
Computational Visual Media
https://doi.org/10.1007/s41095-019-0155-y Vol. 6, No. 1, March 2020, 53–63

Research Article

Efficient ray casting of volumetric images using distance maps
for empty space skipping

Lachlan J. Deakin1 (�), Mark A. Knackstedt1

c© The Author(s) 2019.

Abstract Volume and isosurface rendering are methods
of projecting volumetric images to two dimensions for
visualisation. These methods are common in medical
imaging and scientific visualisation.
Head-mounted optical see-through displays have

recently become an affordable technology and are a
promising platform for volumetric image visualisation.
Images displayed on a head-mounted display must be
presented at a high frame rate and with low latency
to compensate for head motion. High latency can be
jarring and may cause cybersickness which has similar
symptoms to motion sickness.
Volumetric images can be very computationally

expensive to render as they often have hundreds of
millions of scalar values. Fortunately, certain materials
in images such as air surrounding an object boundary
are often made transparent and need not be sampled,
which improves rendering efficiency.
In our previous work we introduced a novel

ray traversal technique for rendering large sparse
volumetric images at high frame rates. The method
relied on the computation of an occupancy and distance
map to speed up ray traversal through empty regions.
In this work we achieve higher frame rates than our

previous work with an improved method of resuming
empty space skipping and the use of anisotropic
Chebyshev distance maps. An optimised algorithm for
computing Chebyshev distance maps on a graphical
processing unit is introduced supporting real-time
transfer function editing.

Keywords ray casting; volume rendering; isosurface
rendering; distance maps

1 Australian National University, Canberra, 2601, Australia.
E-mail: L. J. Deakin, lachlan.deakin@anu.edu.au (�);
M. A. Knackstedt, mark.knackstedt@anu.edu.au.

Manuscript received: 2019-12-14; accepted: 2019-12-21

1 Introduction
Volumetric images (volumes) are three-dimensional
scalar fields of voxels (volume + pixels). Volumes
can be acquired with imaging technologies such
as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) which make it possible
to see inside opaque physical objects or people.
Computer graphics hardware and pipelines have

generally been optimised for rendering surface
representations of scenes. Volumes are not surfaces and
must be rendered with specialised volume rendering
techniques. Volume ray casting is a common volume
rendering method well suited to acceleration on a
Graphical Processing Unit (GPU) [1–3]. Rays are
projected from each pixel of a display which pass
through volumes and composite the colours and
opacities of the voxels they pass through.
Voxels can be assigned a colour and opacity

based on their scalar value (and often their gradient
magnitude) according to a transfer function. Transfer
functions can be manipulated by a user to control
the appearance and visibility of different materials.
Lighting effects such as shadowing, specularity, and
scattering can be applied but are not widely used in
medical image analysis.
Isosurfaces are surfaces representing constant scalar

values within a volume [4]. An isosurface can be
extracted as a mesh and rendered using conventional
surface rendering techniques. Isosurfaces can also
be rendered using ray casting directly on an image
without a mesh extraction [5].
Modern augmented reality Head-Mounted Displays

(HMDs) which are optically see-through enable new
volumetric image visualisation applications. These
devices are able to resolve their position as a user
moves his/her head and eyes. This makes it possible

53

54 L. J. Deakin, M. A. Knackstedt

for a virtual object to be displayed in a user’s field of
view which may appear fixed in space or potentially
aligned to a physical object. For example, a surgeon
could visualise a CT or MRI image overlaid on
a patient without referring to an external display.
This application would provide depth perception of
internal structures within the body and a surgeon
would not need to look away from their hands.
Images must be displayed on a HMD at high frame

rates and with low latency to sufficiently compensate
for head and eye motion. Otherwise, the wearer
of a HMD may experience cybersickness. Virtual
reality HMDs fully replace a user’s view of the world
and current generation devices require frames to be
rendered at 90 Hz. Recent augmented reality HMDs
with see-through displays require lower frame rates
of around 60 Hz.
Volume rendering can be very computationally

expensive, particularly for high resolution images.
Rays passing through a volume may require a large
number of samples of the volumetric image texture
before an output colour is determined or an isosurface
is located. Ray casting must be accelerated to higher
frame rates for visualisation on HMDs.
Most volumetric images have some portion of

empty space which does not contribute to the output
image. For volume rendering, empty space refers
to voxels which have zero opacity as defined by the
transfer function. For example, the air surrounding
an object and some object materials may be made
entirely transparent. Voxels which are not adjacent to
surface interfaces are considered empty for isosurface
rendering. Empty space can be skipped to reduce the
number of texture samples and improve frame rates.
We recently introduced an efficient empty space

skipping approach for ray casting [6]. A reduced
resolution occupancy map is generated describing
which regions of a volume are occupied. A distance
map is then generated which encodes the Chebyshev
distance to the nearest occupied region. The distance
map is used to efficiently leap rays past empty regions
during voxel traversal and reduce the number of
unnecessary texture samples.
This paper is an extended version of our previous

short format paper [6] which provides more details
of the method and introduces:
• an optimisation of the ray traversal approach

to more effectively skip empty space within and
behind objects,

• an algorithm for efficiently generating isotropic
and anisotropic Chebyshev distance maps on a
GPU for accelerated ray casting, and

• an extended performance analysis of the approach
with 2D transfer functions and various occupancy
map region sizes.

2 Related work
Empty space can be skipped when ray casting
by only sampling between geometry which tightly
bounds the occupied space within a volume [5]. The
bounding geometry may be defined by coarse bricks
or a meshed isosurface. These approaches typically
only skip external empty space and may have a
high overhead from rasterisation of the bounding
geometry. Generating the bounding geometry can
also be computationally expensive.
Kruger and Westermann [1] created an occupancy

map indicating which 83 regions of a volume are
empty. A ray caster can use the occupancy map to
skip sampling points in empty regions and reduce the
total number of texture samples. Their occupancy
map has a low memory overhead as it has a low
resolution compared to the volume.
Distance maps encoding the Chebyshev distance

metric to the nearest occupied voxel have proven
to be effective for ray casting acceleration [7, 8]. A
ray is able to skip many voxels with a single sample
of the distance map if far away from an occupied
voxel. These approaches can substantially improve
frame rates for sparse images but the time needed
to generate distance maps can inhibit interactive
transfer function editing.
Massive volumetric images which may not fit entirely

within GPU memory are becoming increasingly
common from simulations and high-resolution imaging
technology. They can be rendered by only allocating
occupied bricks (regions) on the GPU [3, 9, 10]. Bricks
can be referenced in hierarchical structures (such as
an octree) and empty bricks are simply skipped as the
structure is traversed.
SparseLeap [10] rasterises occupied hierarchically

referenced bricks into per-pixel linked lists. Only the
occupied segments of rays go through the ray casting
pipeline. Their method outperformed octree-based
empty space skipping and could be used to render
terabyte sized sparse volumes. Bricks are not loaded
onto the GPU if they are outside of the field of view
or occluded.

Efficient ray casting of volumetric images using distance maps for empty space skipping 55

Our previous paper described an efficient method
of empty space skipping utilising distance maps [6].
Interactive transfer function editing was supported
by updating reduced resolution distance maps on the
GPU and massive volumes could be rendered by only
allocating occupied bricks. Our method outperformed
SparseLeap, octree-based, and bounding geometry
(isosurface) acceleration on a set of images.

3 Our approach
3.1 Ray traversal

A volumetric image is stored on a GPU as a 3D
texture with dimensions d = [width, height, depth].
Voxels stored in a texture (texels) can be referenced
by texel coordinates which can be unnormalised,
u ∈ [0, d), or normalised, t ∈ [0, 1], and are related
according to

u = d · t (1)

Volumes are typically sampled at equidistant points
along rays that pass through them. A ray intersecting
with a volume from tentry to texit can be sampled at
n equidistant points as defined by

n = �−−→max (d) · ‖texit − tentry‖ · f� (2)
where −−→max is the maximum component operator and
f is a sampling factor used for quality adjustment.
This equation is viewpoint independent and ensures
that there is at least one sample per voxel passed
through (on average) provided f is greater than or
equal to 1.
The change in normalised texture coordinates

between each sample point is

Δt =
texit − tentry

n − 1
(3)

and the ith sampling point along the ray is given by
ti = tentry + i · Δt (4)

A volume renderer will sample the volume (with
trilinear interpolation) at each ti from i = 0 to
n − 1 and map the sampled values to colours and
opacities. This process can become very computa-
tionally expensive and memory bandwidth intensive
for large images where n is large.

3.2 Gradient map

2D transfer functions which use both voxel scalar
values and gradient magnitudes can be used
to highlight material boundaries and hide thick
homogeneous regions when volume rendering. The

gradient magnitude of a voxel can be computed
efficiently using the tetrahedron method [11] shown in
Algorithm 1 which is written in the OpenGL Shading
Language (GLSL). This method requires only 4 voxel
neighbour samples unlike the conventional central
differences approach which requires 6.

Algorithm 1 Tetrahedron technique for voxel gradient
magnitude calculation (GLSL)

layout (...) uniform sampler3D image ; // global
float gradient_tetrahedron_method (ivec3 pos) {

ivec2 k = ivec2 (1 , -1);
vec3 gradient_dir = 0.25f * vec4(

k.xyy * imageLoad (image , pos + k.xyy).x +
k.yyx * imageLoad (image , pos + k.yyx).x +
k.yxy * imageLoad (image , pos + k.yxy).x +
k.xxx * imageLoad (image , pos + k.xxx).x);

return length (gradient_dir);
}

Additional 4 texture samples at each sampling point
to compute gradients can significantly reduce frame
rates. Gradients can instead be precomputed and
stored for faster sampling during ray casting.

3.3 Occupancy map

We create an occupancy map indicating which B ∈ N
3

sized regions, or blocks, of a volume are empty given
a transfer function or isosurface thresholds. The
occupancy map is a simple acceleration structure
used to avoid sampling voxel values and gradients
in regions where all voxels have zero opacity. It is a
foundation for more advanced acceleration structures.
The occupancy map has dimensions docc =

�dvol/B�. The memory requirement of an occupancy
map is trivial for larger block sizes. For example, a
block size of B = 43 requires 1/64th of the memory
of an associated volume.
The occupancy map voxel at uocc is associated

with a volume block with extents:
umin

vol = B · uocc

umax
vol = min(umin

vol + B, dvol) − 1
(5)

Texture sampling coordinates on the volume are
mapped to the occupancy map according to

tocc =
dvol

B · docc
tvol

uocc = docc · tocc =
dvol
B

tvol

(6)

This mapping is necessary as B may not evenly divide
dvol so tvol and tocc may not be equivalent.
The exact method of computing an occupancy

map depends on whether it will be used for volume

56 L. J. Deakin, M. A. Knackstedt

rendering or isosurface rendering. If volume rendering,
a region is considered occupied if it contains any
voxels with non-zero alpha as set by the transfer
function. The occupancy map must be updated when
the transfer function changes.
An isosurface exists in a region (and it is considered

occupied) when the isosurface threshold lies between
the minimum and maximum voxel values within the
region. An isosurface may exist at the boundary
between two regions so a single voxel halo around
each region must also be considered when generating
an occupancy map for isosurface rendering.
An occupancy map can be generated from a

volume with a simple compute shader. Each shader
invocation evaluates a unique volume block for
occupancy and writes the result to the associated
occupancy map voxel. The performance and
limitations of such a simple compute shader is
evaluated in Section 4.3.

3.4 Efficient ray traversal

If an occupancy map voxel at uocc indicates an empty
volume block then the ray segment within that block
can be skipped. Figure 1 shows a 2D schematic
of a ray passing through an occupancy map. The
sampling points along the ray are at Δu intervals.
The number of steps, Δi, to reach a sampling point
in the next region from u needs to be computed.
The first sampling point outside of the region on

dimension j ∈ {x, y, z} is

Δij =
{

�(1 + �uj� − uj) /Δuj� , if Δuj > 0
�(�uj� − uj) /Δuj� , otherwise

(7)
which is determined geometrically from Fig. 1. This

Fig. 1 Schematic (2D) of a ray traversing a volume (grey grid) and
its occupancy map (black grid) with B = (4, 4). The filled points
are sampled on the occupancy map. Filled and unfilled points are
sampled on the volume in occupied regions.

can be vectorised to give the steps on each dimension:
Δi = (Δix,Δiy,Δiz)

= �(step (Δu) + �u� − u) /Δu� (8)
where step is the Heaviside step function. The first
sampling point outside of the region surrounding u

will be the minimum Δij , thus

Δi = max
(−−→min (Δi) , 1

)
(9)

which is clamped to a minimum of 1 as Δu will be
infinite on one dimension for an axis-aligned ray.
The Δu for a ray passing through the occupancy

map is computed as

Δuocc =
dvol
B

Δtvol (10)

which follows from Eq. (6).
The occupancy map is repeatedly sampled and

Eq. (9) applied to skip the ray forward until an
occupied region is found. The volume is then sampled
at each successive sampling point. A ray will skip
more empty voxels for every occupancy map sample
if B is larger. However, it will not be able to skip as
close to occupied voxels as more empty voxels may be
included in occupied regions. This suggests there may
be an optimal B which will be explored in Section 4.2.
A sampling point near the edge of an empty block

may map to a non-zero opacity if a neighbouring
block is occupied due to trilinear interpolation of
the volume. Similarly, an isosurface may exist on
the boundary between an occupied and an empty
region. To account for this, the ray step number
is decremented after an occupied region is found
according to

Δibackward = − �f� (11)
where f is the sampling factor from Eq. (2). This
equation ensures the ray goes back at least one voxel
length. The ray must not go back as far as the
previous furthest i sampled on the volume.
The occupancy map is only sampled again if uocc

changes when i is incremented and the previously
sampled voxel had zero opacity. Empty space skipping
resumes as early as possible and the occupancy map
is not sampled more than necessary. This method of
resuming empty space skipping is faster than our
original approach which resumed occupancy map
sampling after a set length of empty voxels [6].

3.5 Chebyshev distance map

The Chebyshev distance metric is the greatest
difference between two points along any dimension

Efficient ray casting of volumetric images using distance maps for empty space skipping 57

and is defined as
DChebyshev (p1, p2) = −−→max (|p1 − p2|) (12)

where p1 and p2 are two points of interest. A
distance map can be derived from an occupancy
map representing the Chebyshev distance, D, to the
nearest occupied block for every block. A ray can
skip at least D blocks on any dimension before it may
reach an occupied block.
The number of steps to the next sampling point D

blocks away on dimension j ∈ {x, y, z} is determined
from Fig. 1 as

Δij =
{

�(D + �uj� − uj) /Δuj� , if Δuj > 0
�(1 − D + �uj� − uj) /Δuj� , otherwise

(13)
Vectorising this equation gives:
Δi = �(step (−Δu) + sgn (Δu) · D + �u� − u) /Δu�

(14)
which substitutes Eq. (8). This enables multiple
blocks to be skipped with a single sample of the
distance map. The number of skipped sampling
points is not constrained by the size of B as with the
occupancy map method.
Distance maps are not commonly used for ray

casting acceleration because of the computational
complexity of generating them which must be done
every time the transfer function changes. Previous
papers using Chebyshev distance maps for ray casting
acceleration generated them at the full resolution of
the volume with a serial algorithm [7, 8].
Our method of skipping rays forward with a

Chebyshev distance map is simpler than previous
approaches [7, 8] and supports lower resolution
distance maps which reduces memory overhead and
their computation time. In Section 4 we examine
the impact on ray casting performance when using a
reduced resolution distance map.
We have adapted the algorithm of Saito and Toriwaki

[12] to efficiently transform an occupancy map into a
Chebyshev distance map using the parallel capability of
a GPU. The transformation is decomposed into three
one-dimensional transformations which are all trivially
parallelised as they operate on rows, columns, and then
slices independently.
The first transformation is shown as a GLSL

compute shader in Algorithm 2. This approach
adapts the first transformation described in Ref. [12]
for Chebyshev distance rather than squared Euclidean
distance. The first transformation can safely read

Algorithm 2 The first of the occupancy map to Chebyshev
distance map transformations (GLSL)

// Shader globals
layout (local_size_y = ... , local_size_z = ...) in;
layout (... , r8ui) uniform uimage3D dist; // distance map
layout (... , r8ui) uniform uimage3D occ; // occupancy map
// with occupied voxels set to 255 and empty voxels 0

// First transformation
// Invoke for all columns and slices
void main () {

// Initialisation
ivec3 pos = ivec3 (0, gl_GlobalInvocationID .yz);
ivec3 dim = imageSize (dist);
uint D1 = imageLoad (occ , pos).x;

// Forward pass
for (pos.x = 1; pos.x < dim.x; ++ pos.x) {

uint D = min(D1 + 1, imageLoad (occ , pos).x);
imageStore (dist , pos , uvec4 (D));
D1 = D;

}

// Backward pass
for (pos.x = dim.x - 2; pos.x >= 0; --pos.x) {

uint D = min(D1 + 1, imageLoad (dist , pos).x);
imageStore (dist , pos , uvec4 (D));
D1 = D;

}
}

and write from the occupancy map if it is also bound
as the distance map.
The second transformation is shown in Algoritihm 3

and has several differences from the original approach
in Ref. [12]. The columns from transformation 1
are copied to a 1D buffer in the original approach.
We instead read directly from the output of
transformation 1 and write the output to a swap
image with matching dimensions to the distance
map. Another change is the transformation runs
in a single pass and zigzags out from each voxel
until the minimum distance is found. This reduces
the number of IO operations and is faster than the
original algorithm.
The third transformation is similar to the second

but is applied on slices rather than columns.
Algorithm 3 describes the minor changes to the
second transformation for it to function as the third.
Distances output from the second transformation are
read from the swap image and the final Chebyshev
distance is written to the distance map.
The distance map does not need to be a separate

texture to the occupancy map as it can simply
overwrite it. However, the swap image still doubles
the overall memory requirements of this acceleration
structure compared to just using an occupancy map.
Distances are stored as unsigned 8-bit integers to

58 L. J. Deakin, M. A. Knackstedt

Algorithm 3 The second and third of the occupancy map
to Chebyshev distance map transformations (GLSL)

// Shader globals
layout (local_size_x = ... , local_size_z = ...) in;
layout (... , r8ui) uniform uimage3D dist; // distance map
layout (... , r8ui) uniform uimage3D swap; // swap image

// Second transformation
// Invoke for all rows and slices
void main () {

ivec3 pos = ivec3 (gl_GlobalInvocationID);
ivec3 dim = imageSize (dist);
for (pos.y = 0; pos.y < dim.y; ++ pos.y) {

uint D = imageLoad (dist , pos).x;

// Zig -zag out from pos in search of minimum D
for (int n = 1; n < D; ++n) {

if (pos.y >= n) {
uint D_n = imageLoad (dist ,

ivec3 (pos.x, pos.y - n, pos.z)).x;
D = min(D, max(n, D_n));

}
if ((pos.y + n) < dim.y && n < D) {

uint D_n = imageLoad (dist ,
ivec3 (pos.x, pos.y + n, pos.z)).x;

D = min(D, max(n, D_n));
}

}
imageStore (swap , pos , uvec4 (D));

}
}

// Third transformation is 2nd transform with changes :
// * Replace .y swizzles for .z and search on z axis.
// * Read from swap and write to the distance map.
// * Invoke for all rows and columns .

reduce memory and bandwidth requirements which
limits the maximum distance to 255. This seems
sufficient for most images given the distance map is
at a lower resolution than the volumetric image being
rendered.

3.6 Anisotropic Chebyshev distance map

A ray exiting an occupied region will initially only skip
small distances as D is small. Ideally, the ray would
skip a large distance when exiting an occupied region
provided the next occupied region in the direction of
the ray is far away. This can be accomplished using
anisotropic Chebyshev distances.
Ray directions can be grouped into 8 octants in 3D

defined by the sign of each component (±x, ±y, ±z).
Distance maps representing the distance to the
nearest occupied region for each directional octant
are needed. These can be generated by modifying the
isotropic Chebyshev distance map transformations
(Algorithms 2 and 3) to scan in single directions
only.
The transformations could be applied in sequence

to generate the distance maps for each directional

octant which would require a total of 24 transforma-
tions. However, the first and second transformations
only need to run 2 and 4 times respectively (rather
than 8) as the intermediate distance maps they
generate can be reused.
The ray caster simply needs to index the correct

anisotropic distance map texture and can then apply
the same ray traversal approach using Eq. (14) as
described in Section 3.5. The index only needs to be
computed once for each ray as the direction is fixed
for the entire traversal.
Es and İşler [8] take the acceleration structure

even further and compute the extended anisotropic
Chebyshev distance. This represents the distance that
can be skipped on the x, y, and z axis separately for
each octant. This approach is effective for skipping
empty spaces which are thin in some dimensions.
However, it requires 24 times the memory of the
original isotropic Chebyshev distance map approach
described in Section 3.5. We did not implement this
approach as the performance gains would likely be
quite marginal or possibly worse given the higher
memory bandwidth requirements.

4 Results and discussion
4.1 Testing methodology

Maximising rendering frame rates is the primary
motivation for developing our ray casting method.
This section will discuss the improvements in frame
rate with the occupancy map and distance map
acceleration structures described in the previous
section. The update time for acceleration structures
and their memory requirements are also important
considerations in assessing the viability of our
method.
Three publicly available [13] volumetric images

with a range of dimensions were evaluated:
• a small image of a “present” with thin occupied

layers,
• a “stag beetle” with large exterior empty regions

and some internal empty space, and
• a large “king snake” with an internal skeleton

composed of fine complex geometry.
The dimensions of each image are shown in Table 1.
The volumes were rescaled to an unsigned 8-bit

representation and normalised before upload to the

Efficient ray casting of volumetric images using distance maps for empty space skipping 59

Table 1 Dimensions of evaluated volumetric images and normalisa-
tion constants

Image Dimensions Voxels n0 n1

Present 492×492×442 107M 0 4095
Stag Beetle 832×832×494 342M 0 2538
King Snake 1024×1024×795 833M 0 255

GPU using the equation:
v8bit = clamp((v − n0)/(n1 − n0) · 255, 0, 255) (15)
where n0 and n1 are image specific normalisation
constants specified in Table 1.
Volume renderings of the evaluated images are

shown in Fig. 2 which are rendered using our open
source volume renderer [14]. The images have a
wide range of occupied voxel proportions and are
rendered with both 1D and 2D (gradient-based)
transfer functions.
Voxels are mapped to an opacity (alpha value) with

a simple equation:
avalue = clamp((v − v0)/(v1 − v0), 0, 1)

agradient = clamp((g − g0)/(g1 − g0), 0, 1)
a = avalue · agradient

(16)

where v is the sampled voxel value, g is the gradient,
and v0, v1, g0, g1 are parameters which define the
transfer function. Voxel values and gradients are
normalised between 0 and 1 from their underlying
8-bit representation when sampled.

Fig. 2 Volume rendered images of the “present”, “stag beetle”, and
“king snake” images from top to bottom. Rendered with 1D transfer
functions (left) and 2D transfer functions (right).

Transfer functions are generally not defined by
such simple functions. They are usually created
through some complex user interaction and stored
in a 2D texture for efficient lookup. For consistency
with other volume renderers, Eq. (16) is applied to
precompute the opacity for each unique intensity and
gradient pair which is stored in a 256×256 texture.
Colour is also stored and is set as greyscale with
intensity proportional to the alpha value.
The transfer functions evaluated for each image

are defined in Table 2. If g0 and g1 are not specified
then the transfer function is 1D, agradient = 1, and
the gradient is not sampled during ray casting.
Frame rates are measured by rotating volumes at

a rate of 90◦ every 60 frames about their vertical
axis. The average frame rate is taken over 1000 frames.
Volumetric images were scaled to occupy 1 cubic meter
and positioned at a distance of

√
3 meters from the

camera in the virtual coordinate space. The camera
has a perspective projection with a 1 radian horizontal
and vertical FOV. In this configuration the entire
volume is within the viewport and no clipping occurs.

Early ray termination acceleration is disabled for
all tests which stops rays when an opacity limit is
reached [1]. This ensures rays traverse all the way to
back of the volume regardless of the transfer function.
The sampling factor f from Eq. (2) is 1.
Baseline frame rates with no ray casting

acceleration enabled are shown in Table 2. Images
were rendered to a 1200×1200 viewport which is the
approximate display resolution for a single eye on a
modern virtual reality HMD. If the frame rates are
halved to account for the second eye display then only
the low resolution “present” image with a 1D transfer
function renders fast enough without acceleration.

4.2 Frame rate improvements

Frame rates were measured for the images with each
empty space skipping acceleration structure discussed

Table 2 Unaccelerated baseline frame rates for each image with a 1D
and 2D transfer function (TF). Images are rendered to a 1200×1200
viewport with an NVIDIA GeForce GTX 1080

Image TF v0 v1 g0 g1 Occupancy Frames (s−1)

Present
1D 0.071 1.0 — — 7.13% 223
2D 0.071 1.0 0.06 0.1 1.85% 66.8

Beetle
1D 0.086 1.0 — — 3.97% 75.3
2D 0.086 1.0 0.1 0.3 1.31% 19.6

Snake
1D 0.400 0.8 — — 0.67% 28.1
2D 0.200 0.8 0.06 0.12 0.55% 9.55

60 L. J. Deakin, M. A. Knackstedt

in Section 3 and are shown in Table 3. The maximum
average frame rate with each acceleration structure
is shown which is determined over a range of block
sizes from 23 to 63. Using 2D transfer functions
significantly reduces baseline frame rates even though
precomputed gradients are used.
Table 3 reveals the occupancy map structure gives

a substantial relative performance boost from the
baseline frame rate in all cases. It is already fast
enough to render most of the images on a HMD
(except the snake with a 2D transfer function).
The frame rate is always improved when using an

isotropic Chebyshev distance map compared to an
occupancy map for acceleration. The improvement
ranges from 4.5% for the “king snake” image with a
2D transfer function to 56% for the “beetle” image
with a 1D transfer function.
Frame rates are improved by up to 20% with an

anisotropic Chebyshev distance map compared to an
isotropic distance map. However, for some images the
performance improvement is negligible. The largest
relative frame rate increase occurs on the snake image
which shows that anisotropic Chebyshev distance
maps are most effective for skipping empty space
near fine complex geometry.
Figure 3 shows the relative frame rate compared

to the baseline with each acceleration structure as
a function of the block size. Frame rates with
occupancy map ray traversal on the snake image
worsen at larger block sizes. This can be explained
by the high geometric complexity of the snake which
results in a lot of empty space being included in
occupied blocks at larger block sizes. Conversely,
the beetle image benefits from larger block sizes
when using an occupancy map as the large open
regions exterior to the beetle can be skipped with
fewer samples of the occupancy map.

Table 3 Volume rendering frame rates accelerated with an Occupancy
Map (OM), Chebyshev Distance (CD), and Anisotropic Chebyshev
Distance (ACD) maps

Image TF Occupancy
Frame rate (frames/s)

Base OM CD ACD

Present
1D 7.13% 223 349 408 440

2D 1.85% 66.8 271 298 301

Beetle
1D 3.97% 75.3 412 644 675

2D 1.31% 19.6 204 239 239

Snake
1D 0.67% 28.1 195 228 255

2D 0.55% 9.55 86.2 90.1 108

Fig. 3 Relative frame rate speedup from unaccelerated baseline for
each acceleration structure with our ray traversal approach.

Frame rates are consistently improved with an
isotropic distance map but degrade as the block
size increases. This makes intuitive sense as rays
are not able to skip as close to occupied voxels.
A very small block size may not be practical as
more memory and computation time is required
(particularly for anisotropic distance maps). The
additional performance with an anisotropic distance
map compared to an isotropic distance map is quite
marginal in most cases. Given this, it is unlikely that
using extended anisotropic Chebyshev distance maps
(see Section 3.6) would substantially improve frame
rates.
Figure 4 qualitatively shows the number of texture

samples with each ray casting acceleration structure.
The difference gets progressively smaller between each
acceleration structure. This indicates the approach
may be reaching its performance limit and further
suggests extended anisotropic distance maps may not
provide meaningful performance gains.

Fig. 4 Relative number of total texture samples (white is more)
with each acceleration structure for the “king snake” image.

Efficient ray casting of volumetric images using distance maps for empty space skipping 61

4.3 Distance map update time

Occupancy and distance maps must be updated
whenever the transfer function is changed. The delay
between adjusting a transfer function and seeing the
resulting rendered image should be low to support
interactive transfer function editing.
The time to generate occupancy maps for the

evaluation images is shown for multiple block sizes in
the left of Fig. 5 (note that the y scale is logarithmic).
Occupancy maps can take much longer to generate
with 2D transfer functions as more texture samples
are required to determine the opacity of each voxel.
The occupancy map update time worsens for block
sizes over 43 as GPU resources are not as well utilised
by the compute shader described in Section 3.3.
The work needed for each individual occupancy map
region could be divided up with a more complicated
compute shader, although we did not explore this.
Isotropic or anisotropic Chebyshev distance maps

are computed from the occupancy map for the faster
ray casting approaches. The time to generate these
distance maps (inclusive of the time taken to update
the occupancy map) is also shown in Fig. 5 over a
range of block sizes.
For a cubic block size of B = (b, b, b), the occupancy

and distance map have only 1/b3 of the number of
volume voxels. Thus it is expected for the computation
time to increase exponentially as b approaches 1 which
is observed in Fig. 5. Distance maps are generated
faster from occupancy maps with higher occupancies

Fig. 5 Update time for occupancy and distance maps for the
evaluated images with several cubic block sizes. Distance map update
time is inclusive of the occupancy map update time.

as the average distance from each voxel that must be
searched in Algorithm 3 is reduced.
The total time to generate distance maps is not

necessarily minimised by choosing a large block size
due to the overhead of generating the occupancy map.
The isotropic Chebyshev distance is computed most
efficiently when using a 2D transfer function with a
block size of 43 or 53 as seen in Fig. 5. The isotropic
distance map update time with a 43 block size on the
large “king snake” image is only 37 milliseconds which
enables highly interactive transfer function editing.
Anisotropic Chebyshev distance maps take much

longer to compute than isotropic distance maps.
Isotropic Chebyshev distance maps at 43 or 53

could be utilised for fast interactive transfer function
prototyping. After a suitable transfer function has
been identified, an isotropic or anisotropic distance
map with a smaller block size could be generated to
improve ray casting performance.

4.4 Limitations

In our previous paper a large sparse volume which
did not fit directly in GPU memory was rendered by
only allocating occupied regions on the GPU [6]. A
distance map does not require much memory if the
block size is large; however, this can limit potential
performance gains as seen in Fig. 3.
Performance could be improved by using multi-

resolution distance maps. Sparse higher resolution
distance maps could be allocated only near occupied
regions to enable rays to skip closer to occupied space
without drastically increasing memory requirements.
However, we have not explored methods of efficiently
generating or effectively utilising sparse multi-
resolution distance maps.

5 Conclusions
This work accelerates ray casting for volume or
isosurface rendering by utilising a low resolution
Chebyshev distance map for empty space skipping
of sparse volumes. This work improves on the
performance of our earlier approach [6] with more
efficient methods of resuming empty space skipping
and updating distance maps. Large sparse volumes
can be rendered at high frame rates even with
computationally expensive gradient-based transfer
functions.
Distance maps can be generated at reduced

62 L. J. Deakin, M. A. Knackstedt

resolutions with a low memory requirement and still
provide excellent frame rate improvements. They can
be updated in real-time enabling interactive transfer
function editing for volume rendering.
Anisotropic Chebyshev distance maps were

evaluated but the frame rate improvements were
marginal in most cases. This suggests acceleration
with distance maps may be reaching a performance
limit. Faster sampling within occupied regions
without compromising rendering quality is the next
challenge for volume rendering acceleration.

Acknowledgements

This work is funded by the Australian Government
Research Training Program (AGRTP) with additional
support from the Australian National Laboratory for
X-ray Micro Computed Tomography.

References

[1] Kruger, J.; Westermann, R. Acceleration techniques
for GPU-based volume rendering. In: Proceedings of
the 14th IEEE Visualization, 38, 2003.

[2] Stegmaier, S.; Strengert, M.; Klein, T.; Ertl, T. A
simple and flexible volume rendering framework for
graphics-hardware-based raycasting. In: Proceedings of
the 4th International Workshop on Volume Graphics,
187–241, 2005.

[3] Beyer, J.; Hadwiger, M.; Pfister, H. State-of-the-art in
GPU-based large-scale volume visualization. Computer
Graphics Forum Vol. 34, No. 8, 13–37, 2015.

[4] Parker, S.; Shirley, P.; Livnat, Y.; Hansen, C.; Sloan,
P.-P. Interactive ray tracing for isosurface rendering. In:
Proceedings of the Visualization ’98, 233–238, 1998.

[5] Hadwiger, M.; Sigg, C.; Scharsach, H.; Bühler, K.;
Gross, M. Real-time ray-casting and advanced shading
of discrete isosurfaces. Computer Graphics Forum Vol.
24, No. 3, 303–312, 2005.

[6] Deakin, L.; Knackstedt, M. Accelerated volume
rendering with Chebyshev distance maps. In:
Proceedings of the SIGGRAPH Asia Technical Briefs,
25–28, 2019.

[7] Sramek, M.; Kaufman, A. Fast ray-tracing of
rectilinear volume data using distance transforms.
IEEE Transactions on Visualization and Computer
Graphics Vol. 6, No. 3, 236–252, 2000.

[8] Es, A.; İşler, V. Accelerated regular grid traversals
using extended anisotropic chessboard distance fields
on a parallel stream processor. Journal of Parallel

and Distributed Computing Vol. 67, No. 11, 1201–1217,
2007.

[9] Gobbetti, E.; Marton, F.; Guitián, J. A. I. A single-pass
GPU ray casting framework for interactive out-of-core
rendering of massive volumetric datasets. The Visual
Computer Vol. 24, No. 7, 797–806, 2008.

[10] Hadwiger, M.; Al-Awami, A. K.; Beyer, J.; Agus, M.;
Pfister, H. SparseLeap: Efficient empty space skipping
for large-scale volume rendering. IEEE Transactions
on Visualization and Computer Graphics Vol. 24, No.
1, 974–983, 2018.

[11] Quilez, I. Normals for an SDF. 2018. Available
at http://iquilezles.org/www/articles/normalsSDF/
normalsSDF.htm.

[12] Saito, T.; Toriwaki, J.-I. New algorithms for euclidean
distance transformation of an n-dimensional digitized
picture with applications. Pattern Recognition Vol. 27,
No. 11, 1551–1565, 1994.

[13] Klacansky, P. Open scientific visualization datasets.
2019. Available at https://klacansky.com/open-scivis-
datasets.

[14] Deakin, L. VkVolume. 2019. Available at
https://github.com/LDeakin/VkVolume.

Lachlan J. Deakin (BEng Mechatronics,
ANU) is a Ph.D. student at the
Department of Applied Mathematics at
the Australian National University. He
previously worked for FEI and Thermo
Fisher Scientific developing tools for the
analysis of massive volumetric images.
He specialises in high performance

computing on clusters and GPUs.

Mark A. Knackstedt (BEng ChemEng,
Columbia; Ph.D. ChemEng, Rice) is a
professor at the Department of Applied
Mathematics at the Australian National
University. He has led a group working
for 20 years in the field of digital materials
technology based on 3D multiscale
imaging, analysis, and modelling. The

key paradigm of the technology is to “image and compute”—
imaging the material, performing 3D time series imaging
of experiments (e.g., flow, mechanical deformation), and
building calibrated numerical simulations of the physical
processes. He has helped to translate the technology into
tangible commercial outcomes in the energy industry.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which

Efficient ray casting of volumetric images using distance maps for empty space skipping 63

permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

