Computational Visual Media
https://doi.org/10.1007 /s41095-018-0118-8

Research Article

Vol. 4, No. 3, September 2018, 277—285

GPU based techniques for deep image merging

Jesse Archer!' (<), Geoff Leach!, and Ron van Schyndel'

© The Author(s) 2018. This article is published with open access at Springerlink.com

Abstract Deep images store multiple fragments per-
pixel, each of which includes colour and depth, unlike
traditional 2D flat images which store only a single
colour value and possibly a depth value. Recently,
deep images have found use in an increasing number
of applications, including ones using transparency
and compositing. A step in compositing deep images
requires merging per-pixel fragment lists in depth order;
little work has so far been presented on fast approaches.

This paper explores GPU based merging of deep
images using different memory layouts for fragment
linked lists, linearised arrays, and interleaved
arrays. We also report performance improvements
using techniques which leverage GPU memory hierarchy
by processing blocks of fragment data wusing fast
registers, following similar techniques used to improve

lists:

performance of transparency rendering. We report results
for compositing from two deep images or saving the
resulting deep image before compositing, as well as for
an iterated pairwise merge of multiple deep images. Our
results show a 2 to 6 fold improvement by combining
efficient memory layout with fast register based merging.

Keywords deep image; composite; GPU; performance

1 Introduction

This paper explores time and memory performance
of storing and merging deep images on the GPU
using OpenGL and GLSL. We assume the deep
images are stored in graphics memory, leaving broader
investigation of approaches which include reading
deep images from persistent storage for future work.

A topic of increasing interest [1, 2], deep image

1 School of Science, RMIT University, Melbourne, 3000,
Australia. E-mail: J. Archer, jesse.archer@rmit.edu.au (X);
G. Leach, geoff.leach@rmit.edu.au; R. van Schyndel,
ron.vanschyndel@rmit.edu.au.

Manuscript received: 2017-12-23; accepted: 2018-05-02

compositing presents opportunities and
challenges compared to standard image compositing.

Among these challenges is performance, as com-

new

positing many fragments per-pixel per-image requires
more processing than just a single fragment per-pixel.
GPUs are naturally suited for this task.

Merging two deep images (see Fig. 1) requires first
loading them to GPU global memory, either entirely
if possible, or in large blocks. Per-pixel threads
then read data from both deep images, merging
and compositing fragments to produce a final 2D
(flat) image, or alternatively merging and saving
the resulting deep image before compositing. The
resulting deep image can then be used in other
deep image operations, such as further merging in
an iterated pairwise or k-way fashion. This paper
specifically focuses on merging two deep images,
either to give a merged result or for iterated pairwise
merging, leaving the problem of k-way deep image
merging for future work.

A simple merging approach is to step through
fragment data in sorted order for both deep images,
comparing fragments from each based on depth, and
compositing before moving to the next fragment,
using a basic linear time per-pixel stepwise merge
of two sorted lists. Our approach improves on this by
reading and processing blocks of data using registers.

Deep images are typically stored in graphics
memory using one of two main formats for GPU
processing: as per-pixel linked lists, or as linearised
arrays of fragments. We explore differences between
these approaches in terms of memory usage and
processing time; linked lists require more memory
while linearised arrays require more processing during
construction. We also explore an interleaved array
format which improves performance of deep image
merging through better memory read coherence. We
investigate performance of merging deep images in

7 .
@\@ rgnslvlell:]sfr;vlglgé @ Spl‘ inger



278

J. Archer, G. Leach, R. van Schyndel

(a) Furnishings

(b) Structure

(¢) Combined

Fig. 1 Merged interior and exterior Atrium deep images.

graphics memory using a stepwise approach, and an
improved approach using blocks of registers. Finally
we introduce a blocked interleaved array format which
leverages blocked merging to give a combined 2 to 6
fold performance improvement.

2 Related work

Storing deep images in GPU memory as linked
lists and linearised arrays has been explored in
the context of transparency rendering in computer
graphics [3, 4].
generally provide better performance for processing

Linked lists have been found to

data, while linearised arrays use less memory. Using
fast GPU registers for sorting deep image data was
presented in Ref. [5], a concept that this work extends.

General image compositing operations were first
proposed in Ref. [6], and recently expanded to
deep images [2, 7], using the OpenEXR format [§]
for external storage. Such work focuses on how
composite operations are performed. Performance
of compositing deep images in memory on the
GPU using different merging approaches and storage
formats has to our knowledge not been presented,
and is the focus of this work.

3 Background

3.1 Deep image formats

Arranging fragment data into appropriate buffers in
memory is critical for fast processing on the GPU. As
mentioned earlier, two main approaches exist: per-
pixel linked lists and linearised arrays.

@ ’ENSIVIE§SI(';’YI-|!|}%§AS @ SPI‘ il’lger

Building a deep image as per-pixel linked lists
requires a global atomic counter and the allocation
of three storage buffers, with one integer per-pixel
for the head pointers and then buffers of arbitrary
size for fragment data and next pointers. The head
pointers are initialised to null (0) before rendering.
If the size is too small to store all fragment data,
then the atomic counter is used to allocate buffers of
sufficient size before re-rendering.

As geometry is rasterized, fragments are added to
the data array using a global atomic counter, and
appended to the corresponding pixel’s list using an
atomic exchange which inserts the fragment at the
front of the list. The fragment’s next pointer is
then set to the previous head node. In this fashion
fragments are continuously added to the head of the
Example GLSL
code for adding fragment data to a linked list, and

corresponding pixel’s linked list.

traversing it, is shown below:

// Building a linked 1list

uint fragldx = atomicCounterIncrement (count);

if (fragldx < size)

{

uint headIdx = atomicExchange (headPtrs[pixell],
fragldx);

nextPtrs [fragldx] = headIdx;
datal[fragldx] = frag;
}

// Traversing a linked list
uint node = headPtrs[pixel];
while (node != 0)

node = nextPtrs[node];

Building a deep image can be done quickly, as
fragments can be written to the next available place
as they are rendered or captured. Traversing a pixel’s
fragment list starts at the index given by the pixel’s



GPU based techniques for deep image merging

279

head pointer, and follows each fragment’s next pointer
respectively until a null terminator is reached.

Merging two deep images and saving the resulting
merged deep image in this format reverses the order
of the per-pixel fragment lists, as fragment data is,
always added to the head of the list. This must be
accounted for in the next merge or composite step.

Figure 2 shows per-pixel fragment colours stored
as linked lists using three separate buffers with
blue/red/green, blue/green, and blue/red fragment
colours for the bottom left, bottom right, and top
left pixels respectively. Fragments for a given pixel
can be anywhere in the data buffer.

Linearised arrays require only two buffers: see
Fig. 3, which shows the same per-pixel fragment
colours as Fig. 2. Unlike the linked-list approach in
which fragment data can be anywhere, in linearised
arrays, fragment data for a given pixel is coherent: it
is localised with all fragments for a given pixel stored
contiguously.

Building a deep image in this format may be
summarized as follows:

e Allocate buffer of per-pixel counts, initialised to
ZEro.

e Render geometry depths and atomically incre-
ment counts in the fragment shader in an initial
rendering pass.

Per-pixel fragment Per-pixel head pointers

colours
718
Be L
\‘\‘
Fragments m 4 n n

JoJofi]sfof2]s5]o]

N/

Next pointers I

Fig. 2 Per-pixel blue/red/green, blue/green, and blue/red fragment
colours as linked lists.

Per-pixel fragment
colours

EN

Linearised array

Per-pixel offsets

N

Fig. 3 Per-pixel blue/red/green, blue/green, and blue/red fragment
colours as linearised arrays.

e Perform parallel prefix sums scan on counts to
produce an array of offsets. These determine the
location of each pixel’s memory in the global data
array.

Allocate data buffer of size given by final offset.

e Render full geometry data in a second rendering
pass; offsets are atomically incremented in the
fragment shader to give the location at which
each fragment is written in the data buffer.

Traversing a pixel’s fragment data requires reading
the index offset and number of fragments, given by
subtraction from the next pixel’s offset, then reading
the fragment data sequentially. Example GLSL code
is given below for adding fragment data to a linearised
array, and traversing it; note that the same buffer is
used for both counts and offsets:

// Counting the number of fragments per-pixel
atomicAdd (offsets [pixell, 1);

// Building the linearised array.
uint idx = atomicAdd(offsets[pixel], 1);
datal[idx] = frag;

// Traversing the array

uint start = pixel > 0 ? offsets[pixel-1] : 0;
uint end = offsets[pixell;
for (uint node = start; node < end; node++)

Building a deep image in this format is typically
slower, as it requires computing offsets from per-pixel
fragment counts in a separate initial counting pass
before writing fragment data in a second capturing
pass. However, it requires less memory as there are
no next pointers.

Deep image compositing requires fragment lists
in depth sorted order.
2, the currently fastest technique for deep image
sorting is register-based block sort [5] which uses a

As mentioned in Section

sorting network of fast registers. In cases where lists
are longer than the number of available per-thread
registers, backwards memory allocation [9] partitions
the sort into blocks. This combined approach is used
for sorting deep images in this paper.

3.2 Memory hierarchy

Deep images can be large; on the GPU, pixels
GPUs have
a hierarchy of memory as shown in Fig. 4, with

are processed per-thread in parallel.
a large amount of relatively slow global memory,

and a smaller amount of fast memory such as local
memory, and then an even smaller number of very fast

@ ’Euslvggsﬁvl-glgés @ SPI' il’lger



280

J. Archer, G. Leach, R. van Schyndel

I Registers |

[ Tex/L1/SMEM |

'

I L2 cache I

{

I Global memory |

Fig. 4 Example memory hierarchy of an nVidia GPU.

registers. On the nVidia Pascal architecture, local
memory (CUDA shared L1 memory) and registers are
available per-streaming multiprocessor (SM) while
global memory (CUDA local memory) and L2 cache
are available to all threads.

As stated previously, compositing deep images
requires first loading or capturing them to slow
global memory. Global memory has high latency,
particularly as fragment reads are not necessarily
A stepping approach that reads then
composites before reading the next fragment in turn
is highly vulnerable to this latency.

Processing data by reading blocks from slow to

coherent.

fast memory is an established concept, and applies
to merging. One approach is to merge blocks of data
by reading fragments from global memory to local
memory before compositing, reducing the impact
of latency. Using blocks of local memory requires
copying data from global to local memory, then
reading from local memory to perform the comparison
and composition operations in registers.

Registers are much faster than global and local
GPUs typically have on the order of
thousands of registers, typically 255 per-thread or
core, so fragments can be read to per-thread blocks

memory.

of registers directly rather than to local memory first.

This has the benefit of both reducing the impact of
latency, and avoiding writing to and then reading
from local memory.

4 Deep image merging
4.1 Register block merging

The merging operation is performed by reading blocks
of data directly from global memory to fast registers,
bypassing local memory. We term this approach
register block merging (RBM). It is summarised in

/ .
{@ ’ENSIVIElRwsﬁYl-gRlégAS @ Sprlnger

the following steps, which performs a stepwise merge,

reading to blocks of registers:

e Begin with two per-pixel sorted fragment lists
and two register blocks, one for each deep image.

e If either register block is empty, read values from
the corresponding deep image.

e Merge values in both blocks in depth order until
one block is exhausted.

e Merged data is either written to an output deep
image, or composited to a flat (2D) image.

e After exhausting one fragment list, merge the
remaining block and fragment values from the
other list.

Local variables or arrays with fixed indices known
at compile time must be used in order to ensure that
the GLSL compiler will store fragments in fast GPU
registers. Code examples for reading fragment data
from a deep image are shown below, along with the
intermediate shader assembly output produced by the
nVidia compiler, based on a similar example given in
Ref. [5]:

// Local memory

#define SIZE 4

Fragment data[SIZE];
uniform int count;

// Loop limit not known at compile time
for (int i = 0; i < count; i++)
datal[i] = readNext (...);

produces:

TEMP 1lmemO [4];
TEMP RC, HC;

MOV.S RO.x, {0, O, O, 0};

REP.S ;
SGE.S.CC HC.x, RO, c[0].x;
BRK (NE.x);

MOV.U RO.y, RO.x;

MOV.S 1lmemO[RO.yl.x, {0, 0, 0, 0};
ADD.S RO.x, RO, {1, 0, 0, 0};
ENDREP ;

// Registers

#define SIZE 4
Fragment data[SIZE];
uniform int count;

// Loop limit known at compile time
for (int i = 0; i < count && i < SIZE; i++)
datal[i] = readNext(...);

produces:

TEMP RO, R1, R2, R3;
TEMP RC, HC;

SLT.S RO.y, {0, O, O,
MOV.U.CC RC.x, -RO.y;
IF NE.x;

0}.x, cl[0].x;



GPU based techniques for deep image merging

281

MUL.S RO.y, 0, c[0].x;

MUL.S RO.y, RO, {4, 0, 0, O0}.x;
MOV.U RO.y, RO;

SLT.S RO.z, {1, 0, 0, 0}.x, c[0].x;
MOV.U.CC RC.x, -RO.z;

LDB.S32 R3.x, sbo_bufO[RO.yl;

ENDIF;

The first program iterates a number of times
determined at runtime and therefore the loop cannot
be unrolled at compile time. As register usage is
decided at compile time, registers cannot be used in
this case and local memory is used instead, seen by
the 1memO[8] local memory allocation. The use of
registers requires either manual loop unrolling or use
of a bounding compile-time constant, as shown by RO,
R1, R2, R3 in the second example. The same unrolling
technique is used when reading and merging. A block
of registers can also be used when writing the merged
deep image, although we found this to be faster only
when using linearised arrays.

As GPUs keep all active threads resident, the
number of threads that can be scheduled and executed
simultaneously is limited by available per-thread
resources such as local memory and registers. However,
instead of threads causing waiting when reading from
global memory, other threads are executed to reduce

the impact of memory latency and increase throughput.

This means GPUs typically have many more active
threads than available cores. Storing fragments in
per-thread registers reduces the number of possible
simultaneous threads. To achieve greater throughput
this needs to be balanced by keeping block sizes
relatively small, typically using 4 to 16 fragments.

4.2 Interleaved arrays

Instead of using linked lists and linearised arrays
to store deep images, a faster technique is to use
interleaved arrays. GPUs execute threads in groups,
where instructions across the group are executed in
lock-step. This means the first fragment for each
pixel in a thread group is processed before the second
fragment. Improved memory performance requires
coherent memory reads for fragment data in a thread
group, rather than for each individual pixel. Arranging
fragment data in order of per-group reads instead of
per-pixel reads improves memory coherence.

One approach is to interleave fragment data across
groups for all pixels, based on the group’s maximum
fragment count. This requires padding each group

so that all lists have the same length, consequently

increasing memory requirements; this was by a factor

of 2-3 for our test scenes. We instead interleave up
to the shortest fragment list for any pixel in a group,
with remaining fragments stored at the end of each

group with no padding as shown in Fig. 5.

Building a deep image in this format is done in a
similar way to the approach used for a linearised array,
and requires an extra buffer for per-group minimum
counts, and a buffer of per-pixel counts in addition to
the offsets:

e Minimum counts are allocated as number of pixels
divided by 32, initialised to zero.

e Per-pixel counts are determined in the same manner.
Compute threads are executed for each group of
32 pixels, each thread determining and writing
the minimum count of its respective group to the
minimum counts buffer.

e The prefix sums scan then computes per-pixel offsets
from per-pixel counts as for the linearised arrays
case, and allocates a data buffer of sufficient size.

e Complete geometry is rendered in a second pass
and saved as for linearised arrays, but with
modified indexing.

Example GLSL code for adding fragment data to
and traversing an interleaved array is given below:
// Adding data to an interleaved array
#define GROUP_SIZE 32

uint run = pixel % GROUP_SIZE;
uint group = pixel / GROUP_SIZE;

uint groupOffset = offsets[group * GROUP_SIZE];
uint minCount = minCounts [group];
uint currCount = atomicAdd(counts[pixel]l, 1);

if (currCount < minCount)
data[groupOffset + run + GROUP_SIZE *

currCount] = frag;

else

{
uint adjst = offsets[pixel] - minCount *
run;
data[minCount * GROUP_SIZE + adjst + (
currCount - minCount)] = frag;

}

// Traversing an interleaved array.
uint interOffset = (pixel 7 GROUP_SIZE) +
offsets[(pixel / GROUP_SIZE) * GROUP_SIZE];
uint extraOffset = offsets[pixel] - minCounts[
pixel / GROUP_SIZE] #* (pixel % GROUP_SIZE);
uint minCount = minCounts[pixel / GROUP_SIZE];
uint end = counts[pixell;
for (uint node = 0; node < end;
if (node < minCount)
uint idx = interOffset + GROUP_SIZE x*

node++)

node;
else

uint idx = minCount * GROUP_SIZE +
extraOffset + node - minCount;

/ .
;) ’ENSIVIE§SI(';,YI-|!RQ§% @ SPI' inger



J. Archer, G. Leach, R. van Schyndel

282
Per-pixel fragment
colours Min Group Extra
- G3R. count size
poroG BioT .
0 1 2 3 4 5 6 7 58
Interleaved I
array

Fig. 5 Per-pixel blue/red/green, blue/green, blue/red, and green/red
fragment colours as an interleaved array.

4.3 Blocked interleaving

When using register block merging, coherence is
further improved by interleaving fragments in blocks
rather than individually when generating deep image
data: see Fig. 6. This means the first block of
fragments for the first pixel is written to the deep
image, then the first block for the second pixel in
turn. The same block size is used when building and
merging the deep images. With blocked interleaving,
the per-group minimum counts must be a multiple
of the block size, which can result in more non-
interleaved fragments stored at the end.

Building a deep image in this format follows the
same approach as for an interleaved array, with
modified indexing in the fragment shader, as shown
below:

// Adding data to a blocked interleaved array.

#define BLOCK_SIZE 4

if (currCount < minCount)
data[groupOffset + (currCount / BLOCK_SIZE)
* GROUP_SIZE * BLOCK_SIZE + run *
BLOCK_SIZE + currCount % BLOCK_SIZE] = frag

3

else

{
uint adjst = offsets[pixel] - minCount x*
run;
data[minCount * GROUP_SIZE + adjst + (
currCount - minCount)] = frag;

}

// Traversing a blocked interleaved array.
for (uint node = 0; node < end; node++)
if (node < minCount)

idx = groupOffset + (node / BLOCK_SIZE)
* GROUP_SIZE * BLOCK_SIZE + run *
BLOCK_SIZE + node J BLOCK_SIZE;
else

idx = minCount * GROUP_SIZE +
extraOffset + node - minCount;

If the final result is written back to global
memory, compute threads can be executed in order
of memory layout. However, if the resulting image is

@ ’Euslvlsll:lsﬁvl-glgés @ Springer

Per-pixel fragment
colours

Min Group Extra
- G3 E §| count size
SoroG BioT —

Interleaved 0 1 2 3 5 6 7 8
array

Fig. 6 Per-pixel blue/red/green, blue/green, blue/red, and green/red
fragment colours as a blocked interleaved array with block size 2.

rasterized, then threads are instead executed in pixel
rasterization order. nVidia GPUs typically rasterize
pixels in a tile-based fashion, where a 2x8 tile is
rasterized in a zig-zag pattern. Figure 7 shows the
rasterization order for a 4 x 8 block of pixels; numbers
represent execution order of per-pixel fragment shader
threads as determined by atomic counters. Indexing
pixels to more closely match the repeating 2 x 8 tiled
raster pattern when building the deep image improves
merging performance by approximately 1.5 to 2 fold
for all approaches.

145 | 30(31
1298 | 2829
101\ | 26<{27
o | 24195
23

2021
18119

0t | 167

Fig. 7 Typical thread execution order (raster pattern) for a 4x8
block of pixels on an nVidia GPU.

5 Results

We compare performance of merging two deep images
using three different scenes: see Fig. 8. Additionally
we compare an iterated pairwise merge, where four
deep images are first merged to give the two deep
images shown, before merging the two resulting deep
images.

The first and second scenes are the Sponza Atrium
and the Powerplant, each separated into interior and
exterior deep images. The third referred to as the
Hajirball, is a synthetic scene of a hairball merged with
a set of randomly generated spheres. These scenes
are available from Ref. [10]. Not shown is another
synthetic scene referred to as the Planes, which has
256 screen-aligned quads with linked list data in



GPU based techniques for deep image merging

283

(b) Powerplant

(a) Atrium

(¢) Hairball
Fig. 8 Test scenes with separated and merged deep images. Heatmap gives depth complexity with blue up to 16 fragments, green 16-64,

yellow 64-128, and red 128-512.

approximately coherent order merged with a set of
randomly generated spheres. For all measurements,
deep image data is arranged in raster pattern, which
is 1.5-2 times faster for all test cases.

The Atrium scene typically has fewer than 20
per-pixel fragments in each deep image, while the
The Atrium
and Powerplant are divided mainly into interior and
exterior geometry. Thus, as merging progresses, data
is mainly read from one deep image then the other in
turn. The Hairball and Planes have spheres randomly
distributed, with memory being read more evenly

other scenes have up to hundreds.

across both deep images as a consequence.

The storage approaches discussed in Sections 3
and 4 were compared: linked lists (LLs), linearised
arrays (LAs), interleaved linearised arrays (IAs),
and blocked interleaved linearised arrays (BIAs).

Merging techniques were stepwise (S) and register
block merging (RBM). The test platform was an
nVidia GeForce GTX 1060, driver version 390.25. The
deep images were HD (1920x1080) resolution. For
each technique we report memory usage for the deep
images and total merging time in milliseconds. We
do not report the memory cost of RBM or stepwise
merging, as these techniques do not require extra
global memory.

Results for compositing when merging two deep
images are shown in Table 1, while those for merging
and saving the resulting merged deep image are shown
in Table 2.
shown in Table 3 for the Atrium and Powerplant

Iterated pairwise merging results are

scenes, with geometry divided into two interior and
two exterior deep images.
Results are average time from rendering and

@ ’Euslvlslnqsﬁvl-glg?s; @ SPI' il’lger



284

J. Archer, G. Leach, R. van Schyndel

capturing scenes as separate deep images on the GPU
and then merging; merge time reported includes either
compositing a flat (2D) image or saving the resulting
deep image.

The results in Tables 1-3 show RBM offers up
to 4-fold performance improvement in the best case
and no performance penalty in the worst case,
regardless of whether compositing during merging,

saving the merged image or using pairwise merging.

This is due to memory latency for incoherent reads
being reduced by reading memory in blocks. The
largest performance improvement by RBM is for
linearised arrays and blocked interleaved arrays, as
block memory reads are typically more coherent in
these formats. RBM offers a smaller performance
improvement for mostly coherent data, or when there
is little data to merge, as in the Atrium scene.
Blocked are faster

interleaved arrays than

Table 1 Merging time for two input deep images, compositing during
merging

Approach Atrium Powerplant Hairball Planes
LL-S 1.8 ms 16.8 ms 36.2 ms 23 ms
LL-RBM 1.8 ms 14.7 ms 30.5 ms 16.5 ms
LA-S 1.9 ms 6.8 ms 12.5 ms 46.3 ms
LA-RBM 1.7 ms 5.2 ms 7.3 ms 24.6 ms
TA-S 1.4 ms 6.4 ms 9.1 ms 14.4 ms
TA-RBM 1.5 ms 6.1 ms 8.4 ms 14.5 ms
BIA-S 1.5 ms 5.4 ms 8.0 ms 14.5 ms
BIA-RBM 1.5 ms 4.6 ms 5.9 ms 10.7 ms

Table 2 Merging time for two input deep images, saving result as a

deep image

Approach Atrium Powerplant Hairball Planes
LL-S 4.7 ms 25.3 ms 47.9 ms 36.2 ms
LL-RBM 4.7 ms 19.8 ms 34.7 ms 30.8 ms
LA-S 14.1 ms 43.2 ms 60.0 ms 198.6 ms
LA-RBM 6.2 ms 14.6 ms 19.0 ms 54.0 ms
TA-S 5.5 ms 14.9 ms 19.2 ms 42.6 ms
TA-RBM 5.6 ms 13.5 ms 17.6 ms 38.6 ms
BIA-S 7.3 ms 21.6 ms 28.8 ms 70.5 ms
BIA-RBM 6.0 ms 12.6 ms 15.8 ms 33.2 ms

Table 3 Merging time for four input deep images using iterated

pairwise merging

Approach Atrium Powerplant
LL-S 9.5 ms 39.2 ms
LL-RBM 9.6 ms 36.3 ms
LA-S 28.3 ms 76.2 ms
LA-RBM 14.0 ms 31.1 ms
IA-S 13.4 ms 29.8 ms
TA-RBM 13.6 ms 29.0 ms
BIA-S 16.9 ms 40.7 ms
BIA-RBM 14.3 ms 28.5 ms
(B) TSINGHUA &) Springer

interleaved arrays when compositing, regardless of
whether RBM or stepwise merging is used, being
up to 1.3 times faster in the case of the Planes.
When saving the merged deep image or using pairwise
merging, blocked interleaved arrays are only faster
when combined with RBM.

RBM is more effective with blocked interleaved
arrays, as memory is specifically arranged to improve
this approach. Compared to the worst case approach
of each scene, BIA-RBM gives a 2 to 6 fold
performance improvement. This improvement is less
significant in the Atrium scene where less geometry is
present and thus fewer merging operations performed.

When saving the merged deep image or using an
iterated pairwise approach, linked lists are typically
faster for the Atrium scene. Saving a deep image
using linearised arrays, interleaved arrays, or blocked
interleaved arrays requires first building an array
of offsets before writing any fragment data, unlike
linked lists for which next pointers and fragments
are written simultaneously. The cost of first building
the offsets is outweighed by any potential merging
improvements when less geometry is present.

Linearised arrays use less space than other formats
as shown in Table 4, while interleaved arrays and
blocked interleaved arrays require a little more due
to the per-group minimum fragment counts, which
depend on image resolution. Linked lists use the most
memory in all cases, as expected, due to the next
pointers. In all cases RBM and stepwise merging
require no extra global memory.

Table 4 Data usage for different deep image formats

Format Atrium Powerplant Hairball Planes
LL 282 MB 5578 MB 682 MB 1834 MB
LA 157 MB 309 MB 378 MB 1018 MB
IA 173 MB 325 MB 394 MB 1034 MB
BIA 173 MB 325 MB 394 MB 1034 MB

6 Conclusions

This paper has presented RBM and shown it to be
a better merging approach, and has shown blocked
interleaved arrays to be a better deep image format.
It has also explored and compared stepwise merging
and other existing deep image formats. Interleaved
deep images have little memory overhead and fast
merging time due to improved memory coherence,
while register block merging improves performance of



GPU based techniques for deep image merging

285

merging fragment data. Combined, these approaches
give up to 2 to 6 fold performance improvement
compared to non-interleaved stepwise merging.

The interleaved arrays and blocked interleaved
arrays approaches interleave fragment data based
on per-group minimum fragment counts, with all
remaining fragments stored in a non-interleaved linear
fashion. Interleaving remaining fragment data past
the minimum fragment list length without padding
may offer further performance improvement. As
iterated pairwise merging requires multiple writes
to global GPU memory, an alternative is to use k-
way merging which we suspect may offer improved
performance as it only writes to global memory once
per-fragment.

Acknowledgements

The authors would like to thank Pyar Knowles for
his original deep image software on which this work
is based. It is available at https://github.com/
pknowles/1fb.

References

[1] Heckenberg, D.;
Cooper, C. Deep compositing. 2010. Available at

Saam, J.; Doncaster, C.;
http://www.johannessaam.com/deepImage.pdf.

[2] Duff, T. Deep compositing using lie algebras. ACM
Transactions on Graphics Vol. 36, No. 3, Article No.
26, 2017.

[3] Maule, M.; Comba, J. L. D.; Torchelsen, R.; Bastos,
R. Memory-efficient order-independent transparency
with dynamic fragment buffer. In: Proceedings of the
25th SIBGRAPI Conference on Graphics, Patterns and
Images, 134-141, 2012.

[4] Knowles, P.; Leach, G.; Zambetta, F. Efficient layered
fragment buffer techniques. In: OpenGL Insights. Cozzi,
P.; Riccio, C. Eds. CRC Press, 279-292, 2012.

[5] Knowles, P.; Leach, G.; Zambetta, F. Fast sorting for
exact OIT of complex scenes. The Visual Computer
Vol. 30, Nos. 6-8, 603-613, 2014.

[6] Porter, T.; Duff, T. Compositing digital images.
In: Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques, 253—
259, 1984.

[7] Egstad, J.; Davis, M.
deep image compositing using subpixel masks. In:

Lacewell, D. Improved

Proceedings of the 2015 Symposium on Digital
Production, 21-27, 2015.

[8] Hillman, P. The theory of OpenEXR deep samples.
Technical Report. Weta Digital Ltd., 2013.
[9] Knowles, P.; Leach, G.; Zambetta, F. Backwards
memory allocation and improved OIT. In: Proceedings
of the Pacific Graphics, 5964, 2013.
[10] McGuire, M. Computer graphics archive. 2017.
Available at https://casual-effects.com/data.

Jesse Archer is a Ph.D. student at
RMIT University, Melbourne. His research
interests are in realtime computer graphics
and GPU computing. He completed his
bachelor of computer science in 2008,
bachelor of IT (games and graphics pro-
gramming) in 2010, and honours in com-
puter science in 2015 at RMIT University.

Geoff Leach is a lecturer in the School
of Science at RMIT University. His
major research interests include computer
graphics, computational science, and GPU
computing. He mostly teaches computer
graphics, and has been using OpenGL
since version 1.1. He holds a M.App.Sci.
degree from RMIT University.

Ron van Schyndel is a senior lecturer
from School of Science (formerly School
of Computer Science and IT) at RMIT
University.
active researcher in the domain of digital
watermarking for more than 2 decades,
and is co-author to some of the most

He is and has been an

cited papers in the field. He obtained
his Ph.D. degree from Monash University on the then
nascent topic of digital watermarking, and has obtained many
industry grants on watermarking and other applications. His
other research interests beyond digital watermarking include
signal, image, and vision processing, as well as software
infrastructure specifically as applied to mobile navigation
for the blind and visually impaired.

Open Access The articles published in this journal
are distributed under of the
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

the terms Creative

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

/ .
;) ’ENSIVIE§SI(';,YI-|!RQ§% @ SPI' inger



