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Object removal from complex videos using a few annotations

Thuc Trinh Le1 (�), Andrés Almansa2, Yann Gousseau1, and Simon Masnou3

c© The Author(s) 2019.

Abstract We present a system for the removal of
objects from videos. As input, the system only needs a
user to draw a few strokes on the first frame, roughly
delimiting the objects to be removed. To the best of
our knowledge, this is the first system allowing the
semi-automatic removal of objects from videos with
complex backgrounds. The key steps of our system are
the following: after initialization, segmentation masks
are first refined and then automatically propagated
through the video. Missing regions are then synthesized
using video inpainting techniques. Our system can deal
with multiple, possibly crossing objects, with complex
motions, and with dynamic textures. This results in a
computational tool that can alleviate tedious manual
operations for editing high-quality videos.

Keywords object removal; object segmentation;
object tracking; video inpainting; video
completion

1 Introduction
In this paper, we propose a system to remove one
or more objects from a video, starting with only a
few user annotations. More precisely, the user only
needs to approximately delimit in the first frame
the objects to be edited. Then, these annotations
are refined and propagated through the video. One
or more objects can then be removed automatically.
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This results in a flexible computational video editing
tool, with numerous potential applications. Removing
unwanted objects (such as a boom microphone) or
people (such as an unwanted wanderer) is a common
task in video post-production. Such tasks are critical
given the time constraints of movie production and
the prohibitive costs of reshooting complex scenes.
They are usually achieved through extremely tedious
and time-consuming frame-by-frame processes, for
instance using the Rotobrush tool from Adobe After
Effects [1] or professional visual effects software such
as SilhouetteFX or Mocha. More generally, the
proposed system paves the way to sophisticated movie
editing tasks, ranging from crowd suppression to
unphysical scene modification, and has potential
applications for multi-layered video editing.
Two main challenges arise in developing such a

system. Firstly, no part of the objects to be edited
should remain in the tracking part of the algorithm;
otherwise, they would be propagated and enlarged by
the completion step, resulting in unpleasant artifacts.
Secondly, the human visual system is good at spotting
temporal discontinuities and aberrations, making the
completion step a tough one. We address both issues
in this work.
The first step of our system consists of transforming

a rough user annotation into a mask that accurately
represents the object to be edited. For this, we use
a classical strategy relying on a CNN-based edge
detector, followed by a watershed transform yielding
super-pixels, which are eventually selected by the user
to refine the segmentation mask. After this step, a
label is then given to each object. The second step
is the temporal propagation of the labels. There we
make use of state-of-the-art advances in CNN-based
multiple object segmentation. Furthermore, our
approach includes an original and crucial algorithmic
block which consists in learning the transition zones
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between objects and the background, in such a way
that objects are fully covered by the propagated
masks. We call the resulting block a smart dilation by
analogy with the dilation operators of mathematical
morphology. Our last step is then to remove some
or all of the objects from the video, depending
on the user’s choice. For this, we employ two
strategies: motion-based pixel propagation for the
static background, and patch-based video completion
for dynamic textures. Both methods rely heavily on
the knowledge of segmented objects. This interplay
between object segmentation and the completion
scheme improves the method in many ways: it allows
for better video stabilization, for faster and more
accurate search for similar patches, and for more
accurate foreground–background separation. These
improvements yield completion results with very little
or no temporal incoherence.
We illustrate the effectiveness of our system

through several challenging cases including severe
camera shake, complex and fast object motions,
crossing objects, and dynamic textures. We evaluate
our method on various datasets, for both object
segmentation and object removal. Moreover, we
show on several examples that our system yields
comparable or better results than state-of-the-art
video completion methods applied to manually
segmented masks.
This paper is organized as follows. First, we briefly

explore some related works (Section 2). Next, we
introduce our proposed approach which includes three
steps: first-frame annotation, object segmentation,
and object removal (Section 3). Finally, we give
experimental results as well as an evaluation and
comparison with other state-of-the-art methods. A
shorter version of this work can be found in Ref. [2].

2 Related works
The proposed computational editing approach is
related to several families of works that we now briefly
review.
2.1 Video object segmentation

Video object segmentation, the process of extracting
space–time segments corresponding to objects, is
a widely studied topic whose complete review is
beyond the scope of this paper. For a long time,
such methods were not accurate enough to avoid

using green-screen compositing to extract objects
from video. Significant progress was achieved by the
end of the 2000s for supervised segmentation: see e.g.,
Ref. [1]. In particular, the use of supervoxels became
the most flexible way to incorporate user annotations
in the segmentation process [3, 4]. Other efficient
approaches to the supervised object segmentation
problem are introduced in Refs. [5, 6].
A real breakthrough occurred with approaches

relying on convolutional neural networks (CNNs).
In the DAVIS-2016 challenge [7], the most efficient
methods were all CNN-based, both for unsupervised
and semi-supervised tasks. For the semi-supervised
task, where a first frame annotation is available,
methods mostly differ in the way they train the
networks. The one shot video object segmentation
(OSVOS) method, introduced in Ref. [8], starts from
a pre-trained network and retrains it using a large
video dataset, before fine-tuning it per-video using
annotation on the first frame to focus on the object
being segmented. With a similar approach, Ref. [9]
relies on an additional mask layer to guide the
network. The method in Ref. [10] further improves
the results from OSVOS with the help of a multi
network cascade (MNC) [11].
All these approaches work image-per-image without

explicitly checking for temporal coherence, and
therefore can deal with large displacements and
occlusions. However, since their backbone is a
network used for semantic segmentation, they cannot
distinguish between instances of the same class or
between objects that resemble each other.
Another family of works deals with the

segmentation of multiple objects. Compared
with the single object segmentation problem,
an additional difficulty here is to distinguish
between different object instances which may have
similar colors and may cross each other. Classical
approaches include graph-based segmentation using
color or motion information [12–14], the tracking of
segmentation proposals [15, 16], or bounding box
guided segmentation [17, 18].
The DAVIS-2017 challenge [19] established a

ranking between methods aiming at semi-supervised
segmentation of multiple objects. Again, the most
efficient methods were CNN-based. It is proposed in
Ref. [20] to modify the OSVOS network [8] to work
with multiple labels and to perform online fine-tuning
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to boost performance. In Ref. [21], the networks
introduced in Ref. [22] are adapted to the purpose of
multiple object segmentation through the heavy use of
data augmentation, still using annotation of the first
frame. The authors of this work also exploit motion
information by adding optical flow information to
the network. This method is further improved in
Ref. [23] by using a deeper architecture and a re-
identification module to avoid propagating errors.
This last method has achieved the best performance
in the DAVIS-2017 challenge [19]. With a different
approach, Hu et al. [24] employ a recurrent network
exploiting long-term temporal information.
Recently, with the release of a large-scale video

object segmentation dataset for the YouTube video
object segmentation (YouTube-VOS) challenge [25],
many further improvements have been made in the
field. Among them, one of the most notable is
PreMVOS [26] which has won the 2018 DAVIS
challenge [27] and the YouTube-VOS challenge [25].
In PreMVOS, the algorithm first generates a set

of accurate segmentation mask proposals for all
objects in each frame of a video. To achieve this,
a variant of the mask R-CNN [28] object detector is
used to generate coarse object proposals, and then
a fully convolutional refinement network inspired
by Ref. [29] and based on the DeepLabv3+ [30]
architecture produces accurate pixel masks for each
proposal. Secondly, these proposals are selected
and merged into accurate and temporally consistent
pixel-wise object tracks over the video sequence. In
contrast with PreMVOS which focuses on accuracy,
some methods trade off accuracy for speed. Those
methods take the first frame with its mask annotation
either as guidance to slightly adjust parameters of
the segmentation model [31] or as a reference for
segmenting the following frames without tuning the
segmentation model [32–34].
Although these methods yield impressive results

in terms of the accuracy of the segmentation, they
may not be the optimal solutions for the problem
we consider in this paper. As noted above, when
removing objects from video, it is crucial for the video
completion step that no part of the removed objects
remains after segmentation. Said differently, we are
in a context where recall is much more important
than precision; see Section 4.2 for definitions of these
metrics. In the experiments section, we compare

our segmentation approach to several state-of-the-art
methods with the aim of optimizing a criterion which
penalizes under-detection of objects.

2.2 Video editing

Recently, advances in both analysis and processing
of video have permitted advances in the emerging
field of computational video editing. Examples
include, among others, tools for the automatic,
dialogue-driven selection of scenes [35], time slice
video synthesis [36], and methods for the separate
editing of reflectance and illumination components
[37]. It is proposed in Ref. [38] to accurately identify
the background in video as a basis for stabilization,
background suppression, or multi-layered editing. In
a sense, our work is more challenging since we need
to identify moving objects with enough accuracy that
they can be removed seamlessly.
Because we learn a transition zone between objects

and the background, our work is also related to
image matting techniques [39], and their extension
to video [40] as a necessary first step for editing
and compositing tasks. Lastly, since we deal with
semantic segmentation and multiple objects, our work
is also related to the soft semantic segmentation
recently introduced for still images [41].

2.3 Video inpainting

Image inpainting, also called image completion, refers
to the task of reconstructing missing or damaged
image regions by taking advantage of image content
outside these missing regions.
The first approaches were variational [42], or

PDE-based [43] and dedicated to the preservation
of geometry. They were followed by patch-based
methods [44, 45], inherited from texture synthesis
methods [46]. Some of these methods have been
adapted to video, often by mixing pixel-based
approaches for reconstructing the background and
greedy patch-based strategies for moving objects
[47, 48]. In the same vein, different methods have
been proposed to improve or speed up reconstruction
of the background [49, 50], with the strong limitation
that the background should be static. Other methods
yield excellent results in restricted cases, such as the
reconstruction of cyclic motions [51].
Another family of works which performs very well

when the background is static relies on motion-based
pixel propagation. The idea is to first infer a motion
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field outside and inside the missing regions. Using
the completed motion field, pixel values from outside
the missing region are then propagated inside it. For
example, Grossauer describes in Ref. [52] a method
for removing blotches and scratches in old movies
using optical flow. A limitation of this work is that
the estimation of the optical flow suffers from the
presence of the scratches. Using a similar idea, but
avoiding calculating the optical flow directly in the
missing regions, several methods try to restore the
motion field inside these missing regions by gradually
propagating motion vectors [53], by sampling spatial-
temporal motion patches [54, 55], or by interpolating
the missing motion [56, 57].
In parallel, it was proposed in Ref. [58] to address

the video inpainting problem as a global patch-based
optimization problem, yielding unprecedented time
coherence at the expense of very heavy computational
costs. The method in Ref. [59] was developed
from this seminal contribution, by accelerating
the process and taking care of dynamic texture
reconstruction. Other state-of-the-art strategies rely
on a global optimization procedure, taking advantage
of either shift-maps [60] or an explicit flow field
[61]. This last method arguably has the best results
in terms of temporal coherence, but since it relies
on two-dimensional patches, it is unsuitable for the
reconstruction of dynamic backgrounds. Recently,
it was proposed in Ref. [62] to improve the global
strategy of Ref. [59] by incorporating optical flow
in a systematic way. This approach has the ability
to reconstruct complex motions as well as dynamic
textures.
Let us add that the most recent approaches

to image inpainting rely on convolutional neural
networks and have the ability to infer elements that
are not present in the image at hand [63–65]. To
the best of our knowledge, such approaches have not
been adapted to video because their training cost is
prohibitive.
In this work, we propose two complementary ways

to perform the inpainting step needed to remove
objects in video. The first method is fast and
relies on frame-by-frame completion of the optical
flow, followed by propagation of voxel values. This
approach is inspired by the recently introduced
method in Ref. [57], itself sharing ideas with the
approach from Ref. [61] and yielding impressive speed

gains. Such approaches are computationally efficient
but unable to deal with moving backgrounds and
dynamic textures. For these complex cases, we rely
on a more sophisticated (and much slower) second
approach, extending ideas we initially developed in
Ref. [62].

3 Proposed method
The general steps of our method are as follows:
(a) First, the user draws a rough outline of each

object of interest in one or several frames, for
instance in the first frame (see Section 3.1).

(b) These approximate outlines are refined by the
system, then propagated to all remaining frames
using different labels for different objects (see
Section 3.2).

(c) If errors are detected, the user may manually
correct them in one or several frames (using step
(a)) and propagate these edits to the other frames
(using step (b)).

(d) Finally, the user selects which of the selected
objects should be removed, and the system
removes the corresponding regions from the
whole video, reconstructing the missing parts
in a plausible way (see Section 3.3). For this
last step two options are available: a fast one for
static backgrounds, and a more involved one for
dynamic backgrounds.

In the first step most methods only select the
object to be removed. There are, however, several
advantages to tracking multiple objects with different
labels:
1. It gives more freedom to the user for the inpainting

step with the possibility to produce various
results depending on which objects are removed;
in addition, objects which are labeled but not
removed are considered as important by the
system and therefore better preserved during
inpainting of other objects.

2. It may produce better segmentation results than
tracking a single object, in particular when
several objects have similar appearance.

3. It facilitates video stabilization and therefore
increases temporal coherence during the
inpainting step, as shown in the results (see
Section 4.3).
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4. It is of interest for other applications, e.g., action
recognition or scene analysis.

An illustration of these steps can be found in the
supplementary website:
https://object-removal.telecom-paristech.fr/.

3.1 First frame annotation

A classical method to cut out an object from a
frame involves commercial tools such as the Magic
Wand of Adobe Photoshop which are fast and
convenient. However, this classical method requires
many refinement steps and is not accurate with
complex objects. To increase the precision and reduce
user interaction, many methods have been proposed
where interactive image segmentation is performed
using scribbles, point clicks, superpixels, etc. Among
them, some state-of-the-art annotators achieve a high
degree of precision by using edge detectors to find
the contour map and create a set of object proposals
from this map [66]; the appropriate regions are then
selected by the user using point clicks. The main
drawbacks of these approaches are large computation
time and a weak level of user input.
In order to balance human effort and accuracy, we

adopt a fast and simple algorithm. Our system first
generates a set of superpixels from the first image,
and then the user can select suitable superpixels
by simply drawing a coarse contour around each
object. The set of superpixels is created using an edge-
based approach. More precisely, the FCN-based edge
detector network introduced in Ref. [67] is applied
to the first image, and its output is a probability
map of edges. Superpixels are extracted from this
map by the well-known watershed transform [68],
which runs directly on edge scores. There are two
main advantages of using this CNN-based method to
compute the edge map:

1. It has shown superior performance over traditional
boundary detection methods that use local
features such as colors and depths. In particular,
it is much more accurate.

2. It is extremely fast: one forward pass of the
network takes about 2 ms, so the annotation
step can be performed interactively in real time.

After computing all superpixels, the user selects
the suitable ones by drawing a contour around each
target object to get rough masks. Superpixels which

overlap these masks by more than 80% are selected.
The user can refine the mask by adding or removing
superpixels using mouse clicks. As a result, accurate
masks for all objects of interest are extracted in a
frame after a few seconds of interactive annotation.

3.2 Object segmentation

In this step, we start from the object masks computed
on the first frame using the method described in the
previous section, and we aim to infer a full space–time
segmentation of each object of interest in the whole
video. We want our segmentation to be as accurate
as possible, in particular without false negatives.
Doing this in complex videos with several objects

which occlude each other is an extremely challenging
task. As described in Section 2, CNNs have
made important breakthroughs in semantic image
segmentation with extensions to video segmentation
in the last two years [19, 27, 69]. However, current
CNN-based semantic segmentation algorithms are
still essentially image-based, and do not take global
motion information sufficiently into account. As
a consequence, semantic segmentation algorithms
cannot deal with sequences where: (i) several
instances of similar objects need to be distinguished;
and (ii) these objects may eventually cross each
other. Examples of such sequences are Les Loulous �

introduced in Ref. [59], and Museum and Granados-
S3 � introduced in Refs. [49, 60].
On the other hand, more classical video tracking

techniques like optical flow-based propagation or
global graph-based optimization do take global
motion information into account [70]. Nevertheless,
they are most often based on bounding boxes or rough
descriptors and do not provide a precise delineation
of objects’ contours. Two recent attempts to adapt
video-tracking concepts to provide a precise multi-
object segmentation [71, 72] fail completely when
objects cross each other, as in the Museum, Granados-
S3, and Loulous sequences.
In the rest of this section, we describe a novel hybrid

technique which combines the benefits of classical
video tracking with those of CNN-based semantic
segmentation. The structure of our hybrid technique
is shown in Fig. 1. CNN-based modules are depicted
in green and red; their inner structure is described
in Section 3.2.1 and Fig. 2. Modules inspired from

� https://perso.telecom-paristech.fr/gousseau/video_inpainting/
� http://gvv.mpi-inf.mpg.de/projects/vidinp/
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Fig. 1 General pipeline of our object segmentation method. Given the input video and annotations in the first frame, our algorithm alternates
two CNN-based semantic segmentation steps (multi-OSVOS network in green, refining network in red) with 4 video-tracking steps (blue blocks):
(a) keyframe extraction, (b) mask propagation, (c) mask linking, and (d) post processing. See Section 3.2.

Fig. 2 Two networks used in the general pipeline. Left: multi-OSVOS network, right: refinement network. They serve different purposes: the
multi-OSVOS network helps us separating background and objects while the refinement network is used to fine-tune a rough input mask.

video-tracking concepts are depicted in blue and are
detailed in Section 3.2.2.
Note that the central part of Fig. 1 operates on a

frame-by-frame basis. Each segmentation proposal
from the multi-OSVOS network (green), or from
the mask propagation module (blue) is improved
by the refinement network (red). On the right of
the figure, the mask linking module (blue) builds
a graph that links all segmentation proposals from
previous steps, and makes a global decision on the
optimal segmentation for each of the K objects being
tracked. Finally the keyframe extraction module is
required to set sensible temporal limits to the mask
propagation iterations, while the final post-processing
module further refines the result with the objective
of maximizing recall, which is much more important
than precision in the case of video inpainting. All
these modules are explained in more detail in the
following sections.

3.2.1 Semantic segmentation networks
Our system uses two different semantic segmentation
networks: a multi-OSVOS network and a refinement
network. Both operate on a frame-by-frame basis.
Our implementation of multi-OSVOS computes

K + 1 masks for each frame: K masks for the
K objects of interest and a novel additional mask
covering the objects’ boundaries. We call this
latter mask a smart dilation layer; it is the key to
guaranteeing that segmentation does not miss any
part of the objects, which is especially difficult in the
presence of motion blur.
While the multi-OSVOS network provides a first

prediction, the refinement network takes mask
predictions as additional guidance input and improves
those predictions based on image content, similarly
to Ref. [9].
Training these networks is a challenging task,

because the only labeled example we can rely
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on (for supervised training) is the first annotated
frame and the corresponding K masks. The next
paragraphs focus on our networks’ architectures and
on semi-supervised training techniques that we use
to circumvent the training difficulty.
Multi-OSVOS network. The training technique

of our semantic segmentation networks is mainly
inspired from the OSVOS network [8], a breakthrough
which achieved the best performance in the DAVIS-
2016 challenge [7]. The OSVOS network uses a
transfer learning technique for image segmentation:
the network is first pre-trained on a large database
of labeled images. After training, this so-called
parent network can roughly separate all foreground
objects from the background. Next, the parent
network is fine-tuned using the first frame annotation
(annotation mask and image) in order to improve
the segmentation of a particular object of interest.
OSVOS has proven to be a very fast and accurate
semi-supervised method to obtain background–
foreground separation. Our multi-OSVOS network
uses a similar transfer learning technique, yet with
several important differences:
• Our network can identify different objects
separately (instead of simply foreground and
background) and provides a smart dilation mask,
i.e., a smart border which covers the interfaces
between segmented objects and the background,
significantly reducing the number of false negative
pixels. The ground truth for this smart dilation
mask is defined in the fine-tuning step by a 7-pixel
wide dilation of the union of all object masks.

• Unlike OSVOS, which uses a fully convolutional
network (FCN) [73], our network uses the Deeplab
v2 [74] architecture as the parent model since it
outperforms FCN on some common datasets such

as PASCAL VOC 2012 [75].
• In the fine-tuning training step we adopt a data
augmentation technique in the spirit of Lucid
Tracker [21]: we remove all objects from the
first frame using Newson et al.’s image inpainting
algorithm [76], then the removed objects undergo
random geometric deformations (affine and thin
plate deformations), and eventually are Poisson
blended [77] over the reconstructed background.
This is a sensible way of generating large amounts
of labeled training data with an appearance similar
to that which the network might observe in the
following frames.
The smart dilation mask is of particular importance

to ensure that segmentation masks do not miss any
part of the object, which is typically difficult in the
presence of motion blur. A typical example can be
seen in Fig. 3 where some parts of the man’s hands
and legs cannot be captured by simply dilating the
output mask, because motion blur leads to partially
transparent zones which are not recognized by the
network as part of the man’s body. With the
smart dilation mask, the missing parts are properly
captured, and there are no left over pixels.
Refinement network. The multi-OSVOS network

can separate objects and background precisely, but it
relies exclusively on how they appear in the annotated
frame without consideration of their positions, shapes,
or motion cues across frames. Therefore, when objects
have similar appearance, multi-OSVOS fails to separate
individual object instances. In order to take such cues
into account, we propagate and compare the prediction
of multi-OSVOS across frames using video tracking
techniques (see Section 3.2.2), and then double-check
and improve the result after each tracking step using
the refinement network described below.

Fig. 3 Advantages of using the smart dilation mask, a smart border layer in the output map of our multi-OSVOS network. (a) Border
obtained by simply dilating the output map of the network: some parts of the objects are not covered. (b) Border layer learned by the network:
the transition region is covered.
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The refinement network has the same architecture
as the multi-OSVOS network, except that (i) it takes
an additional input, namely mask predictions for the
K foreground objects from another method, and (ii)
it does not produce as an output the (K + 1)-th
smart dilation mask that does not require any further
improvement for our purposes.
Training is performed in exactly the same way

as for multi-OSVOS, except that the training set
has to be augmented with inaccurate input mask
predictions. These should not be exactly the same
as the output masks; otherwise, the network would
learn to perform a trivial operation ignoring the RGB
information. Such inaccurate input mask predictions
are created by applying relevant random degradations
to ground truth masks, e.g., small translations, and
affine and thin-plate spline deformations, followed by
a coarsening step (morphological contour smoothing
and dilation) to remove details of the object contour;
finally, some random tiny square blocks are added
to simulate common errors in the output of multi-
OSVOS. The ground truth output masks in the
training dataset are also dilated by a structuring
element of size 7 × 7 pixels in order to have a safety
margin which ensures that the mask does not miss
any part of the object.

3.2.2 Multiple object tracking
As a complement to CNN-based segmentation, we
use more classical video tracking techniques in order
to take global motion and position information
into account. The simplest ingredient of our
object tracking subsystem is a motion-based mask
propagation technique that uses a patch-based
similarity measure to propagate a known mask to
the consecutive frames. It corresponds to block
(b) in Fig. 1 and is described in more detail below.
This simple scheme alone can provide results similar
to other object tracking methods such as SeamSeg
[71] or ObjectFlow [72]. In particular it is able
to distinguish between different instances of similar
objects, based on motion and position. However
it loses track of the objects when they cross each
other, and it accumulates the errors. To prevent this
from happening we complement the mask propagation
module with five coherence reinforcement steps:
Semantic segmentation. The refinement

network (see Section 3.2.1) is applied to the output of
each mask propagation step in order to avoid errors

accumulating from one frame to the next.
Keyframe extraction. Mask propagation is

effective only when it propagates from frames where
object masks are accurate (especially when objects
do not cross each other). Frames where this is
detected to be true are labeled as keyframes, and
mask propagation is performed only between pairs of
successive keyframes.
Mask linking. When the mask propagation

step is unsure about which decision to make, it
provides not one, but several mask candidates for
each object. A graph-based technique allows all these
mask candidates to be linked together. In this way,
the decision on which mask candidate is best for a
given object on a given frame is made based on global
motion and appearance information.
Post-processing. After mask linking, a series of

post-processing steps are performed using the original
multi-OSVOS result to expand labelling to unlabelled
regions.
Interactive correction. In some situations

where errors appear, the user can manually correct
them on one frame and this correction is propagated
to the remaining frames by the propagation module.
The following paragraphs describe in detail the

inner workings of the four main modules of our
multiple object tracking subsystem: (i) keyframe
extraction, (ii) mask propagation, (iii) mask linking,
and (iv) post-processing.
Keyframe extraction. A frame t is a keyframe

for an object i ∈ {1, . . . , K} if the mask of this
particular object is known or can be computed with
high accuracy. All frames in which the object masks
were manually provided by the user are considered
keyframes. This is usually the first frame or a very
few representative frames.
The remaining frames are considered keyframes for

a particular object when the object is clearly isolated
from other objects and the mask for this object can be
computed easily. To quantify this criterion, we rely
on the multi-OSVOS network which returns K + 1
masks Oi for each frame t and i ∈ {1, . . . , K + 1}.
This allows us to compute the global foreground mask
F =

⋃K+1
i=1 Oi. To verify whether this frame is a

keyframe for object i ∈ {1, . . . , K} we proceed as
follows:

1.Compute the connected components of Oi. Let
O′

i represent the largest connected component.
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2.Compute the set of connected components of the
global foreground mask F and call it F .

3.For each connected component O′ ∈ F compute
the overlap ratio with the current object ri(O′) =
|O′

i ∩ O′|/|O′|. If ri(O′) > 80% and both O′
i and

O′ are isolated from the remaining objects � then
this is a keyframe for object i.

Mask propagation. Masks are propagated
forwards and backwards between keyframes to ensure
temporal coherence. More specifically, forward
propagation proceeds as follows: given the mask Mt

at frame t, the propagated mask Mt+1 is constructed
with the help of a patch-based nearest neighbor shift
map φt from frame t + 1 to frame t, defined as

φt(p) := argmin
δ

∑
q∈Np

‖ ut+1(q) − ut(q + δ) ‖2

︸ ︷︷ ︸
d2(Dt+1(p),Dt(p+δ))

i.e., it is the shift δ that minimizes the squared
Euclidean distance between the patch centered at
pixel p in frame t + 1 and the patch around
p + δ at frame t. In this expression, Np denotes
a square neighborhood of given size centered at
p, and Dt(p) is the associated patch in frame t,
i.e., Dt(p) = ut(Np) with ut the RGB image
corresponding to frame t. The �2-metric between
patches is denoted d. To improve robustness and
speed, this shift map is often computed using an
approximate nearest neighbor searching algorithm
such as coherency sensitive hashing (CSH) [78], or
FeatureMatch [79]. To capture the connectivity of
patches across frames in the video, two additional
terms are used in Ref. [71] for space and time
consistency: the first term penalizes the absolute shift
and the latter penalizes neighbourhood incoherence
to ensure adjacent patches flow coherently. Moreover,
to reduce the patch space dimension and to speed
up the search, all patches are represented with lower
dimension features, e.g., the main components in
Walsh–Hadamard space; see Ref. [71] for more details.
We use this model to calculate our shift map.
Once the shift map has been computed, we

propagate the mask as follows: let ut(p) be the
RGB value of pixel p in frame t. Then the similarity
between a patch Dt+1(p) in frame t+1 and its nearest
neighbour Dt(p + φ(p)) in frame t is measured as

sp = exp
(−d2(Dt+1(p), Dt(p + φt(p)))

)
� i.e., if O′

i ∩ O′
j = O′ ∩ O′

j = ∅ for all j ∈ {1, . . . , K} such that j �= i.

Using this similarity measure the mask Mt+1 is
propagated from Mt using the following rule:

M̃t+1(p) =
{
1,

∑
q∈Np

sqMt (q) > 1
2

∑
q∈Np

sq

0, otherwise
The final propagated mask Mt+1 is obtained by a

series of morphological operations including opening
and hole filling on M̃t+1 followed by the refinement
network to correct certain errors. Then Mt+1 is
iteratively propagated to the next frame t + 2 using
the same procedure until we reach the next keyframe.
Although this mask propagation approach is useful,

several artifacts may occur when objects cross each
other: the propagation algorithm may lose track of
an occluded object or it could mistake one object for
another. To avoid such errors, mask propagation is
performed in both forwards and backwards directions
between keyframes. This gives for each object two
candidate masks at each frame t: M1

t = MFW
t , i.e.,

the one that has been forward-propagated from a
previous keyframe t′ < t and M2

t = MBW
t , i.e.,

the one that has been backward-propagated from
an upcoming keyframe t′ > t. In order to circumvent
both lost and mistaken objects we consider for each
object two additional candidate masks:

M3
t = MFW

t ∩ MBW
t and M4

t = MFW
t ∪ MBW

i

The decision between these four mask candidates
for each frame and each object is deferred to the
next step, which makes that decision based on global
optimization.
Mask linking. After backward and forward

propagation, each object has 4 mask proposals (except
for keyframes where it has a single mask proposal).
In order to decide which mask to pick for each object
in each frame, we use a graph-based data association
technique (GMMCP) [80] that is specially well-suited
to video tracking problems. This technique not
only allows selection among the 4 candidates for a
given object on a given frame, it is also capable of
correcting erroneous object-mask assignments on a
given frame, based on global similarity computations
between mask proposals along the whole sequence.
The underlying generalized maximum multi-cliques
problem is clearly NP-hard, but the problem itself is
of sufficiently small size to be handled effectively by
a fast binary-integer program as in Ref. [80].
Formally, we define a complete undirected graph

G = (V, E) where each vertex in V corresponds to
a mask proposal. Vertices in the same frame are
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grouped together to form a cluster. E is the set of
edges connecting any two different vertices. Each edge
e ∈ E is weighted by a score measuring the similarity
between the two masks it connects, as detailed in the
next paragraph. All vertices in different clusters are
connected together. The objective is to pick a set of
K cliques � that maximize the total similarity score,
with the restriction that each clique contains exactly
one vertex from each cluster. Each selected clique
represents the most coherent tracking of an object
across all frames.
Region similarity for mask linking. In

our graph-based technique, a score needs to be
specified to measure the similarity between the
two masks, and the associated image data. This
similarity must be robust to illumination changes,
shape deformation, and occlusion. Many previous
approaches in multiple object tracking [80, 81] have
focused on global information of the appearance
model, typically the global histogram, or motion
information (given by optical flow or a simple constant
velocity assumption). However, when dealing with
large displacements and with an unstable camera, the
constant velocity assumption is invalid and optical
flow estimation is hard to apply. Furthermore, using
only global information is insufficient, since our object
regions already have similar global appearance. To
overcome this challenge, we define our similarity
score as a combination of global and local features.
More precisely, each region R is described by the
corresponding mask M , its global HSV histograms H,
a set P of SURF keypoints [82], and a set E of vectors
which connect each keypoint with the centroid of the
mask. Each region is determined by four elements:
R := (M, H, P, E),
P := {p1, p2, . . . , pN | pi ∈ M}, where pi is the ith
keypoint,
E := {�e1, �e2, . . . , �eN | �ei = pi − C}, where C is the
barycenter of M .
Then the similarity between two regions is defined
as:

S(R1, R2) = SH(R1, R2) + αSP (R1, R2)
In this expression, SH(R1, R2) = exp(−dc(H1, H2))
where dc is the cosine distance between two HSV
histograms which encode global color information,
SP is the local similarity computed based on keypoint

� A clique is a subgraph in which every pair of distinct vertices is connected.

matching, and α is a balance coefficient to specify
the contribution of each component. SP is computed
by

SP (R1, R2) =
∑

pi∈P1

∑
pj∈P2

γij .wij

where γij is the indicator function set to 1 if two
keypoints pi and pj match, and 0 otherwise. This
function is weighted by wij based on the position of
the matching keypoints with respect to the centroid
of the region:

wij = exp (−d(�ei, �ej)/(2σ))
where dc is the cosine distance between two vectors
and σ is a constant.
Post-processing. At this time, we already have

K masks for K objects for all frames of the video.
Now we perform a post-processing step to ensure
that our final mask covers all details of the objects.
This is very important in video object removal since
any missing detail can cause perceptually annoying
artifacts in the object removal result. This post-
processing includes two main steps.
The first step is to give a label for each region in the

global foreground mask Ft =
⋃K

i=1 Oi
t (the union of

all object masks produced by multi-OSVOS for frame
t) which does not yet have any label. To this end, we
proceed as follows. First, we compute the connected
components C of all masks Oi

t and try to assign a
label to all pixels in each connected component. To
do so, we consider the masks M j

t that were obtained
for the same frame t (and possibly another object
class j by the mask linking method). A connected
component is considered as isolated if C ∩ M j

t is
empty for all j. For non-isolated components, a label
is assigned by a voting scheme based on the ratio
rj(C) =

|C∩Mj
t |

|C| , i.e., the assigned label for region C

is ĵ = argmaxj rj(C), the one with the highest ratio.
If rj(C) > 80% then region C is also assigned label
j regardless of the voting result, which may lead to
multiple labels per pixel.
In the second step, we do a series of morphological

operations, namely opening and hole filling. Finally
we dilate each object mask again with size 9× 9, this
time allowing overlap between objects.

3.3 Object removal

After using the method in the previous section, all
selected objects have been segmented throughout the
complete video sequence. From the corresponding
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Fig. 4 Mask proposals are linked across frames to form a graph. The goal is then to select a clique from this graph minimizing the overall
cost. As a result, a best candidate is picked for each frame to ensure that the same physical object is tracked.

Fig. 5 Region description. Each region is described by a global
histogram, a set of SURF keypoints (yellow points), and a set of
vectors which connects each keypoint and the centroid of the region.

masks, the user can then decide which objects are
to be removed. This last step is performed using
video inpainting techniques that we now detail. First,
we present a simple inpainting method that is used
when the background is static (or can be stabilized)
and revealed at some point in the sequence. This
first method is fast and relies on the reconstruction
of a motion field. Then we present a more involved
method for the case where the background is moving,
with possibly some complex motion as in the case of
dynamic textures.
3.3.1 Static background
We assume for this first inpainting method that the
background is visible at least in some frames (for
instance because the object to be removed is moving
over a large enough distance). We also assume that

the background is rigid and that its motion is only due
to camera motion. In this case, the best option for
performing inpainting is to copy the visible parts of
the background into the missing regions, from either
past or future frames. For this, the idea is to rely
on a simple optical-flow pixel propagation technique.
Motion information is used to track the missing pixels
and establish a trajectory from the missing region
toward the source region.
Overview. Our optical flow-based pixel pro-

pagation approach is composed of three main steps,
as illustrated in Fig. 6. After stabilizing the video to
compensate for camera movement, we use FlowNet
2.0 to estimate forward and backward optical flow
fields. These optical flow fields are then inpainted
using a classical image inpainting method to fill in the
missing information. Next, these inpainted motion
fields are concatenated to create a correspondence
map between pixels in the inpainting region and
known pixels. Lastly, missing pixels are reconstructed
by a copy-paste scheme followed by Poisson blending
to reduce artifacts.
Motion field reconstruction. A possible

approach to optical flow inpainting is smooth
interpolation, for instance, in the framework of a
variational approach, by ignoring the data term
and using only the smoothness term in the missing
regions, as proposed in Refs. [56, 57]. However,
this approach leads to over-smoothed and unreliable
optical flow. Therefore, we choose to reconstruct the
optical flow using more sophisticated image inpainting
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Fig. 6 Global pipeline of the optical flow-based propagation approach for reconstructing a static background. From input video (a),
forward/backward optical flow fields are estimated by FlowNet 2.0 (b), and then are inpainted by an image inpainting algorithm (c). From
these optical flow fields, pixels from the source region are propagated into the missing region (d).

techniques. More specifically we first compute,
outside the missing region, forward and backward
optical flow fields between pairs of consecutive frames
using the FlowNet approach from Refs. [83]. We then
rely on the image inpainting method from Ref. [76]
to interpolate these motion fields.
Optical flow-based pixel reconstruction.

Once the motion field inside the missing region is
filled, it is used to propagate pixel values from the
source toward the missing regions. For this to be
done, we map each pixel in the missing region to
a pixel in the source region. This map is obtained
by accumulating the optical flow field from frame
to frame (with bilinear interpolation). We compute
both forward and backward optical flow, which leads
us to two correspondence maps: a forward map and a
backward map. From either map, we can reconstruct
missing pixels with a simple copy-paste method, using
known values outside the missing region.
We perform two passes: first a forward pass using

the forward map to reconstruct occlusion, then a
backward pass using the backward map. After
these two passes, the remaining missing information
corresponds to parts that have never been revealed
in the video. To reconstruct this information, we
first use the image inpainting method from Ref. [76]
to complete one keyframe, which is chosen to be
the middle frame of the video, and then propagate
information from this frame to other frames in the
video using forward and backward maps.
Poisson blending. Videos in real life often

contain illumination changes, especially if recorded
outdoors. This is problematic for our approach
that simply copies and pastes pixel values. When
illumination of the sources differs from the
illumination of the restored frame, visible artifacts
across the border of the occlusion may appear. A
common way to resolve this is to apply a blending
technique, e.g., Poisson blending [77], which fuses

a source image and a target image in the gradient
domain. However, performing Poisson blending
frame-by-frame may affect temporal consistency. To
maintain it, we adopt the recent method of Bokov
and Vatolin [57] which takes into account information
from the previous frame. In this method, a regularizer
penalizes discrepancies between the reconstructed
colors and corresponding colors in the optical flow-
aligned previous frame. More specifically, given the
colors of the current and previous inpainted frames
It(p), It−1(p), respectively, the refined Poisson-
blended image I(p) can be obtained by minimizing
the discretized energy functional [57]:
B(I) =

∑
p∈Ωt

‖∇I(p) − Gt(p)‖2

+
∑

p∈∂Ωt

wPB
p ‖I(p) − It(p)‖2

+
∑

p∈Ωt

(1 − wPB
p ) ‖I(p) − It−1(p + Ot(p))‖2

Here, ∂Ωt denotes the outer-boundary pixels of the
missing region Ωt, Gt(p) is the target gradient field
and Ot(p) is the optical flow at position p between
frames t − 1 and t. The terms wPB

p are defined as
wPB

p = (1 + σPB||∇IPB(p) − Gt(p)||2)−1

where IPB is the usual Poisson blended image. They
are used to weight the reconstruction results from
the previous frame It−1 in the boundary conditions.
In this definition, σPB is a constant controling the
strength of temporal-consistency enforcement. These
weights allow to better handling of global illumination
changes while enforcing temporal stability. This
Poisson blending technique is applied at every
pixel propagation step to support the copy-paste
framework.
3.3.2 Dynamic background
The simple optical flow-based pixel propagation
method proposed in Section 3.3.1 can produce
plausible results if the video contains only a static
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background and simple camera motion. More
involved methods are needed to deal with large pixel
displacements and complex camera movements. They
are typically based on joint estimation of optical
flow and color information inside the occlusion: see
for instance Refs. [61, 84]. However, when the
background is dynamic or contains moving objects,
these latter methods often fail to capture oscillatory
patterns in the background. In such situations, global
patch-based methods are preferred. They rely on
minimization of a global energy computed over space–
time patches. This idea was first proposed in Ref. [58],
later improved in Ref. [59], and recently improved
further in Le et al. [62].
We describe briefly the method in Ref. [62]. A prior

stabilization process is applied to compensate for
instabilities due to camera movement (see below for
the improvement proposed in the current work). Then
a multiscale coarse-to-fine scheme is used to compute
a solution to the inpainting problem. The general
structure of this scheme is that, at each scale of a
multiscale pyramid, we alternate until convergence (i)
computation of an optimal shift map between pixels
in the inpainting domain and pixels outside (using a
metric between patches which involves image colors,
texture features, and optical flow), and (ii) update of
image colors inside the inpainting domain (using a
weighted average of the values provided by the shift
map). A key to the quality of the final result is the
coarse initialization of this scheme; it is obtained by
progressively filling in the inpainting domain (at the
coarsest scale) using patch matching and (mapped)
neighbors averaged together with a priority term
based on optical flow. The heavy use of optical
flow at each scale greatly helps to enforce temporal
consistency even in difficult cases such as dynamic
backgrounds or complex motions. In particular, the
method can reconstruct moving objects even when
they interact. The whole method is computationally
heavy but the speed is significantly boosted when all
steps are parallelized.
We have recently brought several improvements to

this method of Ref. [62]:
Video stabilization. In general, patch-based

video inpainting techniques require good video
stabilization as a pre-processing step to compensate
for patch deformations due to camera motions
[85, 86]. This video stabilization is usually done
by calculating a homography between pairs of

consecutive frames using keypoint matching followed
by an RANSAC algorithm to remove outliers [87].
However, large moving objects appearing in the video
may reduce the performance of such an approach as
too many keypoints may be selected on these objects
and prevent the homography from being estimated
accurately from the background. This problem can
be solved by simply neglecting all segmented objects
when computing the homography. This is easy to do:
since we already have masks of the selected objects, we
just have to remove all keypoints which are covered
by masks. This is an advantage of our approach
in which both segmentation and inpainting are
addressed.
Background and foreground inpainting. In

addition to stabilization improvement, multiple
segmentation masks are also helpful for inpainting
separately the background and the foreground. More
precisely, we first inpaint the background neglecting
all pixels contained in segmented objects. After
that, we inpaint in priority order the segmented
objects that we want to keep and which are
partially occluded. This increases the quality of the
reconstruction, both for the background and for the
objects. Furthermore, it reduces the risk of blending
segmented objects which are partially occluded
because segmented objects have separate labels. In
particular, it is extremely helpful when several objects
overlap.
We finally mention another advantage of our

joint tracking/inpainting method: objects are better
segmented and thus easier to inpaint, as it is a well-
known fact that the inpainting of a missing domain
may be of lower quality if the boundary values are
unsuitable. In our case, time continuity of segmented
objects and the fact of using different labels for
different objects have a huge impact on the quality
of the inpainting.

4 Results
We first evaluate our results for the segmentation step
of the proposed method. We provide quantitative and
visual results, and comparisons with state-of-the-art
methods. We then provide several visual results
for the complete object removal process, again
comparing with the most efficient methods. These
visual comparisons are given as isolated frames in
the paper; it is of course more informative to see
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the complete videos in the supplementary material at
https://object-removal.telecom-paristech.fr/.
We consider various datasets: we use sequences
from the DAVIS-2016 [7] challenge, and from the
MOViC [88] and ObMIC [89] datasets; we also
consider classical sequences from Refs. [49] and [59].
Finally, we provide several new challenging sequences
containing strong appearance changes, motion blur,
objects with similar appearance and at times crossing,
as well as complex dynamic textures.
Unless otherwise stated, only the first frame is

annotated by the user in all experiments. In some
examples (e.g., Camel) not all objects are visible
in the first frame and we use another frame for
annotation. In a few examples we annotate more
than one frame (e.g., the first and last frame in
Teddy bear-fire and Jumping girl-fire) in order to
illustrate the flexibility of the system in correcting
errors.
4.1 Implementation details

For segmentation, we use the Deeplab v2 [74]
architecture for the multi-OSVOS and refining
networks. We initialize the network using the pre-
trained model provided by Ref. [74] and then adapt
it to video using the training set of DAVIS-2016
[69] and the train-val set in DAVIS-2017 [19] (we
exclude the validation set of DAVIS-2016). For the
data augmentation procedure, we generate 100 pairs
of images and ground truth from the first frame
annotation, following the same protocol as in Ref. [21].
For the patch-based mask propagation and mask
linking, we evolved from the implementations of
Refs. [71] and [80], respectively.
For the video inpainting step, we use the default

parameters from our previous work [62]. In particular,
the patch size is set to 5, and the number of levels in
the multi-scale pyramid is 4.
For a typical sequence with resolution (854 × 480)

and 100 frames, the full computational time is of
the order of 45 minutes for segmentation plus 40
minutes for inpainting on an Intel Core i7 CPU with
32 GB of RAM and a GTX 1080 GPU. While this is
a limitation of the approach, complete object removal
is about one order of magnitude faster than a single
completion step from state-of-the-art methods [59, 61].
While interactive editing is out of reach for now, the
computational time allows offline post-processing of
sequences.

4.2 Object segmentation

For the proposed object removal system, and as
explained in detail above, the most crucial point
is that the segmentation masks must completely
cover the considered objects, including motion and
transition blur. Otherwise, unacceptable artifacts
remain after the full object removal procedure (see
Fig. 13 for an example). In terms of performance
evaluation, this means that we favor recall over
precision, as defined below. This also means
that the ground truth provided with classical
datasets may not be fully adequate to evaluate
segmentation in the context of object removal,
because they do not include transition zones induced
by, e.g., motion blur. For this reason, recent
video inpainting methods that make use of these
databases to avoid the tedious manual selection of
objects usually start from a dilation of the ground
truth. In our case, a dilation is learned by our
architecture (smart dilation) during the segmentation
step, as explained above. For these reasons, we
compare our method with state-of-the-art object
segmentation methods, after various dilations and
on the dilated versions of the ground truth. We also
provide visual results in our supplementary website at
https://object-removal.telecom-paristech.fr/.
Evaluation metrics. We briefly recall here the

evaluation metrics that we use in this work: some of
them are the same as in the DAVIS-2016 challenge [7]
and we also add other metrics specialized for our task.
The goal is to compare the computed segmentation
mask (SM) to the ground truth mask (GT). The
recall metric is defined as the ratio between the area
of the intersection between SM and GT, and the area
of GT. The precision is the ratio between the area of
the intersection and the area of the SM. Finally, the
IoU (intersection over union), or Jaccard index, is
defined as the ratio between intersection and union.
Single object segmentation. We use the

DAVIS-2016 [7] validation set and compare our
approach to recent semi-supervised state-of-the-art
techniques (SeamSeg [71], ObjectFlow [72], MSK [69],
OSVOS [8], and onAVOS [20]) using pre-computed
segmentation masks provided by the authors. As
explained above, we consider a dilated version of the
ground truth (using a 15× 15 structuring element, as
in Refs. [61, 62]). Therefore, we apply a dilation of
the same size to the masks from all methods. In our
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case, this dilation has both been learned (size 7 × 7)
and applied as a post-processing step (size 9 × 9).
Since the composition of two dilations with such sizes
yields a dilation with size 15 × 15, the comparison is
fair.
Table 1 shows a comparison using the three above-

mentioned metrics. Our method has the best recall
score overall, therefore achieving its objective. The
precision score remains very competitive. Besides, our
method outperforms OSVOS [8] and MSK [69], those
having a similar neural network backbone architecture
(VGG16), on all metrics. The precision and IoU
scores compare favorably with onAVOS [20] which
uses a deeper and more advanced network. Table 2
provides a comparison between OSVOS [8] and our
approach on two sequences from Ref. [60]. These
sequences have been manually segmented by the
authors of Ref. [60] for video inpainting purposes.
On such extremely conservative segmentation masks
(in the sense that they over-detect the object), the
advantage of our method is particularly strong.
As a further experiment, we investigate the ability

of dilations of various sizes to improve recall without
degrading precision too much. For this, we plot
precision–recall curves as a function of the structuring
element size (ranging from 1 to 30). To include our

Table 1 Quantitative comparison of our object segmentation method
to other state-of-the-art methods, on the single object DAVIS-2016 [7]
validation set. The main objective when performing object removal is
to achieve high recall scores

Metric

Recall (%) Precision (%) IoU (%)
SeamSeg 59.31 73.08 50.20

ObjectFlow 70.63 90.97 67.78
MSK 82.83 95.00 79.94

OSVOS 86.78 92.38 80.58
onAVOS 87.64 96.67 85.17

Ours 89.63 94.31 84.70

Table 2 Quantitative comparison of our object segmentation method
and the OSVOS segmentation method [8], on two sequences manually
segmented for inpainting purposes [60]

Metric

Recall (%) Precision (%) IoU (%)
Granados-S1

OSVOS 62.04 59.17 52.15
Ours 80.12 86.31 67.53

Granados-S3
OSVOS 74.42 87.00 63.02

Ours 80.12 86.31 67.53

method on this graph, we start from our original
method (highlighted with a green square) and apply
to it either erosions with a radius ranging from
1 to 15, or dilation with a radius ranging from 1
to 15. Again this makes sense since our method
has learned a dilation whose equivalent radius is
15. Results are displayed in Fig. 8. As can be
seen, our method is the best in terms of recall, and
recall increases significantly with dilation size. With
the sophisticated onAVOS method, on the other
hand, recall increases slowly, while precision drops
drastically, as dilation size increases. Basically, these
experiments show that the performance achieved by
our system for the full coverage of a single object
(that is, with as few missed pixels as possible) cannot
be obtained from state-of-the-art object segmentation
methods by using simple dilation techniques.
Multiple object segmentation. Next, we

perform the same experiments for datasets containing
videos with multiple objects. Since the test ground
truth was not yet available (at the time of writing)
for the DAVIS-2017 dataset and since our network
was trained on the train-val set of this dataset,
we consider two other datasets: MOViCs [88] and
ObMIC [89]. They include multiple objects, but
only have one label per sequence. To evaluate
multiple object situations, we only kept sequences
containing more than one object, and then manually
re-annotated the ground truth giving different labels
for different instances. Observe that these datasets
contain several major difficulties such as large camera
displacements, motion blur, similar appearances, and
crossing objects. Results are summarized in Table 3.
Roughly the same conclusions can be drawn as in

Table 3 Quantitative comparison of our object segmentation method
and other state-of-the-art methods, on two multiple objects datasets
(MOVICs [88] and ObMIC [89])

Metric

Recall (%) Precision (%) IoU (%)

MOViCs
SeamSeg 78.63 74.06 65.96

ObjectFlow 59.50 77.01 52.33
OSVOS 85.48 83.87 76.63

Ours 89.28 87.09 81.58

ObMIC
SeamSeg 91.00 80.30 75.33

ObjectFlow 53.14 83.00 43.64
OSVOS 85.89 84.08 74.55

Ours 94.42 88.48 83.81
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the single object case, namely the superiority of our
method in term of recall, without much sacrifice of
precision .
Some qualitative results of our video segmentation

technique are shown in Fig. 7. In the first two rows,
we show some frames corresponding to the single
object case, on the DAVIS-2016 dataset [7]. The
last three rows show multiple object segmentation
results on MOViCs [88], ObMIC [89], and Granados’s
sequences [49] respectively. On these examples,
our approach yields full object coverage, even with
complex motion and motion blur. This is particularly
noticeable on the sequences Kite-surf and Paragliding-
launch. In the multiple object cases, the examples
illustrate the capacity of our method to deal with
complex occlusions. This cannot be achieved with
mask tracking methods such as objectFlow [72]
or SeamSeg [71]. The OSVOS method [8] leads
to some confusion of objects, probably because
temporal continuity is not taken into account by this
approach.

4.3 Object removal

Next, we evaluate the complete object removal
pipeline. We consider both inpainting versions that

we have introduced. We use the simple, optical
flow-based method introduced in Section 3.3.1 for
sequences having static backgrounds. We refer to
this fast method as the static version. We use the
more complex method derived from Ref. [62] and
detailed in Section 3.3.2 for more involved sequences,
exhibiting challenging situations such as dynamic
backgrounds, camera instability, complex motions,
and crossing objects. We refer to this second slower
version as the dynamic version.
In Fig. 9, we display examples of both single

and multiple object removal, through several
representative frames. The video results can be
fully viewed in the supplementary website. The first
sequence Blackswan (DAVIS-2016) shows that our
method (dynamic version) can plausibly reproduce
dynamic textures. In the second sequence Cows
(DAVIS-2016), the method yields good results, with a
stable background and continuity of the geometrical
structures, despite a large occlusion implying that
some regions are covered throughout the sequence.
We then turn to the case of multiple object removal.
In the sequence Camel (DAVIS-2017), we show the
removal of one static object, a challenging case since
the background information is missing in places. In

Fig. 7 Visual comparison of different segmentation approaches. Left to right: original, SeamSeg [71], ObjectFlow [72], OSVOS [8], ours.
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Fig. 8 Precision–recall curves for different methods with different
dilation sizes.

this example, the direct use of the inpainting method
from Ref. [62] results in some undesired artifacts
when the second camel enters the occlusion. By
using multiple object segmentation masks to separate
background and foreground, we can create a much
more stable background. The last two examples are
from an original video. This sequence again highlights
that our method can deal with dynamic textures and
hand-held cameras.
Comparison with state-of-the-art inpainting

methods. In these experiments, we compare our
results with two state-of-the-art video inpainting
methods [59, 61].
First, we provide a visual comparison between our

optical flow-based pixel propagation method (the

Fig. 9 Results from our object removal system.
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static approach) with the method of Huang et al. [61]
using a video with a static background. Figure 10
shows some representative frames of the sequence
Horse-jump-high. In this sequence, we achieve a
comparable result using our simple optical flow-based
pixel propagation approach. Our advantage is the
considerable reduction of computational time. With
an unoptimized version of the code, our method takes
approximately 30 minutes to finish while the method
in Ref. [61] takes about 3 hours to complete this
sequence.
Next, we qualitatively compare our method with

Ref. [61] when reconstructing dynamic backgrounds.
We use the code released by the author on several
sequences using the default parameters. In general,
Huang et al. [61] fail to generate convincing dynamic
textures. This can be explained by the fact that
their algorithm relies on dense flow fields to guide
completion, and these fields are often unreliable for
dynamic texture. Moreover, they fill the hole by

sampling only 2D patches from the source regions and
therefore the periodic repetition of the background is
not captured. Our method, on the other hand, fills the
missing dynamic textures in a plausible way. Figure 11
shows representative frames of the reconstructed
sequence Teddy-bear, which is recorded indoors. This
sequence is especially challenging because of the
presence of both dynamic and static textures, as
well as illumination changes. Our method yields a
convincing reconstruction of the fire, unlike the one
in Ref. [61]. The complete video can be seen in the
supplemental material website.
We also compare our results with the video

inpainting technique from Ref. [59]. Figure 12 shows
some representative frames of the sequence Park-
complex, which is taken from Ref. [60] and modified
to focus on the moment when objects occlude each
other. In this example, the method of Ref. [59]
cannot reconstruct the moving man on the right
which is occluded by the man on the left. This is

Fig. 10 Qualitative comparison with Huang et al.’s method [61]. Top to bottom: our segmentation mask, result from Ref. [61] using a
manually segmented mask, our inpainting results using our mask.

Fig. 11 Qualitative comparison with Huang et al.’s method [61] on video with a dynamic background. Left to right: our segmentation mask,
result from Ref. [61], our inpainting result performed on our mask.
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Fig. 12 Qualitative comparison with Newson et al.’s method [59]. Top: our segmentation masks; red and green masks denote different objects,
and yellow shows the overlap region between two objects. Middle: results from Ref. [59] performed on our segmentation masks. Bottom: our
inpainting results performed on the same masks.

because the background behind this man changes
over time (from tree to wall). Since Newson et al.’s
method [59] treats the background and the foreground
similarly, the algorithm can not reconstruct the
situation “man in front of the wall” because it has
never seen this situation before. Our method, by
making use of the optical flow and thanks to the
object segmentation map, can reconstruct the “man”
and the “wall” independently, yielding a plausible
reconstruction.
Impact of segmentation masks on inpainting

performances. In these experiments, we highlight
the advantages of using the segmentation masks of
multiple objects to improve the video inpainting
results.
First, we emphasize the need for masks which fully

cover the objects to be removed. Figure 13(top)
demonstrates the situation in which some object
details (the waving hand in this case) are not covered
by the mask (here using the state-of-the-art OSVOS
method) [8]. This situation leads to a very unpleasant
artifact when video inpainting is performed. Thanks
to the smart dilation, introduced in the previous
sections, our segmentation mask fully covers the
object to be removed, yielding a more plausible video
after inpainting.
Object segmentation masks can also be helpful

for the video stabilization step. Indeed, in the

case of large foregrounds, these can have a strong
effect on the stabilization procedure, yielding a bad
stabilization of the background, which in turn yields
bad inpainting results. In contrast, if stabilization
is applied only to the background, the final object
removal results are much better. This situation is
illustrated in the supplementary material.
To further investigate the advantage of using

multiple segmentation masks to separate background
and foreground in the video completion algorithm, we
compare our method with direct application of the
inpainting method from Ref. [62], without separating
objects and background. Representative frames
ofboth approaches are shown in Fig. 14. Clearly,
the method in Ref. [62] produces artifacts when
the moving objects (the two characters) overlap the
occlusion, due to patches from these moving objects
being propagated within the occlusion in the nearest
neighbor search step. Our method, on the other
hand, does not suffer from this problem because we
reconstruct background and moving objects separately.
This way, the background is more stable, and the
moving objects are well reconstructed.

5 Conclusions, limitations, and discussion
In this paper, we have provided a full system for
performing object removal from video. The input of
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Fig. 13 Results of object removal using masks computed by OSVOS (top) and our method (bottom). Left to right: segmentation mask,
resulting object removal in one frame, zooms. When the segmentation masks do not fully cover the object (OSVOS), the resulting video contains
visible artifacts (the hand of the man remains after object removal).

Fig. 14 Advantage of using segmentation masks to separate background and foreground. Left: without separation, the result has many
artifacts. Right: the background and foreground are well reconstructed when reconstructed independently.

the system comprises a few strokes provided by the
user to indicate the objects to be removed. To the
best of our knowledge, this is the first system of this
kind, even though the Adobe company has recently
announced it is developing such a tool, under the
name Cloak. The approach can deal with multiple,
possibly crossing objects, and can reproduce complex
motions and dynamic textures.
Although our method achieves good visual results

on different datasets, it still suffers from a few
limitations. First, parts of objects to be edited may
be ignored by the segmentation masks. In such
cases, as already emphasized, the inpainting step
of the algorithm will amplify the remaining parts,
creating strong artifacts. This is an intrinsic problem
of the semi-supervised object removal approach and

room remains for further improvement. Further, the
system is still relatively slow, and in any case far
from real time. Accelerating the system could allow
for interactive scenarios where the user can gradually
correct the segmentation-inpainting loop.
The segmentation of shadows is still not flawlessly

performed by our system, especially when the
shadows lack contrast. It is a desirable property
of the system to be able to deal with such cases. This
problem can be seen in several examples provided in
the supplementary material.
Concerning the inpainting module, the user has

to currently choose between the fast motion-based
version (which works better for static backgrounds)
and the slower patch-based version which is required
in the presence of complex dynamic backgrounds. An
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integrated method that reunites the advantages of
both would be preferable. Huang et al.’s method [61]
makes a nice attempt in this direction, but its use of
2D patches is insufficient to correctly inpaint complex
dynamic textures, which are more plausibly inpainted
by our 3D patch-based method.
Another limitation occurs in some cases where

the background is not revealed, specifically when
semantic information should be used. Such difficult
cases are gradually being solved for single images by
using CNN-based inpainting schemes [64]. While the
training step of such methods is still out of reach
for videos as of today, developing an object removal
scheme fully relying on neural networks is an exciting
research direction.
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