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Abstract A new method is presented to determine
parameter values (knot) for data points for curve and
surface generation. With four adjacent data points, a
quadratic polynomial curve can be determined uniquely
if the four points form a convex polygon. When the
four data points do not form a convex polygon, a cubic
polynomial curve with one degree of freedom is used
to interpolate the four points, so that the interpolant
has better shape, approximating the polygon formed
by the four data points. The degree of freedom
is determined by minimizing the cubic coefficient of
the cubic polynomial curve. The advantages of the
new method are, firstly, the knots computed have
quadratic polynomial precision, i.e., if the data points
are sampled from a quadratic polynomial curve, and
the knots are used to construct a quadratic polynomial,
it reproduces the original quadratic curve. Secondly,
the new method is affine invariant, which is significant,
as most parameterization methods do not have this
property. Thirdly, it computes knots using a local
method. Experiments show that curves constructed
using knots computed by the new method have better
interpolation precision than for existing methods.

Keywords knot; interpolation; polynomial curve;
affine invariant

1 Introduction

1.1 Problem

A fundamental problem in the fields of computer-

1 School of Computer Science and Technology, Shandong
Technology and Business University, Yantai 264005,
China. E-mail: F. Zhang, zhangfan51@sina.com (�);
J. Li, lijinjiang@gmail.com.

2 Co-Innovation Center of Shandong Colleges and
Universities: Future Intelligent Computing, Yantai 264005,
China. E-mail: P. Liu, liupq@126.com; H. Fan, fanlinw@263.net.

Manuscript received: 2020-03-30; accepted: 2020-06-17

aided design, engineering, scientific computing, and
computer graphics is the construction of curves
and surfaces with high precision and smoothness.
They require different attributes for different
applications [1–6]. To meet these requirements,
good interpolation techniques and parameterization
methods are needed. For scientific computation
and engineering application, constructing curves and
surfaces with high polynomial accuracy is desirable.
This paper focuses on how to determine the parameter
values, or knots, for a given set of points with high
precision.

1.2 Previous work

For a given set of data points to be interpolated, Pi =
(xi, yi), i = 1, . . . , n, the aim of parameterization
is to assign a parameter or knot value ti, t1 <

ti < tn, for each Pi. The interpolated curve can
be seen as the path of a particle through space,
while the parameter t can be regarded as time,
so the parameterization gives the location of the
particle at each moment of time. For the same set
of data, even with the same interpolation methods,
constructing curves with different parameterizations
will result in a different interpolant. The choice of
parameterization method will have a noticeable effect
on the interpolated curve. Uniform parameterization
is only suitable for cases when the intervals between
consecutive data points are equal. In applications,
three non-uniform parameterization strategies are
widely used: the chord length method [7], Foley’s
method [8], and the centripetal method [9]. The chord
length method is a sound parameterized method, as
parameter spacings reflect the chord lengths between
consecutive data points. However, this interpolation
only works well when the parametric curve is a
straight line. The centripetal method assumes that,
for a single arc, the centripetal force is proportional
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to the change in angle of the curve tangent vector
from start to end of the arc. Foley’s method is an
adaptive chord parameterization method giving good
planar parameterization results. But in terms of the
approximation error, our experiments show that none
of them can produce a satisfactory result.
The works by Lee [9] and Jeong et al. [10]

provide improved approaches for curves and surfaces
whose curvature changes greatly and is irregular.
However, our experiments show that the Jeong
et al.’s method generally results in more errors
than Lee’s method. In addition, out of the chord
length method, Foley’s method, and the centripetal
method, only the last can assure no local self-
intersection of the constructed curve [11]. Yuksel
et al. [11] gave an analysis of these three methods,
and showed that the curve produced by centripetal
parameterization is most visually appropriate, but
no mathematical explanation was given. Therefore,
although the centripetal method is especially suitable
for unevenly distributed data points, the resulting
interpolation curve of these methods does not always
capture all data characteristics. Fang and Hung [12]
refined the interpolation results of the centripetal
method to better capture wiggles, especially for
interpolation of abruptly changing data. Lim [13]
presented a new universal parameterization for B-
spline interpolation, with better performance than
existing parameterizations such as the ones in
Refs. [7–9] by depending on the nature of B-spline
basis functions, but experiments showed that this
method could not improve the precision of the
interpolation curves.
We note that the interpolation precision of the knot

location methods previously mentioned is only linear,
so if knot-set computed by the above methods is used
to construct interpolation curve, the interpolating
curve will not be a quadratic polynomial curve
when the data points are sampled from a quadratic
polynomial curve. If the data points are sampled
from a non-linear curve, e.g., a quadratic or cubic
polynomial curve, we would hope to reconstruct
the underlying high-order curve. Zhang et al. [14]
proposed a global method for choosing knots such
that the interpolant constructed from the knots
can exactly reproduce a quadratic polynomial curve.
The approximation is better than that of linear
precision methods in terms of error evaluation using

the associated Taylor series. Based on this method,
a local method for determining knots with quadratic
precision was introduced in Ref. [15]. Even though
this method employs a local computation, it has
the ability to preserve quadratic precision. Hartley
and Judd [16] discussed two ways of choosing knots:
an iterative method and a simple formula. As the
B-spline nodes were used as parameter values, it
can achieve good shape and good parameterization.
Martin [17] proposed a method of choosing knots
through optimization for parametric cubic spline
interpolation. In Ref. [18], the key concept was
to generate a unique curve by minimizing its stress
and stretching energies. An explicit function with
high precision was constructed to compute the
knots directly, which avoids solving a non-linear
optimization problem. Unfortunately, this method is
not invariant under affine transformation, as the knot
was determined from only three consecutive points.
The number of control points for constructing the
curve plays an important role. To solve the problem
that control points are redundant or inadequate,
for the 3D case, Ref. [19] extended the planar case
[20], and proposed an adaptive addition and removal
process to refine the control points for the B-spline
curve. Some articles also discuss the parameterization
problems of spatial data points for other applications,
while Refs. [21–24] construct parametric surfaces via
parameterization.
Parameterization for curve and surface construction

is still an open problem and has attracted considerable
attention. Motivated by Ref. [25], Lü [7] identified a
family of curves that can be parameterized by rational
chord-length, and studied how the rational quartic
and cubic curves could be applied to G1 Hermite
interpolation. Similarly, Bastl et al. [26, 27] extended
chord length parameterization of rational curves to
a family of RCL surfaces in any dimension. Tsuchie
and Okamato [28] introduced a curvature continuous
G2 quadratic B-spline curve for fitting planar curves.
The curve is constructed with non-uniform knots to
ensure the G2 condition, thereby reducing redundant
segments in comparison to the use of uniform knots.
To simplify the complicated optimization problem,
Ref. [28] calculated the control points and adjusted
the knot vector of the B-spline curve separately. Han
[29] also discussed geometrically continuous splines
in curve design, presenting a class of general quartic
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splines for a non-uniform knot vector. The generated
quartic spline curves have C2 continuity with three
local adjustable shape parameters, which greatly
influence the shape of the spline curve. Bashir
[30] presented the rational quadratic trigonometric
Bézier curve with two shape parameters. Two
segments of the objective curve can be joined with
G2 and C2 continuity. Stepping outside the classical
tensor product setting, Ref. [31] assigned a different
parameter interval to each mesh edge, allowing
interpolation of each section’s polyline at parameter
values that can prevent wiggling or other interpolation
artifacts, to yield high-quality interpolating surfaces.

1.3 Proposed method

This paper provides a new method for computing
knots. Its derivation is based on the assumption that
the given set of data points have been sampled from
a parametric curve that can be approximated well
by piecewise quadratic or cubic polynomial curves.
In particular, it assumes that each curve segment
between four adjacent points can be approximated
by a quadratic polynomial or a cubic polynomial.
If the four adjacent consecutive data points form a
convex polygon, the four data points are sufficient
for determining a unique interpolating quadratic
polynomial curve. Otherwise, a cubic polynomial
curve with one degree of freedom is used to
interpolate the four points; this degree of freedom is
determined by minimizing the cubic coefficient of the
cubic polynomial curve. This technique constructs
quadratic and cubic polynomial curves consistently,
in the sense that for a quadratic polynomial curve,
its cubic coefficient is zero, while for a cubic
polynomial curve, its cubic coefficient is as small as
possible. Minimizing the cubic coefficient of the cubic
polynomial curve ensures that the cubic polynomial
curve approximates the polygon formed by the four
data points well, and hence has excellent shape. As
the knots are determined by the quadratic curve and
the cubic curve, they can reflect the distribution of
the data points well. When the quadratic and cubic
polynomial functions are determined, computing the
knot values for each data point is an easy task.
The new method has several advantages. Firstly,

the knots computed have quadratic polynomial
precision: if the data points are sampled from an
underlying quadratic polynomial curve, and the
knots are used to construct a quadratic polynomial

interpolant, the resulting curve reproduces the
underlying quadratic curve. Therefore, when used
for curve construction, the resulting curve has
higher precision than methods with linear precision.
Secondly and importantly, the new method is affine
invariant. Furthermore, our method is a local
method, so it is easy to modify a curve interactively,
making the curve design process efficient and flexible.
Experiments show that curves constructed with
knots computed by the new method have better
interpolation precision than curves constructed using
knots from existing methods. Experiments show that
the approximation precision of our method is better
than for methods in Refs. [7–9, 12, 15, 18, 27].

2 Basis of the new method
Let Pi = (xi, yi), 1 � i � n, be a given set of distinct
data points. The goal is to compute a knot value
ti for each point Pi. When the knots are used to
construct a parametric curve P (t) interpolating all
Pi = (xi, yi) using an existing interpolation method,
P (t) should have quadratic polynomial precision as
defined above.
The main idea of the new method is as follows.

For each point Pi, we locally compute a knot ti

from consecutive data points. For the two sets
of consecutive data points corresponding to Pi,
{Pi−2, Pi−1, Pi, Pi+1} and {Pi−1, Pi, Pi+1, Pi+2}, two
respective curves Pi(t) and Pi+1(t) are constructed
through the two sets. These curves are used to
compute the knot ti associated with Pi.
We compute the ti to satisfy the following condition

that, if the Pi are taken from a parametric quadratic
polynomial, Pi = P (ui) where P (u) = (x(u), y(u)) is
defined by

x(u) = X2u2 +X1u+X0

y(u) = Y2u2 + Y1u+ Y0
(1)

then
ti = αui + β, 1 � i � n (2)

for some constants α and β. This will ensure the
quadratic precision requirement, since a linear
transformation of knot values does not change the
shape of a curve.
If the data points Pi, are taken from a quadratic

polynomial defined by Eq. (1), any four consecutive
data points {Pi−2, Pi−1, Pi, Pi+1}, i = 3, 4, · · · , n − 1
will uniquely determine a quadratic polynomial curve
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Pi(t) which is the same as P (u) in Eq. (1), but possibly
with a different parameterization. Let ti

j = αiuj + βi

be the knots computed with respect to Pi(t) passing
through the four data points {Pi−2, Pi−1, Pi, Pi+1}.
Let ti+1

j = αi+1uj + βi+1 be the knots computed
with respect to Pi+1(t) passing through the four
data points {Pi−1, Pi, Pi+1, Pi+2}. Although Pi(t)
and Pi+1(t) are the same as the quadratic curve P (u)
in Eq. (1), they may have different parameterizations.
Thus, we will have two sets of knot values ti

j and ti+1
j

for the three data points Pj , j = i − 1, i, i+ 1. Since
the two sequences of knots ti

j and ti+1
j , j = i−1, i, i+1,

are both linearly related to ui, it is possible to use a
linear mapping to match the two sequences. For each
point Pi, as the knot ti is locally computed using two
curves Pi(t) and Pi+1(t), all ti could have different
parameterizations, so one needs to reparameterize ti

in a parameter space.
To develop a complete solution based on the idea

above, we face two tasks. We must compute the local
knot sequence tj from two groups of four consecutive
data points separately, and then we must merge all of
these local knot sequences into a global knot sequence
in a parameter space which has quadratic precision.
These two steps will be explained in the following
sections.

3 Computing knot si from consecutive
data points

In this section, determining the knots of three
consecutive points {Pi−1, Pi, Pi+1} from their
neighboring points is discussed in detail. For each set
of four neighboring points {Pi−2, Pi−1, Pi, Pi+1}, a
quadratic curve or cubic curve Qi(s) can be uniquely
defined. For the next set of four points {Pi−1, Pi,

Pi+1, Pi+2}, a quadratic curve or cubic curve also
can be determined. The three points {Pi−1, Pi, Pi+1}
are shared by these two sequences. Note that each
group of each three neighboring points is a participant
in at least two adjacent sequences. The key is the
combination of the two sequences of si and si+1.

3.1 Computing si from a quadratic polynomial

For five given consecutive points Pj = (xj, yj), j =
i − 2, i − 1, i, i+1, i+2, if Pi−1, Pi, and Pi+1 are non-
collinear, then using the following transformation:

x = a11(x − xi) + a12(y − yi)
y = a21(x − xi) + a22(y − yi)− h

(3)

where
a11 =

yi−1 − 2yi + yi+1
r

a12 =
−xi−1 + 2xi − xi+1

r

a21 =
h(yi−1 − yi+1)

r
(4)

a22 =
h(xi+1 − xi−1)

r
r = (xi+1 − xi)(yi−1 − yi)− (xi−1 − xi)(yi+1 − yi)

the coordinates of Pi−1, Pi, and Pi+1 can be
transformed to (−1,0), (0,−h), (1,0), as shown in
Fig. 1. The quadratic polynomial Pi(s) interpolating
points (−1,0), (0,−h), and (1,0) is as follows:

x =
(s − si)(1− s)

si
+

s(s − si)
1− si

y =
s(s − 1)

si(1− si)
h

(5)

where 0 < si < 1 is a parameter to be determined,
satisfying:

si =
ti − ti−1

ti+1 − ti−1
(6)

Theorem 1. In Eq. (5), the relationship between
parameter s and point (x,y) is defined by

s =
1+ x+ y(1− 2si)/h

2
(7)

Proof Eq. (5) may be rewritten as

x =
(s − si)(1− s)(1− si) + s(s − si)si

si(1− si)
y

h
=

s(s − 1)
si(1− si)

(8)

We have
xh

y
=
(s − si)(1− s)(1− si) + s(s − si)si

s(s − 1) (9)

Now
xh

y
=
(s − si)(1− s − si + 2sis) + si(1− si)

s(s − 1) − h

y
(10)

Fig. 1 Five data points after transformation.
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By simple algebra, it follows from Eq. (10) that Eq. (7)
holds.
Once the parameter si associated with (xi, yi) has

been identified, the parameter value s at point (x, y)
can be found using Eqs. (7) and (5) and simple
algebra:

a(x, y)s2
i + b(x, y)si + c(x, y) = 0 (11)

where
a(x, y) = 4y(y + h)

b(x, y) = −2y(σ(x, y) + ρ(x, y) + 2h)

c(x, y) = ρ(x, y)σ(x, y)

(12)

and
ρ(x, y) = h(1 + x) + y

σ(x, y) = h(x − 1) + y

Parameter si is the solution of Eq. (11). The five
points Pj , j = i−2, i−1, i, i+1, i+2, can be mapped
via the affine mapping in Eq. (3) to the coordinates
(xi−2, yi−2), (0, 1), (0, −h), (1, 0), and (xi+2, yi+2),
respectively, as shown in Fig. 1, so Eq. (11) is invariant
under this affine mapping, and hence, the parameter
si is invariant.
If the coordinate values of point (xi+2, yi+2) satisfy

yi+2 + h(xi+2 − 1) > 0 and yi+2 − h(xi+2 − 1) > 0,
i.e., point Pi+2 is located in the area with solid lines,
then the four points {Pi−1, Pi, Pi+1, Pi+2} form a
convex polygon, as shown in Fig. 1. When (x, y) =
(xi+2, yi+2), the root of Eq. (11) is given by

sr
i =

−b(xi+2, yi+2)− √
G(xi+2, yi+2)

2a(xi+2, yi+2)
(13)

where G(xk, yk) = b(xk, yk)2 − 4a(xk, yk)c(xk, yk),
k = i + 2. Similarly, if the coordinate values of
point (xi−2, yi−2) satisfy yi−2 − h(xi−2 + 1) > 0 and
yi−2 + h(xi−2 + 1) > 0, i.e., point Pi−2 is located in
the area with dotted lines, as shown in Fig. 1. The
root of Eq. (11) with (x, y) = (xi−2, yi−2) is given by

sl
i =

−b(xi−2, yi−2) +
√

G(xi−2, yi−2)
2a(xi−2, yi−2)

(14)

where G(xi−2, yi−2) defined as before. We may now
state the following theorem:

Theorem 2. When (x, y)=(xi+2, yi+2), (xi−2, yi−2),
the roots of Eq. (11) are sr

i and sl
i, respectively.

Proof For simplicity, (x, y) in Eq. (11) is set to
(0, y). Then a(x, y), b(x, y), and c(x, y) in Eq. (12)
become

a(x, y) = 4y(y + h)
b(x, y) = −4y(y + h)
c(x, y) = (y + h)(y − h)

Then, the two solutions of Eq. (11) are

si =
y ± √

hy

2y
(15)

Substituting Eq. (15) into Eq. (7) gives

si =
1
2

(
1− ±√

hy

h

)
(16)

For (x, y) = (xi+2, yi+2), sr
i should satisfy sr

i > 1:
as y > h, it follows from Eq. (16) that sr

i should
be defined by Eq. (13). Similarly, for (x, y) =
(xi−2, yi−2), sl

i < 0 should be defined by Eq. (14).

3.2 Computing si from a cubic polynomial

In addition to above two cases, however, we must
consider another one: when the coordinate values
(xj , yj), j = i−2, i+2, fail to meet yi+2−h(xi+2−1) >

0 and yi−2 + h(xi−2 + 1) > 0, i.e., points Pi−2 and
Pi+2 are not located in the dotted line area and the
solid line area, respectively, shown in Fig. 1. In
this case, points (−1, 0), (0, −h), (1, 0), and (xj , yj),
j = i − 2, i + 2, do not form a convex polygon, so
it is necessary to construct a cubic polynomial to
interpolate the four consecutive points. Let the knots
of points Pj , j = i − 2, i+ 2, be sj . Then

sj =
1 + xj + yj(1− 2si)/h

2
(17)

The cubic polynomial interpolating the four
consecutive points is

x = −(s − si)(s − 1)
si

+
s(s − si)
1− si

+
W (s)
W (sj)

Xj

y =
s(s − 1)

si(1− si)
h+

W (s)
W (sj)

Yj

(18)
where

W (s) = s(s − si)(s − 1)

Xj = xj +
(sj − si)(sj − 1)

si
− sj(sj − si)

1− si

Yj = yj − sj(sj − 1)
si(1− si)

h

(19)

Parameter si in Eq. (18) is determined by
minimizing the cubic coefficient of Eq. (18), i.e., by
minimizing the following objective function:

G(si) =
X2

j + Y 2
j

W (sj)2
(20)

The definition of objective function Eq. (20) is
reasonable. When (−1, 0), (0, −h), (1, 0), and (xj , yj)
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form a convex polygon, the cubic coefficient of the
curve function is zero. While, when (−1, 0), (0, −h),
(1, 0), and (xj , yj) do not form a convex polygon, the
cubic coefficient of the cubic curve should be as small
as possible, enabling a slow and stable change of curve
shape in both cases.

3.3 Computing si

When the five points Pj = (xj , yj), i − 2 � j � i+ 2,
are taken from the same quadratic curve, sl

i = sr
i .

However, for data points in general positions (but
still assumed to form a convex chain), these five
points may not lie on the same underlying quadratic
curve, so sl

i �= sr
i . In this case, we must reconcile

the two values to determine a knot si for Pi. An
obvious choice would be to set si = (sl

i + sr
i )/2. In

the following, a more elaborate, improved scheme to
find si from sl

i and sr
i is proposed.

Reconsidering Eq. (11), let
h(x, y, s) = a(x, y)s2 + b(x, y)s+ c(x, y) = 0 (21)

Then, sl
i and sr

i are roots of h(xi−2, yi−2, s) and
h(xi+2, yi+2, s), respectively, as shown in Fig. 3. Let

si = sl
i + r(sr

i − sl
i) (22)

and
g(r) = h(xi−2, yi−2, si)2 + h(xi+2, yi+2, si)2 (23)

It is obvious that a good choice for si in Eq. (22) gives
g(r) a small value, as it follows from Eqs. (5)–(14)
that small a g(r) means that Pi(s) in Eq. (5) well
approximates the five data points (xi−2, yi−2), (0, 1),
(0, 0), (1, 0), and (xi+2, yi+2). The shape of g(r) is
shown in Fig. 2. Our goal is to find a rc satisfying

sc
i = sl

i + rc(sr
i − sl

i)
so that g(rc) has the minimum value of g(r), as shown
in Fig. 2, and defined by

g(rc) = h(xi−2, yi−2, sc
i )2 + h(xi+2, yi+2, sc

i )2 (24)
The value of rc is determined by

dg(r)
dr

= 0 (25)

Eqs. (21)–(23) show that Eq. (25) is a cubic equation,
so it is easy to solve. Although we found no case in

Fig. 2 Plot of Eq. (23).

Fig. 3 Positions of sl
i, sc

i , and sr
i .

our experiments for which Eq. (25) has no root in the
interval (0, 1), we handle such cases as follows: rc

i is
defined by

sc
i =

{
sl

i, if g(0) < g(1)
sr

i , otherwise
(26)

Eqs. (13), (14), and (22) give three estimates for
si: sl

i, sc
i , and sr

i , respectively, as indicated in Fig. 3.
We now compute si as a combination of sl

i, sc
i , and

sr
i . We first discuss how to define the weight ω(si)
associated with knot si. Whichever of sl

i, sc
i and sr

i is
closest to 0.5 should have the biggest effect on si, so
the weight ω(sl

i) should be proportional to sl
i(1− sl

i).
Let

w(s) =
√

h(xi−2, yi−2, s)2 + h(xi+2, yi+2, s)2 (27)
Obviously, for sl

i, sc
i , and sr

i , the best case is that
they satisfy w(sl

i) = w(sc
i ) = w(sr

i ) = 0. As in
this case, each of sl

i, sc
i , and sr

i makes the curves
in Eq. (5) or (18) interpolate the five points Pj =
(xj , yj), j = i−2, i−1, i, i+1, i+2. Thus, the weight
ω(si) associated with knot si should be inversely
proportional to w(si). Based on the discussion above,
weight ω(si) is defined as

ω(si) =
s2

i (1− si)2

w(si)
(28)

If any of w(sl
i), w(sc

i ), and w(sr
i ) is zero, then si

should be set equal to it. Otherwise, si is defined by
a weighted combination of sl

i, sc
i , and sr

i , given by

si =
ω(sl

i)sl
i + ω(sc

i )sc
i + ω(sr

i )sr
i

ω(sl
i) + ω(sc

i ) + ω(sr
i )

(29)

3.4 Discussion

So far we have neglected the case where some three
consecutive points are collinear. We now address it.
When Pi−1, Pi, and Pi+1 are on a straight line, we set

si =
|Pi−1Pi|

|Pi−1Pi|+ |PiPi+1| (30)

This choice makes the quadratic polynomial through
Pi−1, Pi, and Pi+1 a straight line with constant first
derivative. This is the most naturally defined curve
for this case.



Computing knots by quadratic and cubic polynomial curves 423

Finally, for the end data points, s2 corresponding
to Q2(s) is determined using the four points Pj, j =
1, 2, 3, 4, and sn−1 corresponding to Qn−1(s) is deter-
mined using the points Pj, j = n − 3, n − 2, n − 1, n.

4 Computing ti with a local method
Based on the discussion above, with two sets of four
data points {Pj−1, Pj , Pj+1, Pj+2}, j = i − 1, i, one
can construct two quadratic curves Pi(s) and Pi+1(s),
with two knot intervals 1 − si and si+1 for Pi and
Pi+1, respectively. For Pi(s), the knot interval for
Pi−1 and Pi+1 is set to [0, 1], while for Pi+1(s), the
knot interval for Pi and Pi+2 is set to [0, 1]. Hence
Pi(s) and Pi+1(s) are defined on different parametric
spaces. The reason is as follows. For Pi(s), the knot
interval for Pi−1 and Pi+1 is [0, 1], so from Eq. (6),
the knot corresponding to Pi+2 is

si+2 = (ti+2 − ti−1)/(ti+1 − ti−1) (31)
Thus, for Pi(s), the knots corresponding to Pi, Pi+1,
and Pi+2 are si, 1, and si+2, respectively. Since Pi+2
could have any possible position, in general, si, 1, and
si+2 will not be 0, si+1, and 1 through the translation
transformation defined in Eq. (6), i.e., the two sets
{si, 1, si+2} and {0, si+1, 1} generally do not satisfy

1− si

si+2 − 1 =
si+1

1− si+1
In the following, we will use a normal form of a
quadratic curve introduced in Ref. [15] to translate all
Pi(s), 1 < i < n, into the same parameter space, then
compute the knot interval for Pi and Pi+1 by merging
1−si and si+1. All the knot intervals corresponding to
data pairs Pi−1 and Pi, i = 2, · · · , n−1, are combined
to form a consistent global knot sequence with respect
to the same parameterization of a quadratic curve.
If the knots corresponding to Pi−1, Pi, and Pi+1

are 0, si, and 1, respectively, then the quadratic
polynomial Pi(s) passing through these three data
points can be written as

xi (s) = ais
2 + bis+ xi−1

yi (s) = dis
2 + eis+ yi−1

(32)

where
ai =

(xi−1 − xi)(1− si) + (xi+1 − xi)si

si(1− si)

bi = −ais
2
i + xi−1 − xi

si

di =
(yi−1 − yi)(1− si) + (yi+1 − yi)si

si(1− si)

ei = −dis
2
i + yi−1 − yi

si

(33)

If Pi(s) and Pi+1(s) represent the same curve, they
can be transformed into the normal form in Eq. (36),
and they will have the same knot intervals between
Pi and Pi+1.
Suppose that in Eq. (33), ai �= 0 or di �= 0. By the

following transformation Eq. (34):
x̄ = x cos θi + y sin θi

ȳ = −x sin θi + y cos θi

(34)

where
cos θi =

ai + di√
a2

i + d2
i

sin θi =
di − ai√
a2

i + d2
i

and a linear reparameterization Eq. (35):

t =
(
a2

i + d2
i

) 1
4 s (35)

Pi(s) in Eq. (32) can be transformed into the following
normal form:

x̄i (t) = t2 + b̄it+ d̄i

ȳi (t) = t2 + ēit+ f̄i

(36)

where
d̄i = cos θixi−1 + sin θiyi−1

f̄i = − sin θixi−1 + cos θiyi−1

b̄i =
cos θibi + sin θiei√
cos θiai + sin θidi

ēi =
− sin θibi + cos θiei√
cos θiai + sin θidi

(37)

Also, the properties of the above argument are
invariant under such a normal form transformation
of the quadratic polynomial.
When the quadratic curve Pi (s) in Eq. (32) is

transformed into the normal form in Eq. (36) by the
reparameterization process in Eqs. (34) and (35), the
knot intervals si and 1− si in Eq. (32) become Δi

i−1
and Δi

i, respectively, defined by

Δi
i−1 =

(
a2

i + d2
i

) 1
4 si

Δi
i =

(
a2

i + d2
i

) 1
4 (1− si)

(38)

where ai and di are defined in Eq. (33).
By mapping each Pi(s) into normal form, for each

pair of consecutive points Pi and Pi+1, there are two
knot intervals, Δi

i and Δ
i+1
i , 2 � i � n − 1. In

general, Δi
i �= Δi+1

i . Each of the two end data points
has only one knot interval, i.e., Δ2

1 for the pair P1
and P2, and Δn−1

n−1 for the pair Pn−1 and Pn. We
average the two sequences of knot intervals,

{
Δi

i

}
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and
{
Δi+1

i

}
, into a single sequence of knot intervals,

{Δi}, i = 1, . . . , n − 1, using the following formula
Δ1 = Δ2

1

Δi = αiΔi
i + βiΔi+1

i , i = 2, . . . , n − 2
Δn−1 = Δn−1

n−1

(39)

where αi and βi are weights, satisfying αi + βi = 1.
We now discuss the computation of αi and βi in

Eq. (39). If all the data points are taken from the
same quadratic curve, then

αi = βi = 0.5

αiΔi
i − βiΔi+1

i = 0
(40)

If all data points are not taken from the same
quadratic curve, the values of αi and βi will be
different, so Δi

i and Δ
i+1
i should have different effects

on Δi. Corresponding to Pi and Pi+1, there are
two knot intervals 1 − si and si+1. If si(1 − si) >

si+1(1 − si+1), in general, |di − di−1| < |di+1 − di|,
which means that si has higher precision than si+1, so
Δi

i should have a bigger effect on Δi than Δi+1
i . On

the other hand, if si > 1− si, Δi
i has higher precision

than Δi
i−1 as in the case di−1 > di, and similarly, if

1− si+1 > si+1, Δi+1
i has higher precision than Δi+1

i+1.
This means that αi and βi should be proportional to
the values s2

i (1− si) and si+1(1− si+1)2, respectively.
For convenience, we first define two knot effect factors:

α0
i =

s2
i (1− si)

s2
i (1− si) + si+1(1− si+1)2

β0
i =

si+1(1− si+1)2

s2
i (1− si) + si+1(1− si+1)2

To determine αi and βi from Eq. (40), we first define
the following objective function
G(α1

i , β1
i ) = (α1

i −α0
i )2+(β1

i −β0
i )2+(α1

iΔi
i−β1

iΔ
i+1
i )2

Minimizing G(α1
i , β1

i ) yields:

α1
i =

α0
i (Δ

i+1
i Δi+1

i + 1) + β0
iΔi

iΔ
i+1
i

2(Δi
i)2 + 2(Δ

i+1
i )2 + 2

β1
i =

β0
i (Δi

iΔi
i + 1) + α0

iΔi
iΔ

i+1
i

2(Δi
i)2 + 2(Δ

i+1
i )2 + 2

.

(41)

In general, α1
i + β1

i �= 1, they can not be used to
define αi and βi directly. The factors α0

i and β0
i will

be used to define the final αi and βi again. Now αi

and βi in Eq. (39) are defined by

αi =
α0

i α1
i

α0
i α1

i + β0
i β1

i

βi =
β0

i β1
i

α0
i α1

i + β0
i β1

i

(42)

For the end data points, there is only one knot
interval, Δ1

2, for the pair P1 and P2, and there is one
knot interval, Δn−1

n−1, for the pair Pn−1 and Pn. So
Δ1 and Δn−1 are defined by

Δ1 = Δ1
2

Δn−1 = Δn−1
n−1

(43)

Now, the global knot sequence {ti}, i = 1, . . . , n, is
determined by

t1 = 0
ti+1 = ti +Δi, i = 1, . . . , n − 1 (44)

5 Experiments
Various experiments are presented in this section,
including comparisons between our method (New)
with the explicit function method (M0) [18], the
chord length method (M1), Foley’s method (M2), the
centripetal method (M3), the quadratic polynomial
precision method (M4) [15], the rational chord length
method (M5) [27], and the refined centripetal method
(M6) [12]. The comparison is carried out using three
types data points sampled from three sets of primitive
curves. For consistency, two are taken from existing
studies [14, 15]. The 8 methods are compared by
computing knots for constructing interpolation curves.
The method of constructing curves and computing
the tangent vector at each point follow Li et al. [18].
Afterwards, we compare the interpolation precision
of piecewise cubic Hermite curves constructed by
these 8 methods, and consider the performance of the
algorithms.
Data points of the first type are sampled from a

family of ellipse arcs, F1(k, t) = (x1(k, t), y1(k, t)),
defined by

x1(k, t) = (2 + 0.5k)cos(2πt)

y1(k, t) = 2sin(2πt)
(45)

where k = 0, . . . , 13. Data points of the second type
are sampled from a family of cubic Hermite curves,
F2(k, t) = (x2(k, t), y2(k, t)), k = 1, . . . , 14, defined
by

x2(k, t) = df1(t) + 3g0(t) + dg1(t)

y2(k, t) = df1(t)− dg1(t)
(46)

where d = 3 + 0.5k, and f0(t), f1(t), g0(t), g1(t) are
cubic Hermite basic functions on [0, 1].

f0(t) = (1− t)2(1 + 2t), f1(t) = (1− t)2

g0(t) = t2(3− 2t), g1 = −t2(1− t)
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The knots computed by the new method and method
M4 are exact when the data points are taken from
a quadratic polynomial curve, and since F2(k, t) is a
quadratic polynomial at k = 0, the case when k = 0 is
discarded here. Plots of F2(k, t) = (x2(k, t), y2(k, t)),
k = 0, 2, 4, . . . , 14, are given in Fig. 4.
Data points of the third type are taken from four

basic curves, Fl(t) = (xl(t), yl(t)), l = 3, 4, 5, 6,
defined as follows:

x = t

y = sin(πt)
(47)

x = t

y = eπt
(48)

x = t

y =
√
1 + (πt)2

(49)

x = t

y =
1

1 + (t − 0.5)2
(50)

For making the comparison, the interval [0, 1] is
divided into 20 sub-intervals to define the data points
Pi = Fj(k, ti) or Fl(ti), i = 0, 1, · · · , 19, j = 1, 2,
l = 3, . . . , 6, where ti is defined by

ti = [i+ λ sin((20− i)i)], i = 0, 1, · · · , 20 (51)
where 0 < λ � 0.25 to ensure the data points
are non-uniformly distributed [14, 15], and meet
max{di−1, di} � 3min{di−1, di}.
As F2(k, t) and Fl(t), l = 3, . . . , 6 are not closed

curves, it is therefore easy to reach the maximum error
at the end points. Instead, the tangent vectors of
F2(k, t) and Fl(t), l = 3, . . . , 6, at the end points t = 0
and t = 1 are used to construct the cubic Hermite
curves. The absolute errors of F1(k, t), F2(k, t), and

Fig. 4 Plots of F2(k, t).

Fl(t), l = 3, . . . , 6, are used to evaluate the algorithms’
performance, defined as below [14, 15]:

Ej(k, t) = |P (s)− Fj(k, t)|
= min{|Pi(s)− Fj(k, t)|}, j = 1, 2

El(t) = |P (s)− Fl(t)|
= min{|Pi(s)− Fl(t)|}, l = 3, 4, 5

si � s � si+1, i = 0, 1, . . . , 19

(52)

where P (s) denotes one of the cubic Hermite curves
constructed by the 8 methods. Fj(k, t), j = 1, 2, and
Fl(t), l = 3, 4, 5, 6, are defined by Eqs. (45)–(50),
respectively. Pi(s) denotes the part of P (s) on the
interval [si, si+1]. The distance from P (s) to Fj(k, t)
and Fl(t) is defined as |P (s)− Fj(k, t)|, j = 1, 2, and
|P (s)− Fl(t)|, l = 3, 4, 5, 6.
Results of comparing these 8 methods for the

first and second types of data points are given first.
Tables 1 and 2 give the maximum values of errors
E1(k, t) and E2(k, t) generated by the 8 methods,
where in E1(k, t), k = 0, 1, · · · , 13, and in E2(k, t),
k = 1, · · · , 14, when λ = 0.15 in Eq. (51). In
these tables, minimum values of maximum errors
are highlighted. They clearly demonstrate that the
new method has lowest maximum error in most cases.
Figure 5 gives the error curves E1(k, t) and E2(k, t)
at k = 6, λ = 0.15 produced by the various methods,
which gives a visual understanding of the precision
of the curves constructed by these methods. The
error curves for M5 is not shown because of its
similarity to the ones for M3. These results indicate
the higher precision of the curves constructed by the
new method, trailed by the M0 and M4 methods.
Results on further experiments on the third type of

data points, sampled from four basic curves defined
by Eqs. (47)–(50), are provided in Table 3. It gives
the maximum errors for the set of data points sampled
from F1(t), when λ = 0.05i, i = 1, . . . , 5 in Eq. (51).
Table 3 reveals that, for F1(t), the precision of the
new method is much greater than for the other 7
methods. Similar comparison experiments for the
other Fl(t) = (xl(t), yl(t)), l = 4, 5, 6, show similar
results. Table 3 also indicates that, when constructing
curves interpolating the third type of data points,
the new method has an obvious advantage in curve
precision over the other seven methods. Among the
rest seven methods, M0 provides better results than
M1–M6.
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Table 1 Maximum errors of E1(k, t) for λ = 0.15

E1(k, t) New M0 M1 M2 M3 M4 M5 M6
K = 0 1.33e-3 1.64e-3 1.02e-3 5.95e-3 1.03e-2 1.11e-3 1.76e-2 8.96e-3
K = 1 1.37e-3 1.78e-3 2.18e-3 7.67e-3 1.24e-2 1.24e-3 2.09e-2 1.09e-2
K = 2 1.71e-3 2.04e-3 3.49e-3 9.14e-3 1.40e-2 1.75e-3 2.36e-2 1.23e-2
K = 3 2.09e-3 2.39e-3 5.59e-3 1.03e-2 1.51e-2 2.24e-3 2.58e-2 1.32e-2
K = 4 2.46e-3 2.70e-3 7.99e-3 1.14e-2 1.57e-2 2.71e-3 2.77e-2 1.36e-2
K = 5 2.79e-3 2.96e-3 1.07e-2 1.27e-2 1.58e-2 3.19e-3 2.93e-2 1.37e-2
K = 6 3.10e-3 3.19e-3 1.35e-2 1.42e-2 1.60e-2 3.63e-3 3.06e-2 1.50e-2
K = 7 3.38e-3 3.39e-3 1.73e-2 1.55e-2 1.76e-2 4.03e-3 3.17e-2 1.66e-2
K = 8 3.64e-3 3.58e-3 2.20e-2 1.66e-2 1.91e-2 4.41e-3 3.26e-2 1.82e-2
K = 9 3.88e-3 3.75e-3 2.71e-2 1.76e-2 2.04e-2 4.75e-3 3.34e-2 1.97e-2
K = 10 4.10e-3 3.93e-3 3.23e-2 1.84e-2 2.17e-2 5.08e-3 3.40e-2 2.10e-2
K = 11 4.30e-3 4.22e-3 3.76e-2 1.91e-2 2.28e-2 5.38e-3 3.45e-2 2.21e-2
K = 12 4.58e-3 4.71e-3 4.30e-2 1.97e-2 2.38e-2 5.66e-3 3.50e-2 2.30e-2
K = 13 4.97e-3 5.51e-3 4.83e-2 2.02e-2 2.46e-2 5.93e-3 3.54e-2 2.39e-2

Table 2 Maximum errors of E2(k, t) for λ = 0.15

E2(k, t) New M0 M1 M2 M3 M4 M5 M6
K = 1 2.23e-5 4.18e-5 7.87e-5 2.24e-4 8.09e-4 2.15e-5 1.26e-4 7.60e-4
K = 2 4.58e-5 5.49e-5 1.01e-4 2.76e-4 8.83e-4 4.64e-5 1.57e-4 8.32e-4
K = 3 7.15e-5 7.69e-5 1.24e-4 3.31e-4 9.53e-4 7.37e-5 1.78e-4 9.01e-4
K = 4 9.99e-5 1.03e-4 1.63e-4 3.88e-4 1.02e-3 1.06e-4 1.90e-4 9.64e-4
K = 5 1.33e-4 1.33e-4 2.06e-4 4.45e-4 1.07e-3 1.51e-4 2.30e-4 1.02e-3
K = 6 1.31e-4 1.67e-4 2.47e-4 4.99e-4 1.12e-3 1.85e-4 2.66e-4 1.06e-3
K = 7 1.82e-4 2.05e-4 2.83e-4 5.49e-4 1.14e-3 1.93e-4 2.97e-4 1.09e-3
K = 8 2.09e-4 2.45e-4 3.76e-4 5.90e-4 1.15e-3 2.49e-4 3.24e-4 1.10e-3
K = 9 3.34e-4 2.86e-4 4.92e-4 6.58e-4 1.12e-3 5.03e-4 3.46e-4 1.07e-3
K = 10 3.16e-4 3.33e-4 6.39e-4 7.23e-4 1.04e-3 4.18e-4 3.97e-4 1.01e-3
K = 11 3.49e-4 3.97e-4 9.32e-4 7.76e-4 9.93e-4 5.09e-4 4.70e-4 9.73e-4
K = 12 4.44e-4 4.50e-4 1.35e-3 8.06e-4 1.03e-3 5.78e-4 5.54e-4 1.02e-3
K = 13 3.84e-4 6.19e-4 1.88e-3 7.97e-4 1.04e-3 5.42e-4 6.48e-4 1.04e-3
K = 14 4.99e-4 8.43e-4 2.50e-3 7.23e-4 9.85e-4 8.13e-4 7.48e-4 9.79e-4

Table 3 Maximum errors of F1(t)

F1(t) New M0 M1 M2 M3 M4 M5 M6
λ = 0.05 4.28e-5 1.56e-4 4.15e-4 2.87e-4 3.87e-4 5.29e-5 2.80e-4 5.46e-4
λ = 0.10 4.51e-5 1.64e-4 4.25e-4 4.52e-4 6.09e-4 5.68e-5 3.08e-4 1.03e-3
λ = 0.15 4.82e-5 1.73e-4 4.32e-4 6.19e-4 9.59e-4 6.05e-5 3.39e-4 1.58e-3
λ = 0.20 5.75e-5 1.82e-4 4.36e-4 8.46e-4 1.36e-3 6.38e-5 3.71e-4 2.17e-3
λ = 0.25 7.27e-5 1.90e-4 4.37e-4 1.13e-3 1.82e-3 6.68e-5 4.09e-4 2.83e-3

6 Conclusions
The discussion in this paper shows that computing
the knots for a given set of data points can be
reduced to the problem of constructing a quadratic
or cubic polynomial curve. Our new method is based
on the fact that the curve segment between four
adjacent points can be approximated by a quadratic
polynomial or a cubic polynomial. If four adjacent
consecutive data points form a convex polygon,
they determine a unique quadratic polynomial
interpolation curve. If the four data points do not

form a convex polygon, a cubic polynomial curve
with one free variable is used to interpolate the four
points; the variable is determined by minimizing
the cubic coefficient of the curve. Doing so makes
the methods for constructing quadratic and cubic
polynomials consistent, in that the cubic coefficient
for the constructed quadratic polynomial curve is
zero. Minimizing the cubic coefficient of the cubic
polynomial curve makes the cubic polynomial curve
approximate the polygon composed of the four data
points well, and hence makes the curve have the
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Fig. 5 Error curves for six methods.
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shape suggested by the four data points. As the
knots are determined by the quadratic curve or the
cubic curve, they reflect the distribution of the data
points. After the quadratic and cubic polynomial
functions have been determined, computing the knot
for each data point is an easy task. One of the
advantages of the new method is that the knots
have quadratic polynomial precision, while the ones
proposed in Refs. [7–9, 12, 18, 27] have only linear
precision. This means that from an approximation
point of view, the new method, like the one in
Ref. [15], is better than the other six methods.
Therefore, when used for curve construction, the
resulting curve has higher precision than for methods
with linear precision. The second advantage of the
new method is that it is affine invariant which is very
important. Furthermore, our method is local, so it
is easy to modify a curve interactively, consequently
making the curve design process efficient and flexible.
Experiments verify that approximation precision with
our method is better than for the ones proposed in
Refs. [7–9, 12, 15, 18, 27].
It is known that, when constructing a cubic spline

interpolant, with suitable end conditions and knots,
the constructed parametric cubic spline reproduces
parametric cubic polynomials. Our next plan is to
investigate whether there is a method of choosing
knots with cubic precision. We also intend to
extend the new method to data parameterization for
constructing surfaces to fit scattered data points, so
that for each local region, the parameters associated
with the data points are computed using a local
method, and the constructed surface has GC1

continuity.
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