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Abstract
of animals grazing on grassland, we present a livestock
detection algorithm using modified versions of U-net
and Google Inception-v4 net. This method works well
to detect dense and touching instances. We also

In order to accurately count the number

introduce a dataset for livestock detection in aerial
images, consisting of 89 aerial images collected by
quadcopter. Fach image has resolution of about 3000 x
4000 pixels, and contains livestock with varying shapes,
scales, and orientations.

We evaluate our method by comparison against Faster
RCNN and Yolo-v3 algorithms using our aerial livestock
dataset. The average precision of our method is better
than Yolo-v3 and is comparable to Faster RCNN.

Keywords livestock detection; segmentation; classi-

fication

1 Introduction

Forage-livestock balance is an important factor
affecting the productivity of grassland. Having an
appropriate number of livestock on grassland is
important for sustainable animal husbandry. If
the stocking rate is too high, the grassland will
be overutilized, and the grassland ecology will
deteriorate, which is not conducive to the production
of livestock. Accurately determining the actual
number of livestock present on grassland is necessary
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for macro-control, and is needed for government
surveillance of overgrazing to prevent grassland
ecological degradation. Therefore, an efficient and
accurate method for detecting livestock is needed to
obtain the actual number of animals grazing on the
grassland.

In recent years, deep convolutional neural networks
have been used widely for computer vision tasks,
including image classification, object recognition, and
semantic segmentation. They surpass traditional
methods for many visual recognition tasks. However,
the application of deep mneural networks to
visual recognition tasks cannot be separated from
supporting datasets. The release of publicly available
datasets is a factor driving the advance of deep
convolutional neural networks in the field of computer
vision, allowing researchers to develop, evaluate,
and compare new algorithms. Many conventional
target detection datasets exist, such as PASCAL
VOC [1], COCO |[2], ImageNet [3], LabelMe [4], etc.
Many state-of-the-art target detection algorithms
such as Faster R-CNN [5], Yolo [6], SSD [7], Mask
R-CNN [8], etc., have been evaluated using these
conventional datasets. However, object detectors
based on conventional datasets do not perform well
on aerial images, the main reason being that aerial
images have their own particularities. Firstly, the
views have a specific nature: aerial images are usually
taken from high altitude, while conventional datasets
are mostly ground-level views, so the appearance
of the same target is quite different. Secondly, the
target resolution is low. In aerial images, most targets
occupy relatively few pixels, providing little feature
information. The CNN pooling layer further reduces
this information. After 4 pooling layers, a 20x 20 pixel
target has only about 1 pixel, making it difficult to
detect small targets. Thirdly, orientation is arbitrary.
(@ TRNGHYA € Springer
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Aerial images are taken from above, and the heading
of the target is arbitrary, unlike conventional datasets,
in which for example pedestrians are generally upright.
The target detector thus needs to be insensitive to
direction. For the above reasons, specialized aerial
image datasets are needed for training and assessing
aerial image target detection methods, and target
detection algorithms need to take these characteristics
into account.

In this paper, we first introduce an aerial livestock
dataset for use in the design and assessment of
algorithms to detect and count livestock on grassland.
The dataset is divided into three parts according to
the time, place, and difficulty of detection of livestock
in the images. Secondly, we introduce a livestock
detection algorithm using modified versions of U-net
[9] and Google Inception-v4 net [10]. U-net is used to
segment the aerial image to obtain regions of interest
(ROIs). Since the feature map has the same resolution
as the original image, feature information for small
targets can be retained. The modified Inception-net
is used to classify each ROI to accurately identify
targets. We comparatively evaluate our algorithm
against Faster RCNN [5] and Yolo-v3 [6] algorithms
using our dataset. Experimental results show that
image segmentation using a fully convolutional neural
network is beneficial to small target recognition and
the average precision of our method is better than
that of Yolo-v3 and is comparable to that of Faster
RCNN.

2 Related work

2.1 Aerial image dataset

Many new aerial image datasets have been recently
produced and made publicly available. The targets in
these datasets are mainly land vehicles, ships, aircraft,
etc. The DOTA [11] dataset contains 2806 aerial
images, each of size about 4000 x 4000 pixels. It
contains objects having different scales, orientations,
and shapes, in 15 common object categories. The fully
annotated DOTA dataset contains 188,282 instances,
each of which is labeled by an oriented (i.e., not axis-
aligned) bounding box. Most instances are between
10 and 50 pixels in size. Similarly, NWPU VHR-
10 [12] contains ten classes of objects, with about
3000 instances in total. The UCAS-AOD (Dataset
of Object Detection in Aerial Images) [13] contains
a vehicle dataset and a plane dataset collected from
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Google Earth aerial images. The former contains 310
images with 2819 vehicles; the latter contains 600
images with 3210 planes. Other aerial image datasets
contain only one category and are fine-grained: TAS
[14], VEDALI [15], COWC [16], and DLR 3K Munich
Vehicle [17] focus on land vehicles, while HRSC2016
[18] contains ships. These aerial image datasets are
appropriate for the detection of vehicles, ships, and
aircraft, etc., but not for the detection of livestock.
Therefore, we constructed an aerial livestock dataset
for livestock detection.

2.2 Region detection

In 2010, Cheng et al. [19] proposed a method for
finding and editing approximately repeated elements,
which is based on contour detection; it can detect all
image elements similar to a selected one. This method
needs manual selection of one element; elements have
obvious contour features. In 2012, Krizhevsky et al.
[20] applied a convolutional neural network (CNN)
to image classification for the first time, showing
good results for both image classification and target
location tasks. In 2014, Girshick et al. [21] proposed
the Region CNN (RCNN) algorithm , which extracts
candidate targets that may be objects; it identified
them with an accuracy of 58.5%. Girshick [22] later
proposed Fast R-CNN, which shortened the time to
process an image to 2-3 s, achieving an accuracy
of 78.8%. In 2015, Ren et al. [5] used a Region
Proposal Network (RPN) for extraction of candidate
target blocks, and shared the convolutional layer
parameters of RPN and Fast R-CNN, leading to
Faster RCNN. To further improve efficiency, Redmon
et al. [6] proposed the Yolo (You only look once)
network in 2016, which has an average accuracy
of 64.3% on the VOC2007 dataset. SSD [7] uses
both lower and upper feature maps for detection,
with an average accuracy of 74.3% on the VOC2007
dataset. Yolo-v2 [23] achieves an average accuracy of
78.6% by adding batch normalization and increasing
image resolution. Using multi-scale prediction and
darknet-53, Yolo-v3 [24] further enhanced the ability
to detect small targets and increased detection speed.
[25)
applied motion, saliency, and other information about
targets to detect visual distractors using SegNet [26].
However, these methods have only been evaluated
on conventional datasets such as Pascal VOC rather
than aerial image datasets. Improved methods exist

In addition to pixel features, Zhang et al.
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that target and have been evaluated on aerial image
datasets. Zhu et al. [13] used a coarse localization
plus fine classification method on the UCAS-AOD
dataset for small target detection, with good results,
but most of the targets in this dataset are between
120 x 120 and 360 x 360 pixels, much larger than
the targets in our dataset. Sakla et al. [27] used the
modified Faster R-CNN on the VEDAI dataset to
detect small vehicles, again achieving good results,
but the targets in this dataset are sparse, and
the targets in our dataset are much more dense.
Therefore, we need to design an algorithm suitable
for dense small target detection.

3 The image dataset
3.1 Images

Our aerial images of livestock were taken over
grassland using a quadcopter. The dataset is divided
into three parts according to the time, place, and
difficulty of detection of livestock in the images.
Most livestock in images in Part I of the dataset
are black, and the background is relatively simple,
with few confusing factors; it contains 29 images.
Most livestock in Part II are also black, but there
are geomorphological interference factors in the
background; it contains 17 images. The livestock
in Part IIT have different colors (black, white, gray,
etc.) and sizes, and are close to each other and may
even touch or overlap; there may also be confusing
factors such as snow, a few houses, and landforms
in the image. Thus Part III has a higher detection

difficulty than the Parts I and II; it includes 43 images.

Three examples from the dataset are shown in Fig. 1.
3.2 Targets and annotation

Each target has a resolution of between 20 x 20 and
40 x 40 pixels. They have varying colors and random

directions. We do not consider the color, direction, or
category of livestock, but just label each instance as
livestock using an axis-aligned rectangular bounding
box. Image information and bounding boxes are saved
in the same format as for the Pascal VOC dataset.
A total of 4996 instances were annotated across all
images. We did not divide the data into a training
set and test set for the datasets of Parts I and II,
but did so for the dataset of Part III: 36 images were
used as the training set, and 7 images were used as
the test set. In this paper, we only used the dataset
of Part III for training and testing, because it has a
higher detection difficulty than Parts I and II.

4 Livestock detection

4.1 Network design

We use the method of region proposal and
classification to detect livestock, following the same
approach as R-CNN. We use U-net to perform
pixel-level segmentation of the image, acting as a
region proposal network (RPN) to generate regions
of interest. We use U-net because the feature map
it outputs has the same size as the original image,
so features for small targets can be preserved as well
as possible. We then send the regions of interest
to Google Inception-v4 net [10] for classification.
Inception-v4 net has faster convergence and higher
precision than ResNet [25] and VGG Net [26]. Our
pipeline is shown in Fig. 2.

4.1.1  Obtaining regions of interest

We use U-net to score each pixel in the image, and
preserve regions with high scores as regions of interest.
Instead of using a fixed threshold score for selecting
ROIs, we map the score of each pixel to 0-255, as a
grayscale image, and then use an adaptive threshold
segmentation method to segment the ROIs.

@
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Fig. 1 Examples taken from the livestock dataset. (a)—(c) are cropped examples from Parts I-1II of the dataset respectively.
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Fig. 2 Object detection pipeline.
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Inception
Net

Result

4.1.2  Classification

Like Faster RCNN, we generate 9 anchors for each
pixel in the segmentation results, with anchor size set
to {20, 30, 40}. Non-maximum suppression (NMS)
is then applied to the resulting anchors. The score of

an anchor is the average of all pixel scores within it.

The IOU threshold is set to 0.1, in order to remove
redundant regions as much as possible. We map the
remaining anchors to the input image, scale each
captured image to the same size (50 x 50 pixels),
and use the classification network (Inception net)
to classify the proposed regions. We multiply the
classification score by the anchor score to give the
final score of each proposed region.

4.1.3  U-net modification

U-net [9] is a fully convolutional neural network
originally used for biomedical image segmentation;
it has also been used for other scenes. The original
U-net uses valid padding in the convolutional layer
because the boundary of the input image is mirrored
and the input image size is changed from 388 x 388
to 572 x 572 pixels. It consists of a contraction path
and an expansion path. Each convolution operation
reduces the feature map in the contraction path, and
then upsamples the feature map in the expansion
path, concatenating the feature map cropped from
the contraction path to the upsampled feature map
in the expansion path. The purpose of this is to be
able to predict cell edges more accurately in border
regions of the image. However, we wish to use U-net

for target segmentation instead of edge segmentation.

Thus, we do not mirror the boundary of the input
image, and change all convolutional layer padding
methods to use the same padding. We concatenate
the two features directly, without cropping features
from the contraction path. The input size of the
network is set to 224 x 384. Our modified U-net
network structure is shown in Fig. 3.

4.1.4  Inception-net modification

A structure called Inception is used with GoogleNet
to increase the depth and width of the DCNN and
improve its performance. The Inception architecture
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Fig. 3 Modified U-net network structure.

can achieve high performance with low computational
cost. The latest Inception-v4 [10] network achieves
a 3.8% top-5 error on the ImageNet dataset.
Inception-v4 uses three main inception modules,
called inception-A, inception-B, and inception-C, and
uses reduction-A and reduction-B modules to reduce
the feature map. The original Inception-v4 uses
one stem module, four inception-A modules, one
reduction-A module, seven inception-B modules, one
reduction-B module, and three inception-C modules,
and then a fully connected layer at the end of the
network, giving scores of 1000 classes through a
softmax layer. As the regions we wish to classify
have low resolution (50 x 50 pixels) and only need
to be divided into two classes, our classification task
is simpler than the one in the LSVRC challenge,
so we remove the stem module, and the image to
be classified is directly input into the inception-A
module. Only one inception-A, one inception-B, and
one inception-C modules are used in the network
structure. We retain the reduction-A and reduction-
B modules, and change the number of output classes
to 2. Our modified Inception network structure is
shown in Fig. 4.

4.2 Training

4.2.1 Inception-net training

Data augmentation is critical to making the network
invariant and robust. Positive samples are expanded
by flipping vertically, horizontally, and across both
axes. Generally, negative samples are selected
randomly in the image, chosen so that they do not
overlap positive samples. However, we also need to
select some difficult negative samples to ensure high
quality classification results. The strategy we adopt
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50*50*3

Output: 50*50%384

Reduction-A Output: 25*25*384

Inception-B Output: 25%25%1024
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Inception-C

Average Pooling

Fig. 4 Modified Inception network structure.

Output: 13*13*1536

Output: 1536

Output: 2

is to use adaptive threshold segmentation to segment
darker areas and brighter areas in the image which
are similar to the livestock in color and shape. After
thresholding segmentation, many negative samples

are obtained, from which we randomly select some.

We also randomly select some negative samples
from other parts of the image too. A total of
approximately 13,000 samples were obtained, 90% of
which were randomly selected as the training set, and
the remainder used as the test set. After training,
the modified Inception-net achieved an accuracy of
94.76%.

4.2.2  U-net training

Since the resolution of the original images is about
3000 x 4000 pixels, they are too large for training
the U-net directly. So we split each original image
into 224 x 384 pixel images. Such images that do not
contain livestock are then removed, finally leaving
2716 images from the original training dataset and
348 images from the original test dataset.

Each instance in the aerial livestock dataset is
only labeled with a rectangle, and does not have
a precise outline, so it is necessary to generate a
segmentation mask according to the bounding box.
If the area of the bounding box is directly used as
the foreground and the other area is used as the
background, some masks of instances will touch or
even overlap. Figure 5(b) shows an example of masks

of instances generated directly from the bounding box.

If the bounding box is properly scaled down and the
reduced bounding box is used as the foreground area,
the resulting masks will not touch, but the masks
of some smaller instances can become so small that
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(b) Generate mask directly
from the bounding box

(a) Original image

(c) Generate mask from
scaled bounding box

(d) Generate mask using
Gaussian kernel

Fig. 5 Masks generated by three different methods.

these instances are lost when segmenting. Figure 5(c)
shows an example of generating masks of instances
from scaled bounding boxes. In order to ensure that
masks of all instances do not touch, and that smaller
instances have similar masks to larger instances, we
fill the bounding box using a Gaussian kernel whose
center overlaps the center of the bounding box. This
ensures that the masks of all instances in the image
are separate, and the masks of smaller instances are
not much different from the masks of larger instances.
Figure 5(d) shows an example of generating masks
using Gaussian kernels.

In this way, image segmentation is no longer a
classification problem, but becomes a regression
problem, so we use mean square error (MSE) as the
loss function, which is defined as

m
Lly.9) = >y~ 57 (1)
i=0
where y is the mask of the input image, and 7 is the
segmentation output of U-net.

5 Experiments

Figure 6 shows results of processing two examples
from the test set from segmentation to recognition.
It can be seen that our method detects most livestock
instances. The livestock in the original image in
Fig. 6(a) have varying colors, random directions,
and different sizes. The left image of Fig. 6(a) has
some snow patches in the background that look like
white livestock. The livestock in the right image
of Fig. 6(a) are very dense, and some livestock are
even touching. Figure 6(b) shows the result of
segmentation by U-net and Gaussian filtering. Most
(B) TSANGHUA &) Springer
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(a) Original image
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Fig. 6 Processing example images from segmentation to detection.

instances are correctly segmented. Some instances
have obvious segmentation results, others have weak
segmentation results, and touching instances are
segmented with unclear boundaries. The segmentation
results are used to generate anchors, and then
classification is performed, so that instances touching
each other can be separated. Figure 6(c) shows the
results of detection. Some white and gray instances
remain undetected, mainly because they have are been
clearly segmented (see Fig. 5(b)). We also trained
Faster RCNN and Yolo-v3 using the same training

set and test set for comparison against our method.

Our method provides better detection results for the
densest instances and touching instances than Faster
RCNN and Yolo-v3, as can be seen by comparing
Fig. 6(c) and Fig. 7. Figure 8 shows the P — R curve
and performance for the three methods: again our

method is better than the Yolo-v3 and Faster RCNN.

5.1 Faster RCNN

In order to improve the detection results of Faster

(b) Result of Yolo-v3
Fig. 7 Example results from Fast RCNN and Yolo-v3.
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RCNN, we made some adjustments to its parameters.
The default anchors are {128, 256, 512} pixels , and
the default aspect ratios are {0.5, 1, 2}, which cater
for larger objects. As in our dataset, the resolution of
the targets is between 20 x 20 and 40 x 40 pixels, we
modified the anchor size to {32}. We also changed
the number of classes to 2 (livestock and background).
After training and testing, the precision—recall curve
is shown in Fig. 8. Figure 7(a) shows an example of
an image processed by Faster RCNN.

5.2 Yolo-v3

We also tuned the parameters of the Yolo-v3 network
before training. Anchors are again used. We use the
k-means [24] algorithm to obtain 9 anchors for our
dataset, and the output class is modified to only be
livestock. After training and testing, the P — R curve
is shown in Fig. 8. Figure 7(b) shows an example of
an image processed by Yolo-v3.

1.0 A

0.8 q

0.6

Precision

0.4 1

0.2
—— Faster RCNN AP: 0.891

~—— Yolo-v3 AP: 0.83
—— Unet+Inception AP: 0.893

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 8 Performance comparison for Faster RCNN, Yolo-v3, and our
method.

6 Conclusions

This work has presented a dataset of aerial images of
livestock, and used a method based on U-net and
Inception to obtain better detection results than
Yolo-v3 and Faster RCNN. However, it still has
some shortcomings. Light-colored (white and gray)
instances are not well segmented as there are few
in the dataset used for training. As a result our
method has lower precision than Yolo-v3 and Faster
RCNN. The two neural networks in the algorithm
need to be trained separately, and new datasets need
to be generated for the two networks from the original
dataset.
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Our aerial livestock datasets are publicly available,

and can be downloaded from https://github.com/
han12010/Aerial-livestock-dataset/releases.
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