). As long as the Hessian matrices of all
elements are PSD, then the global Hessian matrix is
PSD. Thus, most second-order methods locally modify
the element Hessian matrices, whose dimensions are
far lower than the global Hessian matrix.

Locally modifying Hessian matrices. Projected
Newton (PN) does eigendecomposition on per-element
Hessian and clamps all negative eigenvalues to zero,
to project per-element Hessian to the PSD [52]. PN
is an effective and general purpose for 2D and 3D
problems. However, PN introduces a significant
computational overhead on eigendecomposition and
becomes computationally prohibitive.

The Composite Majorization (CM) method
provides an analytic formula to modify element
Hessian [37]. Composite majorization, a tight convex
majorizer, was recently proposed as an analytic
PSD approximation of the Hessian. CM method
is concerned with objective functions that can be
represented as the composition of simpler functions
for which convex—concave decompositions are known.

f(@) = higle)) = hlgi (@), gn(a)
where b : R* — R and g;j(z) : R" — R are C?
functions with convex—concave decompositions. That
is, they each decompose as
h=h"+h",g; =g +9;
with AT and g;f convex and, respectively, h~ and 9;
concave.

CM’s strategy for picking a convex osculating
quadric at z,, is based on: (i) exploiting the composite
structure for constructing a convex majorizer to f
centered at x,, and (ii) computing its Hessian at x,,.
The majorizer provides a tight convex upper bound
to f and therefore provides a well justified choice of
a PSD proxy matrix H at x,;:

_0lg]" o2, 1 Olg]
H = ox Vih ox
oh 2 4 oh 9 _
R RSN COR
where (-); keeps only positive numbers (linear
rectifier), (-)— only negative numbers. CM is efficient

and is even better relative performance improvement
over PN. However, it is limited to two-dimensional

problems.

The KP-Newton method [53] has applied the
complex view to the piecewise linear mapping. It
shows that simple analytic expressions of the Hessian
are obtained, which allows simple and close to optimal
analytic PSD projection. Based on the complex view
of the linear mapping, KP-Newton speed-ups the
numerical projection for PN by reducing the matrix
size (reducing the full 6 x 6 projection to the 4 x 4
case).

CM needs to
decomposition of the objective function. The choice
of this decomposition is not unique and is likely to

construct a convex—concave

result in different PSD matrices and consequently
affects the convergence behavior. In contrast,
KP-Newton only requires the partial derivatives of a
simple-to-obtain energy formulation. Additionally,
KP-Newton has the property that the element
Hessians are not modified if they are already PSD,
which is not necessarily the case for CM. However,
KP-Newton
problems.
Analytic FEigensystem (AE) provides compact
expressions to optimize problems both in 2D and 3D,
and does not introduce spurious degeneracies [54].

is also limited to two-dimensional

At its core, AE utilizes the invariants of the stretch
tensor S that arises from the polar decomposition of
the deformation gradient J = RS:

_[1 = tI‘(S) = ZO’j
J
L =|S|? =)o}
J
Ig = det(S) = HUj
J

/ .
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The majority of distortion energies used in geometry
optimization are isotropic and can be expressed
in terms of invariants, such as, the ARAP energy
Darap(J) = Y0 (05 —1)> = I — 21 + d. AE
provides closed-form expressions for the eigensystems
for all these invariants, and uses them to systematically
derive the eigensystems of any isotropic energy. Then
these systems can be used to project energy Hessian
to PSD analytically.

Different from the aforementioned methods, PP
[35] observes that when the distortion between
each parameterized triangle and its corresponding
reference triangle is below a threshold K, only a
few iterations are needed to reach a result that
is comparable with the convergent one. Based
on this key observation, PP iteratively updates
the optimization objective by constructing the new
reference triangles, which makes distortion between
the new reference and the current parameterizations
bounded. Combined with a hybrid solver, PP
outperforms the competitors.

5.2 Inverted initializations

5.2.1

A quasi-conformal mappings (QC mapping) is an

Quasi-conformal mappings
extension of conformal mapping. For conformal
mappings, there is no angular distortion. For QC
mappings, the angular distortion is bounded and is
introduced by the Beltrami coefficient or Beltrami
differentials.

QC mappings of plane domains. For conformal
mapping f from the complex plane C to C, the
Cauchy—Riemann equation % =
Correspondingly, f is called a QC mapping, if f
satisfies the following Beltrami equation:

of af

9z M(Z)a
Here, p is called the Beltrami coefficient of f. In this
case, the Jacobbi of f : J(f) = |2L|?(1 — |p[?). Thus
the Beltrami coefficient ||u||oo < 1 must hold for f to
be orientation-preserving.

QC mapping between Riemann surfaces. QC

mapping can also be defined on Riemann surfaces.
For two surfaces S;, S; embedded in R3, let ¢; :

UcS —C, ¢ : V C S — C be two local
conformal parameterization, ¢;(U) or ¢o(V') forms
the isothermal coordinate chart of S; or Ss. Then
f 581 — S5 is quasi-conformal if for any ¢1, ¢2,

/ .
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0 is satisfied.

frz=¢20fodi! : d1(U) = ¢2(V)

is quasi-conformal. Instead of Beltrami coefficient,
the Beltrami differential ,u% is used, which is
kept unchanged under different coordinate charts.
According to Teichmiiller theory, there is a one-
to-one correspondence between the set of Beltrami
differentials and the set of QC surface mappings under
normalization conditions.

Applications. QC mapping has been widely
used in computer graphics, such as parameterization,
deformation, and shape registration [55-58]. The
research focuses on two main areas:

e How to calculate QC mapping under boundary
and landmark constraints?

e How to find a QC map that satisfies the described
Beltrami coefficients?

The

most popular method is to optimize the angular

distortion energy instead, when there is no restriction

on Beltrami coefficients or Beltrami differentials.

If the QC mapping is specified to Teichmiiller

Boundary and landmark constraints.

mapping with uniform conformality distortion over
the whole domain, Ref. [58] locally projects Beltrami
coefficient p into the one with constant norm after
computing a global harmonic mapping and iterated
until convergence. An alternating-descent algorithm
is proposed in Ref. [57] to minimize the difference
error of the Beltrami equation efficiently, although
there is no theoretical guarantee to reach the global
minimum.

Described Beltrami coefficients. There are
different algorithms to compute QC maps on planar
domains [59-61]. For arbitrary Riemann surfaces,
Refs. [62] and [63] establish a discrete Beltrami flow
to evolve an identity map to the desired QC mapping.
An auxiliary metric is proposed in Ref. [64], and the
original QC mapping becomes conformal under the
auxiliary metric. Then, the desired QC mapping can
be obtained by using the conformal mapping method.

5.2.2 Bounded distortion mappings

Bounded distortion mapping methods [15, 18, 19, 26,
33, 65] tried to bound the distortion of the mappings.
Different from the aforementioned quasi-conformal
mappings, these methods study the mappings from
the discrete view. Namely, the bounded distortion
constraint is enforced on each Jacobian matrix.
Then, a constrained optimization problem with
non-convex constraints is achieved. To this end,
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some elegant methods are proposed. Based on
the strategies processing the bounded distortion
constraints, these methods can be classified into
two categories: (1) extracting convex subspace and
(2) linearizing the constraints.

Maximal convex subspace. For triangular
meshes, the bounded distortion constraint (4) and
inversion-free constraint (3) are nonlinear and non-
convex. By introducing a new variable r; € R, they
can be simplified as [33]:

ki —1
A+d?<ri—
7 7 N lkz—Fl
a?+b2>r;
r; >0

Then, the maximal convex subspace can be achieved
as follows (see more details in Ref. [33])
\Jei +di < rim
a; cosb; + b;sinb; > r;,0; € [0,2m)
r; >0

0; is a parameter and is adaptively adjusted during
the optimization. Then, a convex problem is built and
can be solved effectively. The linear matrix inequality
[65] is used to extend this idea to the tetrahedral
meshes.

Quadratic programming. For the SSVD J; =
Ul-SZ-ViT, if U; and V; are known, then the singular
values are linear functions with respect to the vertex
positions. Based on this fact, Aigerman and Lipman
[26] use U; and V; in the last iteration as the
estimator in the current iteration. Then, the non-
convex constrained problem becomes a quadratic
programming problem that can be effectively solved.
By iteratively performing these two steps, the method
[26] usually converges within a small number of
iterations. This method works for both 2D and 3D.

Discussions. Bounded distortion mapping
methods ensure no inversion if the resulting
mappings fall into the bounded distortion space;
however, setting an appropriate distortion bound
remains an open problem.

5.2.8  Projection-based methods

Motivation. Our goal is to project the inverted
initializations into the inversion-free mapping space.
As mentioned before,
can be converted to bounded conformal distortion

inversion-free constraints

constraints. In practice, we can try to minimize the
distance from the mapping to the bounded conformal
distortion mapping space. Then, the optimization
problem can be formulated as

N
i J, — H; ||
min 3| I?
, (7)
st. H;eH;, i=1,---,N
Au=0>

Here, H; = {H;|]1 < 7(H;) < k;} denotes the
bounded conformal distortion space with bound k;.
k; is a variable in the optimization. Next, we first fix
it and then discuss the updating cases.

Algorithms. Given distortion bounds k;, it
is difficult to solve the problem (7) due to the
nonlinear bounded distortion constraints H; € H;.
Thus the projection-based methods decouple the
bounded distortion constraints from the problem (7)
and devise an alternating pipeline. Generally, the
methods can be classified based on different projection
approaches: (1) tangential projection and (2) closest
point projection.

Closest point projection. The most common
projection method is the closest point projection [66].
Given fixed J;, we want to solve H;. H; is separated,
and we compute it one by one through solving the
following problem (local step):

i . H.lI?
r%lzn [|J; illF

s.t. H; € H;
This problem has a closed-form solution [67]. Then,
given fixed H;, we solve p as follows (global step):

N
mgn E;= Z | J; — H;||2
=1

st. Au=2b
This problem can also be easily solved. Although
the local-global method monotonically decreases the
objective function, it converges slowly [68]. Then,
the Anderson acceleration method [68] is used for
acceleration.

Tangential projection. In the global step,
the tangential projection method [67] restricts the
Jacobian matrix to belong to a single hyperplane
locally supporting H; at the closest point projection.
However this method may oscillate due to an
inappropriate k;; as a result, the distance from the
mapping to the bounded distortion space may not

/ .
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consistently decrease. Thus, it works poorly in
practice.

Updating bounds. Su et al. [66] devise a simple
method to update the distortion bound. It gradually
increases the distortion bound after one pass of the
accelerated local—global solver converges. However, it

has no theoretical guarantee of success for any model.
5.2./ Area-based methods

As observed by Ref. [69], the Total Unsigned Area
(TUA) is an upper bound to the sum of signed areas,
which is constant for a fixed boundary, and equal
if and only if the triangulation is injective. When
the triangular mesh is inversion-free, it minimizes
the sum of the unsigned triangle areas among all
the triangulations of the given boundary. However,
as Ref. [70] points out, directly minimizing TUA
suffers from three deficiencies: (1) the triangulation
containing degenerate elements is a global minimum
of TUA but a non-injective embedding; (2) derivative
discontinuity: TUA is not C' continuous when a
vertex moves across the supporting line of its opposite
edge; (3) vanishing gradient: TUA has zero gradients
with respect to any vertex surrounded by a ring
of consistently oriented elements. Based on those
observations, Ref. [70] proposes a novel energy form,
called Total Lifted Content (TLC), that lifts the
simplices of the mesh into a higher dimension and
then measures their contents:

1 ——
TLC;,4(s) = a\/det(XTX +aXTX)

where s is a d-dimensional simplex, § is the auxiliary
simplex, and X (X) is a d x d matrix whose column
vectors are edge vectors of the simplex s (§). TLC
reduces to TUA when parameter a« = 0. TLC is
smooth over the entire space and has only injective
global minima for sufficiently small values of «. This
simple energy can be efficiently minimized using quasi-

Newton or projected-Newton solver.
5.2.5 Penalty-based methods

A simple idea for inversion elimination is to devise a

penalty function having two main properties:

e it is very large to penalize the inverted Jacobian
matrices;

e it is very small to accept inversion-free Jacobian
matrices.

After designing a suitable penalty function, optimization

solvers are then the challenges. This idea has been

applied to many untangling problems [71, 72].

/ .
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Here we discuss a popular penalty function as

follows [72]:

N
[BAs

E ena -
penalty ; det J; + /(det J;)2 + ¢

where € is a small positive
P R

number that makes Ep,enaity
very large when inversion
exists (see the right inset).
This  penalty  function
works for both 2D and 3D Ve i
The key to this 0 r

penalty function is the setting of €. In Ref. [72], a
detailed setting method is provided.

Then, two common methods for optimizing Epenalty
are proposed.
e Block coordinate descent method [72] updates one

block of variables each time.

domains.

e Monotone preconditioned conjugate gradient
method [73] monotonically and efficiently reduces
the objective function.

The block coordinate descent method is a local
method. When the number of inverted elements is
very large, it may be struggled and trapped by the
local minimum. In the monotone preconditioned
conjugate gradient method, the linear systems for
computing descent directions have a fixed left-hand
side; thus, it is pre-factorized once during the
preprocessing, thereby making the solver efficient.
This solver can eliminate most inverted elements,
but its result often contains a small set of inverted
elements. Thus, a practical solver can be devised
as a hybrid one that first uses the monotone
preconditioned conjugate gradient method and then
uses the block coordinate descent method.

5.2.6 Representation-based methods

Simplex assembly [2]. Using the Jacobian matrices
as the variables, the problem (1) is converted to a
non-constrained optimization problem:
J1I,r'l‘i',1}1v H Em + Ec + A Eassembly

where F,, is the mapping energy, FE. is a barrier
function to keep each Jacobian matrix inside the
feasible space, and Easembly is the summation of
squares of all the left sides of the two assembly
constraints. Given an inverted initialization, it
projects the Jacobian matrices associated with
each simplex into the inversion-free and distortion-

bounded space. The projected Newton’s method
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is used to solve the optimization problem. A\ is

adaptively adjusted to enforce Eyssembly to approach

ZET0.

Angle-based methods. For ABF-based conformal
parameterizations, three solvers are proposed to solve
the constrained problem:

e ABF [3] uses Newton’s method to solve an
augmented objective function that formulates the
constrained minimization problem using Lagrange
multipliers.

o ABF++ [4] the
constrained programming.

e Linear ABF [74]
constraint and solves a linear system to obtain
the resulting angles.

In practice, inverted triangles still arise, as

demonstrated in Ref. [33].

Metric-based methods. Surface parameteriza-
tion can be formulated as designing a Riemannian

uses sequential linearly

linearizes the non-linear

metric of the surface, such that all the interior
points are with zero Gaussian curvatures, namely
a flat metric. Discrete intrinsic flows were studied in
recent decades. These methods evolve the curvature
of the triangular meshes [75], or the piecewise
linear metric of triangular meshes independent of
embedding or immersion, such as discrete Ricci
flow [76], Yamabe flow [11], and Calabi flow [77].
Based on these methods, powerful tools for conformal
parameterization has been developed [78, 79].

5.3 Connectivity-updated methods

For highly non-linear optimization problems, the
fixed connectivity may impose a strong restriction
on the solution. As a consequence, the feasible
region may be too small to contain an ideal solution.
This leads to slow convergence, poor solution,
or even that no solution can be found because
of the nearly degenerated triangles generated
during the iterations [80]. Thus, some methods
are proposed to integrate connectivity-update
into vertex optimization to solve this issue. Here,
we introduce two connectivity-update techniques:
adaptive refinement and hierarchical meshes.
Adaptive refinement. Ref. [80] proposes
a  connectivity-updated optimization method
for locally injective mappings of 2D triangular
meshes with position constraints. Their algorithm
iteratively solves the vertex position and updates

the connectivity according to the criteria based

on residual, gradient and condition number of the
energy. The connectivity-updated operators include
edge-flip and edge-split. Ref. [81] applies adaptive
refinement to the 3D deformation problem.

Ref. [82] focuses on
computing high-quality spherical parameterizations
with bijection and low isometric distortion. The
method first simplifies the mesh until the model
becomes a tetrahedron. After mapping the
tetrahedron onto the sphere, the method alternately
inserts vertices and do global distortion optimization
to distribute the vertices uniformly on the sphere.

Hierarchical meshes.

Inspired by the similar idea, the progressive
embedding is proposed in Ref. [83] with similar
theoretical guarantees to Tutte’s embedding, but it
is more resilient to the rounding error of floating
point arithmetic. Ref. [83] collapses edges on an
invalid embedding to a valid, simplified mesh, and

then inserts points back while maintaining validity.

6 More constraints

Inversion-free constraint is not the only one constraint
in many applications. This section introduces the
applications with other four constraints: (1) bijective
mappings, (2) bijective inter-surface mappings, (3)
axis-aligned structure construction, and (4) global
seamless parameterizations.

6.1 Bijective constraints

In addition to being inversion-free, applications may
ask for intersection-free boundaries [13, 32, 84, 85].
An inversion-free and intersection-free mapping is
bijective. For example, bijective parameterizations
can establish a one-to-one correspondence between
the input surface and the parameterized mesh
(Fig. 8). In fact, except for the negative or zero
volume, physical objects also do not contain global
overlaps. Thus the physical deformation/simulation
should avoid intersecting boundaries and only contain

Without

With

Fig. 8 Parameterizations with/without bijective constraints.
Without bijective constraints, a 2D point may be mapped to more
than one point on the surface.
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positive volume. Here, we focus on the mesh-based
mappings.

Constraint overview. This intersection-free
constraint is more complicated than the inversion-
free constraint. Preventing overlaps for the boundary
Besides,

boundary collisions may occur everywhere on the

leads to non-linear collision constraints.

boundary. Thus for a simplicial mesh, the number
of potential collisions is quadratic in the number of
boundary elements, thereby significantly increasing
the computational cost.

There are two common strategies to handle the
bijective constraints: (1) barrier functions and (2)
scaffold meshes. Both of these approaches start
from an intersection-free shape and avoid any overlap
during the optimization process. For example, Tutte’s
embedding method [34] generates a bijective initial
parameterization, and the rest shape in deformation
is usually free of overlaps.

6.1.1 Barrier functions

Using barrier functions to avoid overlaps is a
commonly used technique.
intersection-free constraints should satisfy a property:
when the overlap is about to occur, the function goes
to infinity. Thus, we need to answer the following

Barrier functions for

questions: (1) how to use mathematical language to
describe the occurrence of collisions and (2) what
the concrete barrier function is?

Distance-based approach. When a boundary
vertex approaches a boundary element (edge in 2D
and triangle in 3D), the collision is about to occur. In
3D, when two boundary edges are close to each other,
they will collide. For the first question, the distance
from a boundary vertex to a boundary element or
the distance between two boundary edges is used,
denoted as dinter [32, 85].

Triangle inequality approach. For 2D
triangular mesh, Su et al. [13] propose a triangle
inequality approach. A boundary vertex v and two
end points of a boundary edge € = 0,0, form a
triangle. Based on the triangle inequality, we have

10 = Dall2 + |0 — Do[l2 = [[Va — Dbl
The equality holds when v is on €. Thus, dipter :=
(] =g |l2+ ||o —Up|2 — ||Da — U |2) is used to answer
the first question.

Concrete barrier functions. Given a distance
threshold €jnter, the barrier function is zero when
dinter = €inter- Lwo barrier functions are commonly

/ .
@ IN$VL§5§Y'1¥§ @ Sprlnger

used when dipter < €inter:
e Reciprocal-based barrier [32]: (€nter/dinter — 1)*
e Log-based barrier [85]: — In(dinter/€inter ) (€inter —
dinter>2
They go to infinity when dinter approaches zero.
Computational cost. The barrier functions are
at least C? when dipter < €inter- Thus quasi-Newton
solvers [32] and second-order solvers [13, 85] can be
used. However, the number of potential collisions
is quadratic in the number of boundary elements,
and thus the density of the Hessian matrix in second-
order solvers significantly increases, thereby causing
much more time for optimization. For 2D triangular
mesh, a coarse shell mesh is used [13] to reduce the
computational cost; however, it extends this idea to
3D case.

6.1.2 Scaffold-based methods

Another idea to avoid overlaps is the use of a scaffold
mesh. The scaffold mesh is introduced to convert the
globally overlap-free constraint to a locally flip-free
condition [84, 86-88].

Updating connectivity. During the optimization,
the boundary of the scaffold mesh is fixed. To
efficiently reduce distortion and prevent possible
locking situations, the scaffold mesh must be
frequently updated and optimized during the
optimization [84]. This updating connectivity leads
to a changed size and an updated nonzero structure
of the sparse Hessian matrices for computing descent
directions. Then, solving linear systems become
more time-consuming, as observed by Ref. [13]. In
addition, efficiently performing connectivity updates
for tetrahedral meshes is difficult.

Very-large-scale bijective parameterizations.
As high-precision 3D scanners become more and
more widespread, it is easy to obtain very-large-
scale meshes containing at least millions of vertices.
However, due to the memory limitation of the used
computer, the commonly developed methods for
creating inversion-free mappings may fail for these
models. Ye et al. [89] use the scaffold-based method
to compute bijective parameterizations for very-large-
scale models. Instead of computing descent directions
using the mesh vertices as variables, they estimate
descent directions for each vertex by optimizing a
Since the
spline functions contain a small set of control points,
it significantly decreases memory requirement.

proxy energy defined in spline spaces.
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6.2 Bijective inter-surface mappings

Computing inter-surface mappings is a hot research
topic [90-92]. Here, we focus on bijective inter-surface
mappings that provide one-to-one correspondences
between two shapes. Besides, inter-surface mappings
can be used to generate compatible meshes that
possess the same connectivity structures [73, 93, 94].

Common domain-based methods. Many
approaches compute bijective inter-surface mappings
via common domains, such as spheres [82, 95],
coarse triangular meshes [31, 93, 96], and planar
domains [97-99]. The algorithm workflow usually
contains three steps: (1) constructing a common
domain, (2) bijectively mapping the input models
onto the common domain, and (3) determining the
inter-surface mapping by composing one mapping
with the inverse of the other.

Domain construction. Spheres are standard
domains and only suitable for genus-zero shapes.
In general, mapping the input shapes onto spheres
(i.e., spherical parameterizations) contains very
large distortion, and thus the resulting inter-surface
mappings may be distorted severely [82, 100, 101].
In addition, robustly computing bijective spherical
parameterizations without numerical issues still
deserves more research.

Constructing coarse triangular meshes is non-
trivial for arbitrary inputs. For example, progressive
meshes [102] are used to define the base domain
[31]. In Refs. [93, 96], common domains are built by
consistently connecting feature points with equivalent
paths over the two meshes.

The common planar domain is automatically
obtained by computing bijective parameterizations
with common boundary constraints [97-99]. The
parameterizations require the two input meshes to
be cut to disk topology. Thus, consistent cuts on
two meshes are needed. However, it is difficult to
construct them that will always lead to low distortion
inter-surface mappings.

Distortions optimization. Since the inter-
surface mapping is computed by composing one
mapping with the inverse of the other, it is difficult to
reduce the distortion. When two mappings are with
low distortion, the final inter-surface mapping has
a high probability of being low distortion; however,
this is not absolute. Then, an end-to-end method is
proposed to reduce the distortion of the final inter-

surface mapping [31, 103, 104]. They represent the
inter-surface mapping via a mutual tessellation and
optimize the symmetric Dirichlet energy.

6.3 Axis-aligned constraints

If the boundary of a closed shape is axis-aligned, it
is an awis-aligned structure. Axis-aligned structures
(PolyCubes in 3D and PolySquares in 2D) provide
compact representations for closed complex shapes.
They have been proved to be very useful to many
computer graphics applications, such as texture
mapping [105-107], hex/quad meshing [108-116]
(Fig. 9), GPU-based subdivision [117], and atlas
refinement [118, 119].

Constraints. Generally, closed complex shapes
are not axis-aligned. Thus, the goal of the
axis-aligned structure construction method is to
automatically and efficiently compute an axis-aligned
structure. In our view, a high-quality construction
algorithm usually satisfies the following properties:
e [nversion-free constraint: the axis-aligned structure

contains no degenerate or inverted elements;
e Distortion constraint: the mapping distortion is
as low as possible;
e  Corner constraint: the number of corners of the
axis-aligned structure is small.
Since the rest shape serves as the initialization, the
initial mapping is an identity map. Thus, we can keep
the axis-aligned map inversion-free by performing
explicit checks combined with line search. Then,
the left challenge is to strictly satisfy the axis-aligned
constraint while reducing as many corners as possible.

PolyCube

Input Hex mesh

Fig. 9 PolyCubes for all-hex remeshing. It contains three steps: (1)
constructing a PolyCube, (2) performing hex mesh generation of the
PolyCube domain, and (3) mapping the hex mesh back to the input
model.
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Deformation-based methods. The deformation-
based methods [108, 109, 111] contain three main
steps:

e Pre-axis-aligned deformation: it deforms the
input closed mesh to a pre-axis-aligned shape,
whose face normals are almost aligned with the
coordinate axes;

e Boundary segmentation: it determines whether
the boundary surface is sufficient to form a valid
axis-aligned structure [120];

e Boundary flattening: it maps the input to be
strictly axis-aligned.

Many axis-aligned energy terms are proposed and
optimized to drive the input shape to be pre-axis-
aligned. There are three common strategies:

e Rotation-driven strategy [109]: it computes
deformation gradients as the minimal rotation
necessary to align each surface vertex normal
with one of £X,4+Y,+7 and then uses the
computed deformation gradients to deform the
shape.

e Li-based energy [111]: if normals are along axes,
their L1 norms reach the optimal.

e Normal-smooth energy [108]: it first computes
target normals by Gaussian smoothing and closest
axis projection, and then measures the difference
between the current normals and the target
normals as the objective energy.

In practice, high-quality results are usually
achieved. However, these deformation-based methods
have no theoretical guarantee that the valid axis-
aligned topology can always be achieved under the
inversion-free constraints.

Segmentation-based method. This method
[115] first segments the input shape with valid axis-
aligned topology and then deforms the input to be
strictly axis-aligned. For the first step, a graph-cut
based approach is proposed to control the corner
counts. However, it contains two main limitations:
(1) their algorithm could be time-consuming due to
its local and greedy search and (2) their method
cannot always achieve valid axis-aligned topology, as
demonstrated in Ref. [121].

Construction-based methods. Given a closed
mesh and a pre-axis-aligned shape, the construction-
based methods first construct a valid axis-aligned
structure and then compute a bijective correspondence
between the constructed structure and the input
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mesh [110, 114, 121]. The pre-axis-aligned shape
can be generated by the aforementioned deformation
methods [108, 109, 111].

The goal of axis-aligned structure construction
is to reduce the number of corners and generate
low distortion mappings. However, axis-aligned
structures are not determined during the construction
process, and the distortion of the final mapping
cannot be computed. Therefore, the distortion
metric should be replaced with the approximation
error between the pre-axis-aligned shape and the
constructed axis-aligned structure. Morphological
operations [110] and an erasing-and-filling solver [121]
are proposed for construction. To build a bijective
correspondence between the axis-aligned structure
and the input mesh, Yang et al. [121] use a quad
mesh optimization algorithm.

These construction-based methods can theoretically
guarantee a valid axis-aligned structure. They have
two main limitations: (1) they are unable to handle
the pre-axis-aligned shapes containing global overlaps
and (2) they do not adequately align the sharp
features of the models.

Sharp features. Aligning the sharp features
of the input models to the edges of the axis-
aligned structures is non-trivial. To align most of
sharp features, Guo et al. [116] use a feature-aware
energy into the aforementioned deformation processes.
However, strictly preserving sharp features remains a
challenge.

6.4 Global seamless parameterizations

Problems. The global seamless parametrization is
widely used in some specific applications, such as
conforming quadrangulation and seamless texturing.
For the seamless mapping f : M — €, two kinds
of constraints should be satisfied. The one is the
inversion-free constraint in Eq. (1), the other one is
the seamless constraints of the parametrization [122]:

(O nflon o

where t;; € R?% and (u,v);,(u,v); are the
parameterization positions of any point on the
the edge e;; adjacent to simplices s; and s;
respectively, and
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is a rotation matrix with a seam rotation angle w;; =
kijm/2,ki; € Z. It can also be written as follow
[2, 123]:

Jieij = RijJjeij (9)

where J;, J; are the Jacobian matrix mentioned in
Section 2, e;; is the edge adjacent to simplices s; and
s;. Figure 10 shows an example with and without
the seamless constraint (8).

There are mainly three kinds of methods, which
are metric-based, field-based, and harmonic-based, to
generate global seamless parameterizations.

Metric-based methods.
J; can also be regarded as the metric of surfaces,

The Jacobian matrix

so the direct way to get the seamless mappings
is to construct an optimization problem with the
constraint (9) [124].

However, there are many other methods with
different representations of the metric. Based on
the notion of the PL metric in Section 2.1.4, a precise
notion of discrete conformal equivalence is presented
in Ref. [6]. The parametrization is generated by
finding a flat mesh that is discretely conformally
equivalent to a given mesh. The problem is convex,
and the seamless condition is transformed into the
angle defect condition on the vertices. Different
from Ref. [6], another conformal method, called
BFF (boundary first flattening), is presented in
Ref. [125]. The method is based on the Cauchy—
Riemann equation, and the final parametrization is
obtained by a linear system, so it is computed in real
time. The seamless condition is also transformed into
the cone condition.

Recently, some methods firstly cut the surface to
topological disk(s), and then modify the cone metric
so that the parametrization with the modified metric

With

Without

Fig. 10 Global seamless parameterizations.

is seamless. The fact is demonstrated in Ref. [126]
that, for (almost) any choice of cones, a corresponding
global parametrization can be constructed without
introducing additional cones. Based on this fact,
their algorithm firstly cuts the surface to topological
disk(s), then computes a cone metric on with
prescribed boundary curvature, and the boundary
With map padding, the metric is
modified into a seamless one. However, the nonlinear

is rectilinear.

optimization convergence is not sure to the prescribed
singularities, and there are some numerical issues such
as precision limit, which affect the discrete conformal
map computation. The method in Ref. [127] is a
general combinatorial method, which eliminates the
potential numerical issues in Ref. [126]. Similar
to Ref. [126], the surface is cut firstly. Then
the metapolygon will be constructed and modified
to satisfy the seamless condition of each piece.
The construction of the cone metric is explicit
combinatorial, and numerical optimization is taken
into account only for non-crucial decisions. Finally,
the parametrization over the cut surface can then
be obtained by existing techniques. Their method
is reliable to generate the validity, seamlessness, and
local injectivity parametrization with the expense of
more time cost on the process of padding.

Most of the metric-based methods are based on
conformal mapping so that these methods may be
with large area distortion. Recent popular distortion
metrics are considered in Ref. [128] to achieve low
metric distortion directly.

Field-based methods. The field-based methods
are often computing the guiding field firstly. Then
the parametrizations are from the field. The first
field-based approach in Ref. [129] is also based
on the conformal map. Their method computes
seamless parametrizations of nonzero genus surfaces
with boundaries. Since all conformal gradient fields
(holomorphic 1-forms) form a linear space, the
gradient field of the mapping can be got by solving
a linear system with some constraints on the field.
However, the final parametrization is not guaranteed
to be injective, and the conformal mapping will also
bring a large area distortion.

The methods based on two-direction field are
more common than one-direction field. Based on
cross-fields [130] and conformal map ideas [131],
Ref. [132] proposes a feature-aligned method to
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reduce the metric distortion of parametrization.
The seamless cone metric describes the seamless
condition. In Ref. [122], a quad patch partition
of the mesh is constructed by tracing the cross-
field, and then the partition is modified to satisfy
the global parametrization constraints, including
seamless. With the partition, the problem to find a
final parametrization is reduced to linear programs,
i.e., an optimization problem with convex constraints,
so the existence of a solution is always guaranteed.
This method enforces a local bijective and feature-
aligned, but singularities should be added during the
modification of partition. These methods allow the
feature-alignment, but the generation of the fields is
also a complex problem.

In Ref. [133], the author presents a novel method to
perform the quantization that satisfies the seamless
condition. The quantization is performed efficiently
by formulating the problem in alternative degrees of
freedom. Ref. [131] describes a method to produce
seamless parametrizations with low distortion. They
prove that the parametrization f with a cone metric
g is seamless if and only if the metric is also seamless,
so the seamless condition is transformed into the
seamless condition of cone metric g. Then, by
evolving the surface’s metric and finding a new metric
g with zero Gaussian curvature almost everywhere,
the method produces low-distortion, locally injective
parametrization for surfaces of arbitrary topology,
but the intrinsic method does not allow for feature
alignment.

Harmonic-based methods. Given desired cone
points and rational holonomy angles, Ref. [134]
proposes a method, which called HGP (harmonic
global parametrization), to compute seamless
parametrization of surfaces with arbitrary topology.
It is stated that if the cone and boundary triangles
are positively oriented and achieve the correct cone
and turning angles, the final parametrization is
locally injective. By this result, the parametrization
can be generated by solving the linear system, and
the seamless condition is converted into the linear
complex equations. In Ref. [135], an algorithm based
on Ref. [134] is presented for low-distortion locally
injective harmonic mappings. They construct a
linear subspace from the solutions of the HGP system
[134]. Then, the mapping is obtained by a nonlinear
non-convex optimization from the reduced subspace.

" IN$VL§S§Y'1I¥%§AS @ Springer

Their method achieves significant acceleration over
HGP. The above two methods are fast and robust,
but the local injectivity through convexification [134]
will exclude the valid solutions. Also, Ref. [135] can
only deal with the surfaces with genus zero.

7 Combinatorial problems

7.1 Cone singularity detection

Conformal parameterizations are easily computed.
The main advantage of conformal parameterizations
is free of angle distortion and inversions. However,
conformal parameterizations suffer from severe area
distortion (Fig. 11). Cone singularities [136] provide
a way to mitigate area distortion.

Problem overview. In fact, the area distortion
can always be reduced by adding more cones; however,
too many cones usually result in a long cut for
final parametrization. Thus, the goal of the cone
singularity detection algorithm is to achieve a desired
tradeoff between cone number, cone position, and the
area distortion. The number and placement of cones
are discrete, and thus this problem is combinatorial.
Therefore, computing the best configuration (number,
placement, and size) of cones is notoriously difficult.
Many methods have been proposed to solve this
challenging problem [6, 7, 131, 137].

Greedy methods. Cones are detected via a
simple greedy algorithm [6]. In each iteration, it
iteratively computes a conformal parameterization
and places a new cone at the point with the
greatest area distortion. The subsequent iterations
treat cone points as punctures in the domain and
can automatically determine cone angles by the

conformal parameterization process. In Ref. [7],

Fig. 11 Conformal parameterizations with large area distortion.
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a parameterization algorithm is devised and cone
locations are determined by the same greedy strategy.
Different from Ref. [6], it develops a diffusion process
involving Gaussian curvature to compute the cone
angles.

Incremental methods. Cones are determined by
incrementally flattening the surface [131]. Starting
with the original metric, a fraction of the surface
is incrementally constrained to have zero Gaussian
curvature. Then, only a small set of vertices, i.e.,
cones, have non-zero curvature. However, there is no
direct or explicit relationship between curvatures and
cone configurations, as shown in Ref. [137].

Optimization methods. Below a fixed total cone
angle bound, the method in Ref. [137] computes the
cone configuration with the least total area distortion.
However, the bound is not explicitly given in the
optimization, whereas it is implicitly controlled by a
weight for balancing its two energy terms. There is no
intuitive nor direct mapping between the controlling
parameter and the total cone angle bound. Judging
from the results in Ref. [137], some important cones
are not captured with default parameters, leading to
high area distortion.

7.2 Cut construction for parameterizations

Parameterized 2D meshes are commonly used to
store surface signals, such as colors, normals, and
displacements. Before being parameterized to the
plane, a closed mesh needs to be cut to a disk topology.
The feasibility and practicality of parameterizations
are affected by two major factors: (1) distortion and
(2) cut length. Short cuts and low isometric distortion
are both required for high-quality inversion-free
parameterizations. Usually, these two requirements
are contradictory (Fig. 12). Besides, cut generation
can be used for more applications, such as peeling
art design [138].

\}u Cs &

Fig. 12 Cut construction for parameterizations. In general, the
longer the cut seam, the smaller the distortion.

Combinatorial problem. Solving this problem
is very challenging. First, since a cut is discretely
represented as mesh edges, it is a combinatorial
problem. It is highly complex to reduce the length
using combinatorial optimization techniques. Second,
cut construction and parameterization generation are
coupled. Parameterizations are usually computed
after cuts are determined, and the distortion heavily
depends on the cut location.

Method classification. Three types of methods
are mainly proposed:

e Segmentation-based methods partition an input
mesh into multiple charts [29, 139-141].

e  Optimization-based methods
optimize the parameterization distortion and the
cut length [142, 143].

e Point-to-cut methods first detect feature points
where the distortion is usually concentrated and
then connect these feature points to construct
cuts [144-148].

Since the segmentation-based methods do not

simultaneously

explicitly minimize cut lengths, we discuss other
two methods in details. In addition, some greedy
methods are developed. Gu et al. [149] alternately
parameterize the mesh and connect the maximum
distortion vertex to the existing cut via the shortest
path. As observed by Ref. [146], this algorithm
often terminates early, resulting in large isometric
distortion. Triangles are parameterized one-by-one
in Ref. [150] without violating the user-provided
distortion bound. In general, the one-by-one way
is too local to produce a shorter cut than the cut
required to achieve a given bound, as observed by
Refs. [90, 143].

7.2.1

AutoCuts [143]. The energy function of AutoCuts
is the weighted sum of the cut-penalty energy and
the symmetric-Dirichlet distortion energy. During
optimization, the parameterized mesh is treated as

Optimization-based methods

a fixed topology triangle soup, and the cut-penalty
energy is optimized to pull separate triangles together.
A balancing weight between the cut-penalty energy
and the symmetric-Dirichlet distortion energy is
required. However, it is non-trivial to determine
the weight so that the desired tradeoff between cut
length and parameterization distortion is obtained.
OptCuts [142].
the cut length under bounded distortion constraint.

OptCuts directly optimizes
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Since the optimization problem is combinatorial,
they propose local topological operations, including
boundary vertex split, interior vertex split, and corner
merge. The local operations lead to early entrapment
by local minimum, thereby resulting in long cuts, as
shown in Ref. [147]. Besides, local operations also
cause a high computational cost.

Discussions. Simultaneous optimization of the
parameterization distortion and the cut length
[142, 143] is a combinatorial problem. Since the
nonlinear and non-convex optimization problem is
very complicated, these methods are time-consuming
and usually generate long cuts. Besides, they heavily
rely on the initializations.

7.2.2 Point-to-cut methods

Detecting points. Since parameterizations are
not determined during the feature point detection
process, proxy metrics, such as the Gaussian
curvature [144, 145] and distortion from spherical
parameterizations [146], are used as predictors of
anticipated parameterization distortion.

High curvature vertices have a high probability
of producing high isometric distortion.
as observed by Ref. [137], the relationship between

curvatures and distortions is not direct or clear.

However

A hierarchical clustering method uses distortion
metrics from spherical parameterizations [146]. Since
the spherical parameterization method [82] used in
Ref. [146] may fail to generate bijective spherical
parameterizations, distortion metrics from planar
parameterizations are used [148]. However, the voting
strategy requires ten times of planar parameterization.
Similar to Ref. [148], Zhu et al. [147] also use
planar parameterizations to generate proxy metrics.
To detect necessary feature points to achieve low
isometric distortion and prevent too many feature
points, a greedy filtering process is proposed [147].

Conformal cone singularities [6, 7, 131, 137] can
also be treated as feature points.

Connecting points. Given a graph and a
set of terminal vertices in the graph, the Steiner
tree problem seeks to find the minimum cost tree
connecting all the terminal vertices. This is an NP-
hard problem [151].

Algorithms for computing an exact solution to the
Steiner tree problem have been proposed [152-154].
However, they cannot generate the exact solution in
a reasonable amount of time for large-scale graphs
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or when there are many terminal vertices. In this
problem, if the number of feature points is small and
the size of the input mesh is moderate, the exact
solution for the Steiner tree problem can be achieved
within an acceptable time.

On this account, some approximation methods
have been proposed [155-158].
used approaches are based on the minimal spanning
tree (MST) [159] and the shortest paths heuristic
(SPH) [160]. The algorithm in Ref. [159] is used
by Refs. [144-146].
proposed to compute an approximate solution driven
As shown in Ref. [147], the
greedy algorithm outperforms MST and SPH, and

Two commonly

A greedy algorithm [147] is
by auxiliary points.

approximate the optimal solution better in the sense
of relative error.

Discussions. In practice, the relationship between
proxy metrics and parameterization distortion is not
clear and direct, and the configuration (number and
locations) of generated feature points is not always
appropriate. For example, large distortions can occur
if feature points are missing, whereas too many points
produce long cuts.

7.3 Hex mesh simplification

Remehsing. Given a 3D mesh, the remeshing
process computes another mesh so that its elements
satisfy some quality requirements and approximate
the input acceptably [161]. The mesh topology
and vertex positions are the wvariables.  Since
the topology is discrete, the remeshing can be
regarded as a combinatorial problem. In general, the
inversion-free constraint is not explicitly enforced
during the remeshing process. However, to improve
the robustness and reality of FEM, the generated
elements should not be inverted. For triangular
and tetrahedral meshes, the Delaunay triangulation
theoretically guarantees no inverted elements
(triangles or tetrahedrons). For quad and hex meshes,
it is challenging to achieve an inversion-free result.
Hex mesh simplification. Here we focus on the
hex mesh simplification. A high-quality hex mesh
should satisfy the following properties:
e Local reqularity: each hex element approaches a
cuboid and is free of negative scaled Jacobian.
e Singularity complexity: the singularity graph is
simple and the number of patches in the hex
layout is small.
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The input of hex mesh simplification is an inversion-
free hex mesh that contains no negative scaled
Jacobian. The goal is to reduce the number of patches
in the hex layout while avoiding any inverted hex
and maintaining the input surface shape. Obviously,
this is a combinatorial problem with inversion-free
constraints.

Two robust collapse operations. Gao et
al. [162] propose a robust structure simplification
algorithm. The main idea is to greedily perform
simplification operations, inducing sheet collapse and
chord collapse, to reduce the complexity of the base
complex of the input mesh. To keep the inversion-free
property, they formulate the simplification operation
as a deformation process that uses explicit checks
in combination with line search to avoid inversions.
In addition, the topological validity and geometrical
fidelity are also guaranteed by explicit checks. In
practice, these explicit checks limit the simplification
operation space, thereby leaving room in reducing
the singularity complexity.

8 Conclusions

We have presented the state-of-the-art in inversion-
free geometric mapping construction. In this section,
we discuss possible generalizations of existing
methods, and interesting unsolved problems.

Theoretical guarantee. If the initial mapping
is not inversion-free, no method has a theoretical
guarantee that the result is always inversion-free.
This is the most fundamental problem in studying and
computing inversion-free mappings. More theoretical
studies should be provided to achieve the inversion-
free goal.

Bijective mappings in 3D. Bijective mappings
in 3D are essential for many geometric processing
tasks. In the future, it is worthwhile to study how to
reduce computational costs in computing 3D bijective
mappings. However, the cases of boundary collision
in 3D are more complicated than 2D cases.

Time sequence data. Most geometric data in
the aforementioned applications are single and static.
One interesting future work is to explore optimization
algorithms on the time sequence data, which is
widely used in the reconstruction of the dynamic
scene. Combined with the semantic information, the
collaborative optimization for time sequence models
is a possible research direction.

Generalization. Many methods or thoughts
mentioned above can be generalized into a unified
framework. For example, the parameter « used in
TLC (Total Lifted Content) is fixed; but it can be
modified to be a changing parameter o« — 0, similar
to the idea of homotopy optimization. Moreover,
similar to the local-global method, these methods
can be generalized into a framework that can be used
in more applications.
Mesh cutting.

cutting algorithm [142] bounded; however, it usually

The distortion in the mesh

generates long cuts to achieve this goal. The greedy
method [147] often produces short cuts, but the
distortion is not explicitly bounded. It is interesting
to study the cut generation problem to achieve as
short cut as possible while bounding the distortion.

Feature-preserving PolyCube construction.
Although most features are aligned in Ref. [116],
there are still some features that are not aligned.
As shown in Ref. [121], a PolyCube corner, whose
valence is equal to five, is always non-manifold. Thus,
to match a feature point where five feature lines
converge, a PolyCube corner with the valence of
six is required. Preserving sharp features in the
PolyCube construction is an intriguing direction for
future research.

Quasi-conformal mappings in 3D. Conformal
and quasi-conformal mappings are powerful tools
for parameterizations or flattening of Riemann
surfaces. Meanwhile, there is very little work to
study 3D cases. According to Liouville’s theorem, the
conformal mappings in R"(n > 3) are only Miibius
transformations which is not flexible at all. Quasi-
conformal mappings are sufficiently flexiable and
still close to conformal in a suitable sense. To study
3D quasi-conformal mappings, Ref. [163] decouples
the scaling and rotation in conformal deformation
to generate a close-to-conformal mapping. However,
generally measuring and optimizing the conformal
quality of 3D quasi-conformal mappings are still
open problem and need more research.

Poor triangulations for intrinsic flows. The
computation process for intrinsic flows is affected
by the triangulations. Poor triangulation will
severely slow the convergence or even result in
non-convergence of the discrete intrinsic flow. Even
if an edge flip strategy is applied to improve the
quality of triangulation, the process may terminate
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when extreme poor triangular meshes are used as
inputs.
Hex mesh improvement. Improving the quality
of a hex mesh requires optimizing the structure
There
First, if
the input mesh contains inverted hex elements,

and vertex positions at the same time.
are several problems worth studying.

how to effectively and efficiently eliminate them?
Second, how to robustly compute a coarser structure
while satisfying the geometric fidelity constraint
and the topological constraint? Third, can we use
the structure optimization technique to help us to
eliminate inversion?
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