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Abstract Existing shape models with spherical
topology are typically designed either in the discrete
domain using interpolating polygon meshes or in the
continuous domain using smooth but non-interpolating
schemes such as subdivision or NURBS. Both polygon
models and subdivision methods require a large
number of parameters to model smooth surfaces.
NURBS need fewer parameters but have a complicated
rational expression and non-uniform shifts in their
formulation. We present a new method to construct
deformable closed surfaces, which includes exact
spheres, by combining the best of two worlds: a
smooth, interpolating model with a continuously
varying tangent plane and well-defined curvature at
every point on the surface. Our formulation is
considerably simpler than NURBS and requires fewer
parameters than polygon meshes. We demonstrate
the generality of our method with applications
including intuitive user-interactive shape modeling,
continuous surface deformation, shape morphing,
reconstruction of shapes from parameterized point
clouds, and fast iterative shape optimization for image
segmentation. Comparisons with discrete methods and
non-interpolating approaches highlight the advantages
of our framework.
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1 Introduction

1.1 Background

The representation of shapes with spherical topology
has been an ongoing research topic in computer
graphics for more than three decades. The
principal reason is the massive demand for closed
genus-zero surfaces in industrial, architectural,
and animation design as well as in biomedical
imaging. Designing spherical-topology models that
are simultaneously optimal with respect to several
different shape characteristics still remains a
challenge. Depending on whether an application
involves user interaction, shape deformation, or
optimization schemes, different aspects of a model
are more important than others.

In user-interactive applications, a fundamental
requirement is the ability to intuitively manipulate
the shape. Typically, this requirement presupposes
an easy way to interact directly with the
surface as well as to control shapes locally.
The surface deformation should be stable: a
small perturbation of the surface should result
in a small change of the shape. Numerical
stability is crucial too: a theoretical model must
remain useful in practice. On the other hand,
an application might involve shape deformation
as an optimization process. For example, in
real-time shape recognition, approximation, and
segmentation, the fast evaluation of derivative-
and integral-based quantities in iterative settings is
required. Further, the smoothness of the surface
and the number of parameters involved can also
play important roles. Usually, it is impossible to
find a model that is optimal with respect to all of
these requirements. In practice, a compromise is
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made favoring the most important needs of a specific
application. Existing models are based on polygon
meshes, NURBS, or subdivision.

1.2 Overview and contribution

This article presents the full theory of a model
for constructing deformable shapes with spherical
topology, along with applications. This work was first
introduced in a condensed form as a SIGGRAPH
Asia technical brief in 2016 [1]. Our framework
is based on interpolating control points, similar to
polygon meshes, while at the same time providing
a smooth surface, formulated in the continuous
domain as for NURBS. The resulting surface allows
local control, is everywhere differentiable, and has a
continuously varying tangent plane at every point
on the surface as well as a well-defined Gaussian
curvature. A major contribution is an explicit
formulation of necessary conditions for the poles
of the sphere to remain closed and smooth when
deforming. We illustrate the use of our method
with several applications. (1) User-interactive shape
modeling: as the basis functions are interpolating,
the control points lie directly on the surface of the
object, which facilitates intuitive shape modeling.

The basis is also finitely supported, enabling local
surface control; it allows us to model a broad
range of shapes by deforming a single spherical
surface patch. (2) Smooth surface reconstruction
from parameterized point clouds: if the underlying
spherical parameterization of the samples is known,
they can be easily interpolated with our model to
reconstruct a smooth surface. (3) Efficient surface
deformation: by exploiting the affine invariance of
our model, we illustrate how a fast implementation
of minimum-energy deformation algorithms can
be achieved. (4) Fast iterative optimization of
deformation algorithms: we show how the iterative
evaluation of surface and volume integrals can be
efficiently implemented for real-time optimization,
and provide an example of a segmentation algorithm
for 3D medical images.

Our construction involves a class of smooth non-
rational basis functions that have uniform shifts,
which leads to a considerably simpler formulation
than for traditional parametric methods. A control-
point-based structure allows us to use fewer
parameters than polygon or subdivision methods to
achieve smoothness. Examples of the use of our
method are shown in Fig. 1.

Fig. 1 Smooth modeling of shapes with spherical topology. Top: continuous deformation of a sphere into a gargoyle; a wood texture has
been added to the surface. Bottom: shapes consisting of a single surface patch, constructed by interactive deformation of a sphere. The
interpolating structure of the model allows us to intuitively design surfaces that can adopt shapes beyond classical spherical topology. Our
framework is inherently smooth, facilitating natural texturing.
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2 Related work

2.1 Continuous closed surfaces

The most widely used technique to construct
deformable spheres in the continuous domain is
NURBS [2, 3] which are a subfamily of T-
splines [4]. Parametric NURBS surfaces are based
on polynomial B-splines and are defined by a
set of control points which allow local shape
control [3, 5–8]. The main reason for using rational
NURBS instead of (non-rational) polynomial B-
splines is that NURBS are able to exactly
reproduce conic sections [9]. Conceptually, this
property is equivalent to reproducing trigonometric
functions, which is a necessary requirement for
constructing spheres. Several ways of constructing
NURBS spheres exist, e.g., by constructing quarter
or half circles and exploiting the properties of
tensor-product splines or by constructing surfaces
of revolution [10]. NURBS typically involve the
explicit characterization of non-uniform knot vectors
with double knots. A drawback of NURBS is
their rational form, which leads to complicated
expressions for related integrals and derivatives [7].
Furthermore, the NURBS formulation depends
on additional weight parameters, which have no
intuitive interpretation. Other constructions to
approximate sphere-like surfaces based on B-splines
have been studied in Refs. [11, 12], whereas in
Ref. [13] an exact approach using exponential splines
is proposed. Other models use (rational) Bézier
surfaces [14], which are also related to splines [15].

2.2 Discrete closed surfaces

Popular discrete methods are based on polygon
meshes [16, 17]. With these models it is possible to
represent shapes of arbitrary topology and hence,
closed surfaces with spherical topology can be
easily generated. A vast literature exists on mesh
optimization, processing and discretizing continuous-
domain operators (e.g., see Refs. [18, 19]). Polygon
models are usually interpolating the control points
coinciding with the mesh vertices; this property
implies that the shape is modified by points which
directly lie on the boundary of the object. Related
to polygon models are subdivision methods [20,
21] used to construct surfaces [22–26]. These
methods are characterized by refinement operations
iteratively applied to a set of points leading to a

continuous limit surface with a certain regularity.
Hence, subdivision can be seen as a hybrid
method combining the discrete and the continuous-
domain approach. Although in theory they are
continuous, in practice, a finite number of iterations
are applied, leading to a discrete mesh (thus,
we categorize subdivision as a discrete method).
As opposed to polygon mesh models, subdivision
methods do not necessarily have interpolating
control points. Different methods based on non-
stationary refinement rules have been proposed to
approximate spheres using subdivision [27–29]. One
drawback of polygon and subdivision methods is that
they require a large number of parameters which
can be a challenge when computational speed is
important (e.g., in finite element models [30]).

2.3 Spherical parameterization

The problem of finding a parameterization for an
object with spherical topology is not trivial and has
been tackled in Refs. [31, 32]. It is linked to the
problem of ordering an unorganized set of points or a
point cloud, which is significantly harder in 3D than
in 2D. In Ref. [33], a method is presented to generate
a spherical parameterization of a closed surface in
the continuous domain by expressing it in a basis of
spherical harmonics. A related problem is surface
reconstruction from a point cloud [34, 35].

2.4 Interpolation

A widely used interpolating spline in computer
graphics is the Catmull–Rom spline [36]. However,
its nature is polynomial and hence, it cannot be
used to exactly parameterize a sphere. A variant
of the Catmull–Rom spline used in signal processing
is the Keys cubic convolution interpolator [37] which
has been generalized by Refs. [38, 39] to construct
a trigonometric interpolation kernel that is able
to reproduce conic sections. Other variants have
been presented in Refs. [40–42]. An interpolating
subdivision scheme was originally introduced by
Deslaurier and Dubuc [43]. Variants of this scheme
have been proposed in Ref. [44] which have also been
used to construct conic sections [45].

3 Parametric shape representation

We use bold font for vectors and plain font for
scalars, e.g., c = (cx, cy, cz). To denote partial
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derivatives, we use the notation ∂σ(u, v)/∂u =
σu(u, v).

Note that throughout this article we will use
the terms spherical topology and closed surface
to describe the same kind of objects, namely
connected surfaces without holes or boundaries.
Using these terms to describe equivalent objects
makes sense in computer graphics because in a digital
environment, even continuous-domain objects can
only be represented by a discretized approximation.
However, in the field of mathematical topology a
more rigorous definition of these terms would be
required.

4 Tensor-product surfaces

4.1 Basics

We construct parametric shapes using integer shifts
of a (non-rational) generator function ϕ. A 3D curve
r(t) that is described by the coordinate functions
x(t), y(t), and z(t) with t ∈ R is then represented by
a linear combination of integer shifts of ϕ as

r(t) =

x(t)
y(t)
z(t)

 =
∑
k∈Z

c[k]ϕ(t− k) (1)

where {c[k] = (cx[k], cy[k], cz[k])}k∈Z are the 3D
control points. The model (1) may be extended
to construct a separable parametric tensor product
surface σ(u, v) with u, v ∈ R, represented as the
component-wise product (denoted by the symbol ×)
of two curves r1 × r2, i.e.

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

x1(u) · x2(v)
y1(u) · y2(v)
z1(u) · z2(v)


=
∑
k∈Z

c1[k]ϕ1(u− k)︸                      ︷︷                      ︸
r1

×
∑
l∈Z
c2[l]ϕ2(v − l)︸                    ︷︷                    ︸

r2

=
∑
k∈Z

∑
l∈Z
c1[k]× c2[l]︸            ︷︷            ︸

c[k,l]

ϕ1(u− k)ϕ2(v − l) (2)

Based on this equation, an arbitrary non-separable
surface with control points c[k, l] can be constructed
whose expression corresponds to the last line of
Eq. (2).

4.2 Generator function ϕ

The shapes that model (2) can produce depend on
the generator ϕ. For example, if ϕ is a B-spline,

the resulting shapes are polynomial. In our case, we
are interested in generating trigonometric shapes in
order to be able to construct exact spheres. For this
purpose, we use the piecewise exponential generator
proposed by Ref. [39], which reproduces sines and
cosines. It is defined as ϕ = β ∗ ψ, where β is a
third order exponential B-spline, ψ is an appropriate
smoothing kernel and, ∗ denotes convolution. We
provide the explicit expression for ϕ in Appendix A.
The relevant characteristics of ϕ for our construction,
besides its sphere-reproduction property, are that
it is twice differentiable, with bounded second
derivatives, and satisfies the interpolation property
ϕ(t = k) = δk, where δk denotes the Kronecker delta,
t ∈ R, and k ∈ Z. Our generator constitutes a
partition of unity, i.e.,

∑
k ϕ(t − k) = 1, which is a

necessary and sufficient condition for the represented
shapes to be affine invariant. Because this generator
depends on the number M of control points used to
construct a curve r, we use the notation ϕM instead
of ϕ. The support of ϕM is equal to 4.

4.3 Definitions

As a simplification to indicate the M1-periodized
basis function, we write:

φ1(t) := ϕM1,per(t) =
+∞∑

n=−∞
ϕM1(t−M1n) (3)

and φ2 := ϕ2M2 . To denote the integer shifts of
the basis functions on the normalized parameter
domain we use φ1,k(t) := φ1(M1t−k) and φ2,k(t) :=
φ2(M2t− k).

5 Spherical parameterization

5.1 The deformable sphere

In this section, we outline our proposed construction
of the deformable sphere. Without loss of generality,
we parameterize its surface as

σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =

cos(2πu) sin(πv)
sin(2πu) sin(πv)

cos(πv)


= r1(u)× r2(v) (4)

with u, v ∈ [0, 1]. In Ref. [39], it has been shown
that:

r1

( u

M1

)
=

cos(2πu/M1)
sin(2πu/M1)

1


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=
M1−1∑
k=0

cos
(
2πk/M1

)
sin
(
2πk/M1

)
1

φ1,k(u/M1) (5)

The periodization of φ1 as defined in Eq. (3) allows us
to express the u-dependent 1-periodic trigonometric
functions in Eq. (4) using a finite sum and M1 ∈
Z control points. The v-dependent trigonometric
functions in Eq. (4) are not periodic and are
expressed as

r2

( v

M2

)
=

sin(πv/M2)
sin(πv/M2)
cos(πv/M2)



=
M2+1∑
l=−1

sin
(
πk/M2

)
sin
(
πk/M2

)
cos

(
πk/M2

)
φ2,l(v/M2) (6)

Because the support of ϕM is equal to 4, for v ∈
[0, 1], we have ϕM2(v − l) = 0 if l < [−1, . . . ,M2 +
1], which explains the limits of the sum in Eq. (6).
Following the construction given in Eq. (2), we finally
parameterize the sphere as

σ(u, v) = r1(u)× r2(v)

=
M1−1∑
k=0

M2+1∑
l=−1

c[k, l]φ1,k(u)φ2,l(v) (7)

where the control points of the surface are given by
its samples:

c[k, l] =

cx[k, l]
cy[k, l]
cz[k, l]



=

cos
(
2πk/M1

)
sin
(
πl/M2

)
sin
(
2πk/M1

)
sin
(
πl/M2

)
cos

(
πl/M2

)
 (8)

Note that M1 and M2 are the numbers of control
points in the u- and v-directions. Hence, this
representation allows us to construct a perfect sphere
with any numbers M1, M2 of control points. The
only condition for the integer shifts of ϕM to
form a stable basis, i.e., to guarantee a stable
implementation, is M > 3 [39]. A reconstructed
sphere with interpolatory control points is shown in
Fig. 2.

5.2 Smoothness conditions at the poles

Since ϕ ∈ C1, continuity is guaranteed nearly
everywhere on the surface as long as the control
points do not overlap. However, for the deformed

Fig. 2 Reconstructed sphere with interpolatory control points shown
in green. The parametric directions are indicated by the blue and red
arrows.

sphere, smoothness is not guaranteed at the poles
unless we take appropriate measures. In Ref. [11], it
is shown that continuity at the poles is ensured if the
deformable sphere is constructed with continuously
varying tangent planes at these points. This
condition is expressed mathematically as
σv(u, v)|v=0 = T1,N cos(2πu) + T2,N sin(2πu) (9)

for the North pole and
σv(u, v)|v=1 = T1,S cos(2πu) + T2,S sin(2πu) (10)

for the South pole, where T1,N, T2,N, T1,S, and T2,S
are vector parameters that can be freely chosen. In
Appendix B, we show that both sides of Eq. (9) can
be simplified independently and we end up with the
condition:
c[k,−1] = c[k, 1]

+
T1,N cos

(
2πk/M1

)
+ T2,N sin

(
2πk/M1

)
M2ϕ′2M2

(1)
(11)

Similarly, Eq. (10) simplifies to
c[k,M2 + 1] = c[k,M2 − 1]

−
T1,S cos

(
2πk/M1

)
+ T2,S sin

(
2πk/M1

)
M2ϕ′2M2

(1)
(12)

The tangent plane at the poles is then spanned by the
vectors T1,N, T2,N and T1,S, T2,S. Figure 3 illustrates
the effect of imposing the smoothness conditions at
the poles.

5.3 Interpolation conditions at the poles

The sphere needs to remain closed when deforming in
order to maintain spherical topology. Again, special
attention needs to be paid to the poles: all the circles
of longitude of the original sphere should originate
and end at the poles of the surface. In accordance
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Fig. 3 Closed and smooth deformable sphere. Left: if no smoothness
conditions are imposed, the surface is non-differentiable at the poles.
Center: if no pole-interpolation conditions are imposed, the surface
looses its spherical topology when deforming. Right: a closed and
deformed sphere is shown with smoothly varying tangent planes at
the poles.

with the parameterization in Eq. (4), this condition
is expressed as{

σ(u, 0) = cN (North pole)
σ(u, 1) = cS (South pole)

(13)

In Appendix C, we show that condition (13)
translates directly into{

c[k, 0] = cN (North pole)
c[k,M2] = cS (South pole)

(14)

∀k ∈ [0, . . . ,M1 − 1]. In Fig. 3, we compare a
deformed sphere with and without imposing the
closeness conditions at the poles.
5.4 Main result

We combine all of the above considerations together
in order to state the main result of this article. A
locally and smoothly deformable sphere is expressed
by the parameterization in Eq. (7) subject to
the smoothness conditions (11) and (12) and the
closeness condition (14).
5.5 Useful properties of σ in practice

Our deformable sphere σ is affine invariant. Hence,
its construction is independent of location and
orientation, i.e.
Aσ(u, v) + b =

∑
k∈Z

∑
l∈Z

(Ac[k, l] + b)φ1,k(u)φ2,l(v)

where A is a 3× 3 matrix and b a constant vector in
3D.

Furthermore, since φ is twice differentiable, the
surface has everywhere a well-defined tangent plane
and Gaussian curvature. This property, for instance,
allows us to compute the normal vector at any point
on the surface, an important requirement to render
a textured surface.

6 Results and applications

6.1 Interactive modeling

It is crucial in interactive shape modeling that the
modeling process is intuitive. Standard modeling
applications allow a user to modify a shape by
dragging its control points with the mouse in order
to displace them. If the control points lie directly
on the surface of the shape, the modeling task
is significantly simplified. This is the case for
polygon models, but then the underlying shape is
not smooth. On the other hand, NURBS allow for
the construction of smooth shapes, but the control
points do not interpolate the shape. This makes the
modeling task less intuitive. Local shape control
is difficult as the surface becomes more complex
because it is no longer clear which part of the surface
is affected by a specific control point. Our proposed
construction solves this problem since ϕM satisfies
the interpolation condition and is also smooth.
Hence, even if the modeled surface is of great
complexity, the modeling process remains intuitive
and simple since the control points always lie on
the boundary of the shape. Furthermore, thanks to
the compact support of ϕM , local shape control is
guaranteed. Figure 4 illustrates the interactive shape
modeling process.

Smooth
north pole

Smooth
south pole

z

z

y

y

x

x

Fig. 4 Interactive modeling. Left: the region (yellow) affected by
moving a single control point (blue) is shown; it corresponds to a
patch of size 4 × 4 due to the support of the generator ϕM . Right: a
brain (green) modeled using our interpolatory construction (bottom)
and compared to the process where a non-interpolatory basis function
is used (top) similar to NURBS. The coordinate system indicates a
control point about to be interactively displaced in 3D space. Top
right: it is unclear which region of the surface is controlled by a certain
control point. The two poles are indicated in the figure to show the
importance of the smoothness property in practice. Center: a smooth
brain model rendered based on the modeling process illustrated on
the right.
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6.1.1 Intuitive user interaction
Our proposed framework can be exploited to make
user-interactive shape modeling more intuitive and
compelling. It is ideally suited for implementation
in interactive shape modeling software, where the
user modifies the shape by displacing the control
points with the mouse. With relatively few control
points, complex structures are easily constructed
and modified. Figure 5 shows examples of the
use of our framework in an interactive modeling
environment. Final renderings, where texture is
added to a shape, are achieved without discretization
artifacts, independently of the number of control
points chosen, since the underlying structure is
smooth (see Fig. 1, bottom row). In Fig. 6, the effect
of constraining the poles to be smooth is illustrated
when performing interactive modeling.
6.2 Shape interpolation
When dealing with a parameterized point cloud

whose points correspond to the samples of a surface
with spherical topology, our formulation allows for
an immediate reconstruction of the smooth shape.
Several algorithms have been proposed to obtain
such a parameterization (see Section 2). In this
case, for each point p ∈ R3 of the point cloud, a pair
(uk, vl) of coordinates is assigned in the parameter
domain and we can establish the relation σ(uk, vl) =
pk,l = c[k, l]. For fixed numbers of points, M1, M2, in
the u- and v-directions, the parametric coordinates
for the normalized parametric domain, i.e., u, v ∈
[0, 1], are given by uk = k/M1 and vl = l/M2. The
resulting continuously defined surface σ(u, v) is
immediately reconstructed since it is fully specified
by its control points subject to the smoothness and
pole-interpolation conditions described above. An
example is shown in Fig. 7.
6.2.1 Smooth modeling at arbitrary resolution
Because our construction of σ is inherently smooth,

Vase

Lamp

Mug

Rocket

Bullet

Fig. 5 Implementation of the framework in a shape modeling environment. Different shapes are interactively designed starting from a sphere
(from left to right). The interpolatory control points allow us to easily model surfaces that can adopt shapes beyond traditional spherical
topology, such as the mug, rocket, or bullet. The last two rows show shapes where only the closeness condition has been imposed in order to
allow for the construction of sharp kinks.
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Smooth pole Sharp pole

Fig. 6 Poles with continuously varying tangent plane. The effect of
imposing the smoothness condition on the poles in interactive shape
modeling is illustrated. Left: smooth pole. Right: sharp discontinuity
at the pole resulting in a singularity.

Fig. 7 Interpolation of a parameterized point cloud. The
dinosaurs (middle and right) are smooth reconstructions obtained by
interpolating the point cloud on the left. Our surface construction is
affine invariant and hence, rotating the shape is simply performed by
rotating the point cloud.

even with few control points, the tangent plane
and Gaussian curvature are everywhere well-defined.
This advantageous property allows construction of
textured models with few parameters, which is
useful for example in applications involving real-time
rendering. As an example, we have parameterized
the point cloud of the Gargoyle model using the
algorithm described by Ref. [32], which allows us
to reconstruct a smooth surface by interpolating
the points. Additionally, we have subsampled the
point cloud at different resolutions to obtain an
approximation of the Gargoyle with varying levels of
accuracy. Figure 8 illustrates the result and makes
a comparison with a model based on polygons.
6.2.2 Compression
Related to the previous example is the problem of
shape compression. Typically, the fewer coefficients
are used to compress a smooth shape, the
more discontinuous its representation becomes,
which influences its texturing and rendering. The
advantage of our model is that smoothness is always
preserved, even with few coefficients, as shown in
Fig. 8.

6.3 Efficient shape deformation

An advantage of using continuous-domain models
based on control points is that the shapes are
described by a finite number of control points,
whereas the corresponding coordinate functions x, y,
and z live in an infinite dimensional space; this

M =10 M = 20 M =40 M =80

Fig. 8 Interpolation of shapes with spherical topology: smooth
Gargoyle reconstructions at different resolutions. The same number
of control points is used in both directions of the parameter domain,
i.e., M = M1 = M2. Top: results obtained with our construction.
Bottom: a (linear) polygon reconstruction method is applied. Note
that with our approach the smoothness of the model does not depend
on the number of parameters.

allows us to describe a shape deformation process
in the continuous domain just by displacing the
control points. In the following, we provide two
examples that illustrate how the minimization of
distance criteria in the continuous domain can be
efficiently formulated as conditions on the control
points. Other deformation criteria which can be
minimized in a similar way have been studied in
Refs. [46, 47].
6.3.1 Minimum-energy deformation
We illustrate two deformation processes which
correspond to minimum-energy deformation in
L2([0, 1]2,R3). Both processes are formulated
entirely with respect to the control points. Thereby,
we can parameterize the path, which describes
the deformation in the space that contains all
parametric shapes. An immediate application is the
construction of interpolated or extrapolated shapes,
where the terms interpolated and extrapolated refer
to a shape lying on the path in some shape space.
Typically, such a shape space is described by a
metric that provides a notion of distance between
two points that lie in the space. Hence, in a given
shape space, a shape is treated as a single point.
Here we are interested in describing the deformation
such that a minimum amount of energy is required
in order to deform one shape into another. This
translates into describing the deformation as the
shortest path between two points in the shape space
according to its underlying metric.
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The Hilbert plane as a shape space. Given
two surfaces σ1 and σ2 living in the Hilbert plane
L2([0, 1]2,R3), the shortest path connecting them
can be parameterized by the intermediate surface σ
that minimizes:
F (τ,σ) = τ‖σ1 − σ‖2

L2
+ (1− τ)‖σ2 − σ‖2

L2
(15)

for a given τ ∈ [0, 1]. We see immediately that, for
τ = 0, the minimizer is σ = σ2, whereas for τ = 1
it is σ = σ1. For values of τ ∈ R \ [0, 1], the path
F describes extrapolated shapes, i.e., shapes that do
not lie between the two surfaces σ1 and σ2. The L2-
norm in Eq. (15) is induced by the L2-inner product:

〈σ1,σ2〉 =
∫
R

∫
R
σ1(u, v)Tσ2(u, v) dudv (16)

Using the property that our parameterization is
affine invariant, it is easy to show that the solution
of min

σ
F (τ,σ) is given by

C(τ) = τC1 + (1− τ)C2 (17)
where C,C1,C2 are the matrices which contain all
the control points of the corresponding surfaces.
As an example that illustrates the deformation
process and also the effect of imposing the closeness-
condition on the poles, we have deformed a disk
into a sphere. Figure 9 illustrates this process
and compares it to the case where no pole-
interpolation conditions are imposed. Figure 1 shows
the deformation of a sphere into a Gargoyle.

The Hilbert sphere as a shape space. Every
parametric shape can be projected onto the unit
Hilbert sphere by normalizing it such that ‖σ‖L2 =√
〈σ,σ〉 = 1. The shortest distance between two

points σ1 and σ2 on the sphere lies on the

⌧ = 0⌧ =
1

3
⌧ =

2

3
⌧ = 1

Fig. 9 Minimum-energy deformation in the Hilbert plane. Top:
a disk is deformed into a sphere through Eq. (17). Bottom: the
same process, but without imposing the pole-interpolation conditions
in Eq. (14). In this case, the surface does not remain closed when
deforming and Eq. (17) describes the deformation between a circle
and a sphere.

great circle that passes through them. A possible
parameterization of this great circle is

Γ (τ) = 1
sin(θ) [sin(θ(1− τ))σ1 + sin(θτ)σ2] (18)

where θ = cos−1(〈σ1,σ2〉), ΓΓΓ (0) = σ1, and ΓΓΓ (1) =
σ2. Again, if τ ∈ [0, 1], Eq. (18) describes
interpolated shapes, whereas for τ ∈ R \ [0, 1], τ

describes extrapolated shapes. As in the previous
example, we exploit the affine invariance of
our parameterization in order to describe the
deformation as a function of the control points. The
interpolating control points are given by

C(τ) = 1
sin(θ) [sin(θ(1− τ))C1 + sin(θτ)C2] (19)

An example invoking this deformation is shown in
Fig. 10.

Morphing. Computing morphs between two
or several shapes is similar to computing the
deformation between shapes. The difference is that
the deformation is expressed as a parameterized
weighted linear combination of two shapes, whereas
a morph corresponds to a particular instance of the
parameterized function. Concretely, if Eq. (17) or
Eq. (19) is evaluated for a specific value of τ , we
obtain a morph between σ1 and σ2. Examples
of such smooth morph constructions are shown in
Fig. 10, which correspond to morphed point clouds
similar to the ones shown in Fig. 11.

Parameterization. An important aspect to
consider when using our model is that the
parameterization which describes the shape is not
unique. This is natural in the case of surfaces
with spherical topology and originates from the

Fig. 10 Minimum-energy deformation on the Hilbert sphere. Top:
sphere and Venus. Bottom: Stanford Bunny and Gargoyle. Both
have been mapped through normalization onto the Hilbert sphere.
Deformation is then described by Eq. (19), for values τ = 0,

1
3
,

2
3
, 1

from left to right.
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cN

cS

cN

cS

c

c

S

S

c

c

N

N

Fig. 11 Influence of the parameterization on the deformation.
The point clouds (with M = M1 = M2 = 270) that define the
control points of the dinosaur and the Gargoyle are parameterized
and the locations of the poles are indicated with red arrows. The
dinosaur (top left) is deformed into the Gargoyle (top right). The
two intermediate shapes in the top row illustrate the deformation.
Bottom: the poles on the sphere can be placed at different locations.
For instance, if a different parameterization of the dinosaur is chosen
such that the the North pole cN and South pole cS are exchanged,
then the deformation process is different.

fact that there exist an infinite number of ways
to place the two poles (with the constraint that
they must be opposite to each other). However,
considering Eqs. (17) and (19), we see that there
is a unique correspondence between two given
spherical parameterizations, which implies that
given two surfaces, σ1 and σ2, each control point
c1[k0, l0] is transformed into c2[k0, l0]. If a different
parameterization is chosen for at least one of the two
surfaces (i.e., if the poles are placed differently), then
the resulting deformation will inevitably be different.
This is illustrated in Fig. 11. Insights into finding an
optimal correspondence between shapes can be found
in Refs. [48] and [49].

6.4 Fast computation of surface and volume
integrals

In certain applications that require iterative
optimization, it is necessary to rapidly compute
surface or volume integrals efficiently. An example
is the deformation of a surface guided by optimizing
an energy functional in real time.
6.4.1 Flux across surface
We illustrate how a flux E across a surface S,
parameterized by σ(u, v), may be computed rapidly
and efficiently. Given a vector field f , one way of
expressing the flux E is by

E(σ) =
	

S

·dS =
∫ 1

0

∫ 1

0
gx(σ) dy ∧ dz (20)

where dS represents the vector differential of
the surface area, ∧ denotes the wedge product,
and gx(x, y, z) =

∫ x

−∞
divf(τ, y, z) dτ is the pre-

integrated divergence of the vector field f in the
x-direction. Typically, f does not depend on the
surface and hence, gx can be precomputed and stored
in a look-up table to significantly speed up the
computation. We derive Eq. (20) in Appendix D.
The use of pre-integrated functions is only possible
because we define the surface σ in the continuous
domain. Next, the flux E can be efficiently optimized
by computing the gradient of E with respect to
the control points using a gradient-based iterative
method. An explicit expression of the gradient can
be obtained easily, and hence implemented in an
exact way.

Example. We illustrate the above computation
by segmenting the surface of a human brain in a
3D MRI image. We first compute an edge map of
the 3D image using a standard surface extraction
algorithm [50] and construct an energy functional
E that depends on the gradient of the edgemap.
Hence, in Eq. (20), the gradient becomes f . By
minimizing Eq. (20), σ deforms iteratively in order
to approximate the edge map, as shown in Fig. 12.
The result can easily be manually adjusted by
a clinician (see Fig. 4), which is an additional
advantage of our algorithm compared to existing
methods.
6.4.2 Exact volume computation
For ki ∈ [0, . . . ,M1−1] and li ∈ [−1, . . . ,M2 +1] the
volume enclosed by the surface σ is computed by

Vol(σ) =
∑

k1,k2,k3
l1,l2,l3

cx[k1, l1]cy[k2, l2]cz[k3, l3]

×α(k1, k2, k3, l1, l2, l3) (21)
where cx, cy, and cz are the x, y, and z coordinates
of the control points of σ and

Fig. 12 Brain segmentation in a 3D medical MRI image. The
red surface is a rendered edge map extracted from medical data.
An ellipsoidal surface is initialized inside the brain surface (left) and
evolves by iteratively minimizing (20) (from left to right). The final
result (right) corresponds to a smooth and continuous closed surface
shape.
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α(k1, k2, k3, l1, l2, l3)

= M1M2

( ∫ 1

0
φ1,k1φ

′
1,k2

φ1,k3du
∫ 1

0
φ2,l1φ2,l2φ

′
2,l3dv

−
∫ 1

0
φ1,k1φ1,k2φ

′
1,k3

du
∫ 1

0
φ2,l1φ

′
2,l2φ2,l3dv

)
(22)

Since α does not depend on the control points c, it
can be precomputed and stored in a look-up table in
order to quickly evaluate the volume in interactive
optimization schemes. Furthermore, because φ and
its derivative φ′ have compact support, the number
of non-zero elements in Sum (21) is small, which
additionally simplifies the computation. We derive
the formula for the volume in Appendix E. The
integrals in Eq. (22) can be further simplified
and exactly evaluated using techniques from spline
theory similar to the approaches in Refs. [51, 52].

7 Implementation

In this section, we describe some important details
regarding the implementation.

7.1 Choice of free parameters

7.1.1 Exact sphere
The orientation of the sphere is given by Eq. (4)
and therefore, the coordinates of the North pole are
cN = (0, 0, 1), and for the South pole, cS = (0, 0,−1).
Since by construction, the vectors T1,N and T2,N span
the tangent plane at the North pole of the sphere, a
natural choice is to set T1,N = (1, 0, 1)−cN = (1, 0, 0)
and T2,N = (0, 1, 1) − cN = (0, 1, 0). With the
same approach we also obtain T1,S = (1, 0, 0) and
T2,S = (0, 1, 0) for the South tangent plane. Note
that because our construction is affine invariant, for
a sphere with a different size or orientation, the new
coordinates are found by applying the corresponding
affine transformation to the existing control points.
7.1.2 Arbitrary shape with spherical topology
A simple method to estimate the tangent plane is to
compute the plane that best approximates the points
lying on the first circle of latitude next to the North
or South pole. Any two vectors spanning this plane
can be chosen as T1,N, T2,N and T1,S, T2,S.

7.2 Discretization of basis functions

Because our construction is formulated in the
continuous domain, the shape representation can
be discretized with arbitrary precision in order

to implement it. An efficient way is to discretize
the interpolator ϕ rather than the surface, which
becomes highly beneficial, for example, in interactive
applications where the shapes to be constructed are
not known beforehand. By discretizing ϕ prior to
surface construction, the samples of the interpolator
can be stored in a look-up table to speed up the
surface reconstruction. Thus, the sampling rate is
freely chosen. In Figs. 13 and 14, we show the effects
of different sampling rates. A sampling rate equal
to one corresponds to a polygon model (i.e., linear
interpolation between points), which means only
the blue sample in Fig. 13 is non-zero. The higher
the sampling rate, the closer the approximation of
the continuous domain model. Its effect on surface
reconstruction is shown in Fig. 14. In practice, if
a large number of control points is used, one can
already obtain satisfactory smoothness of the surface
with a low sampling rate, whereas with a small
number of control points, the sampling rate must
be higher to obtain a smooth surface.

8 Discussion and future work

8.1 Comparison with NURBS

Our formulation has several advantages compared
to an approach using NURBS. With the NURBS
formulation, a sphere can only be represented using
multiple surface patches. The NURBS formulation
requires not only more control points to represent
a sphere, but also more parameters in total, due
to the weights used in that formulation. Further,

-2 -1 1 2
t

-0.2

0.2

0.4

0.6

0.8

1.0

φ

Fig. 13 Sampling of the interpolator ϕ. Because ϕ is formulated in
the continuous domain, it can be discretized with arbitrary precision.
If only one sample is considered (blue sample), then the result
corresponds to linear interpolation, which is equivalent to a polygon
model. The samples denoted by orange circles correspond to a lower
sampling rate than the green samples.
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M = 20

M = 40

SR = 1 SR = 5 SR = 10

Fig. 14 Effects of different sampling rates, increased from left to
right. The surfaces are constructed with M = M1 = M2. The red
wireframe corresponds to a lower number of control points (M = 20)
used to reconstruct the bunny than the blue wireframe (M = 40).

because the basis functions of NURBS are rational,
the computation of derivatives and integrals results
in complicated expressions. This can become a
problem when integral-dependent quantities need
to be computed, such as in the evaluation of
surface or volume integrals in optimization schemes.
Also, the optimization itself must be carried
out simultaneously with respect to the control
points and the weight parameters, which introduces
additional complexity. For interactive shape design,
the interpolation property of our framework makes
the modeling task more intuitive. Complex shapes
that require more detail, and hence, more control
points, are especially modeled more easily with our
solution (see Fig. 4). Furthermore, interpolating
parameterized point clouds with spherical topology
is difficult with NURBS due to their non-
interpolatory nature; it involves complex NURBS
approximation techniques or inverse filtering, which
is not straightforward because of the smoothness
conditions at the poles. The only NURBS that
are interpolatory are zero and first degree NURBS,
which are non-smooth.

Moreover, our formulation allows for a shape
representation using only integer shifts. NURBS
usually have non-uniform shifts. The advantage of
considering integer shifts is that it allows convolution
and filtering techniques as well as frequency domain
calculus. This can be useful when performing surface
resampling, projections onto other spline spaces, and
evaluation of inner products, for example to compute
L2-distances between surfaces. It also allows for

a simpler formulation of the surface by specifying
control points instead of non-uniform knot vectors
including double knots.
8.2 Comparison with polygon models

Polygon models are inherently interpolatory schemes
because the control points coincide with the vertices
of the mesh. Similar to subdivision schemes, these
models require more parameters than our model
in order to achieve a higher degree of smoothness
(see Fig. 8). Geometric operators and quantities,
such as tangent planes, normals, curvatures, or the
Laplacian have to be approximated by polygon mesh
processing techniques. The same holds true for
integral and derivative-based quantities. However,
polygon meshes do not require an underlying
parameterization of the model.
8.3 Comparison with the Catmull–Rom

interpolator

The Catmull–Rom [36] or Keys interpolator [37]
are interpolating and smooth. Because they are
polynomial it is not possible to construct an exact
sphere with these functions. However, construction
of a model with spherical topology (which excludes
exact spheres and ellipsoids) is possible by replacing
ϕ in our framework with the Catmull–Rom
spline. Because its support is the same as for ϕ,
our formulation for the smoothness and interpolation
conditions at the poles can easily be adapted to the
purely polynomial case.
8.4 Extending the framework to other

topologies

Our concept can be extended to surfaces with
other topologies (e.g., cylindrical or rectangular) in
order to create a unifying framework for smooth
shape modeling with interpolatory control points.
These topologies do not require special attention to
poles and are easier to parameterize using tensor
products and a suitable interpolator. One way to
parameterize the rectangle is with the polynomial
Keys interpolator [37], whereas the cylinder may
be parameterized using ϕ for the trigonometric
part (i.e., the circles in one direction) and the
Keys interpolator for the linear part (i.e., along the
axis). Another example is the torus which is easily
parameterized using ϕ since it is periodic in u and v.
In Fig. 15, examples of these topologies are shown
as well as how they can be smoothly deformed by
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Idealized
shapes

User-interactive
deformation

Cylindrical
topology

Rectangular
topology

Cylinder Rectangle Torus

Fig. 15 Smooth modeling of different topologies with interpolatory
control points. Top: idealized shapes that define the topologies.
The red points indicate the interpolatory control points. Bottom:
a smooth deformation of these shapes.

exploiting the interpolation property in interactive
settings.

9 Conclusions

The standard method for smooth, parametric shape
modeling in industry is NURBS. In this paper, we
presented an alternative method to model smooth
shapes with spherical topology. The fundamental
difference with the existing standard is that our basis
functions are interpolatory and non-rational and we
only use uniform shifts. Our formulation is simpler
than NURBS and thus has several advantages
in practical applications, including immediate
reconstruction of smooth surfaces by interpolating
parameterized point clouds, more intuitive shape
modeling, and simplified formulation of optimization
algorithms that involve integral- and derivative-
dependent quantities. Our framework is extensible
to a richer family of topologies. A video illustrating
the use of our framework in practice is available at
http://bigwww.epfl.ch/demo/siggraph2016/.

Appendix A Explicit expression for ϕ

The generator is given by ϕ = β ∗ψ, where ∗ denotes

continuous convolution. The function β is a third-
order exponential B-spline defined by
β(t) =

M2 sin2(πtM )
2π2 , 0 < t 6 1

M2
(

cos
(

2π(t−2)
M

)
+cos

(
2π(t−1)
M

)
−2 cos( 2π

M )
)

4π2 , 1 < t 6 2
M2 sin2

(
π(t−3)
M

)
2π2 , 2 < t < 3

0, else
and
ψ(t) = γ1(M)β0(t+ 2) + γ2(M)(δ(t+ 2) + δ(t+ 1))
is a smoothing kernel with

β0(t) =
{

1, 0 < t < 1
0, else

being the zero degree polynomial B-spline, δ the
Dirac function. Further

γ1(M) =
π3 sec2 ( π

M

)
M2

(
M tan

(
π
M

)
− π

)
and

γ2(M) =
π2 csc

(
π
M

)
csc
(2π
M

) (
M − 2π csc

(2π
M

))
M2

(
M sec

(
π
M

)
− π csc

(
π
M

))
are constants that depend only on M . The explicit
expression for ϕ = ϕM is given by Eq. (23). Note
that ϕ is non-rational with respect to its parameter.

Appendix B Smoothness conditions at
poles

The left-hand-side of Eq. (9) is developed as
∂σ(u, v)

v

∣∣∣∣
v=0

=

M2

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u−k)ϕ′2M2
(M2v−l)

∣∣∣∣
v=0

= M2

M1−1∑
k=0

ϕM1,per(M1u− k)
M2+1∑
l=−1

c[k, l]ϕ′2M2
(−l)

= M2

M1−1∑
k=0

ϕM1,per(M1u− k)

ϕM (t) =



sin2( π
M )
(
M sin

(
2π(t−2)
M

)
−2π(t−2)

)
+(M sin( 2π

M )−2π) sin2
(
π(t−2)
M

)
2(cos( 2π

M )−1)(−M sin( 2π
M )+π cos( 2π

M )+π) , 1 < t < 2
M
(

sin
(

2π(t−2)
M

)
−2 sin

(
2π(t−1)
M

)
+sin
(

2π(t+1)
M

)
+sin( 2π

M )−sin( 4π
M )
)

+2πt cos( 2π
M )−2π(t−1) cos( 4π

M )−2π cos( 2πt
M )

4(cos( 2π
M )−1)(−M sin( 2π

M )+π cos( 2π
M )+π) , 0 < t 6 1

−
M
(

sin
(

2π(t−1)
M

)
−2 sin

(
2π(t+1)
M

)
+sin
(

2π(t+2)
M

)
−sin( 2π

M )+sin( 4π
M )
)

+2π(t cos( 2π
M )−(t+1) cos( 4π

M )+cos( 2πt
M ))

4(cos( 2π
M )−1)(−M sin( 2π

M )+π cos( 2π
M )+π) , −1 < t 6 0

sin2( π
M )
(

2π(t+2)−M sin
(

2π(t+2)
M

))
+(M sin( 2π

M )−2π) sin2
(
π(t+2)
M

)
2(cos( 2π

M )−1)(−M sin( 2π
M )+π cos( 2π

M )+π) , −2 < t 6 −1

0, |t| > 2
(23)
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×
(
c[k,−1]ϕ′2M2

(1)+c[k, 0]ϕ′2M2
(0)+c[k, 1]ϕ′2M2

(−1)
)

= M2

M1−1∑
k=0

ϕM1,per(M1u− k)

×
(
ϕ′2M2

(−1)(c[k,−1]− c[k, 1])
)

(24)
where we have used the fact that ϕ′ is odd (ϕ is even).
The right-hand-side of Eq. (9) may be expressed as

T1,N cos(2πu) + T2,N sin(2πu)

=T1,N

M1−1∑
k=0

cos
(2πk
M1

)
ϕM1,per(M1u− k)

+ T2,N

M1−1∑
k=0

sin
(2πk
M1

)
ϕM1,per(M1u− k)

=
M1−1∑
k=0

(
T1,N cos

(2πk
M1

)
+ T2,N sin

(2πk
M1

))
×ϕM1,per(M1u− k) (25)

By equating Eqs. (24) and (25) and identifying the
coefficients, we obtain Eqs. (11) and (12).

Appendix C Interpolation conditions at
poles

At the North pole, we have:

σ(u, 0) =
M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u−k)ϕ2M2(−l)

(26)
Since ϕM satisfies the interpolation condition, the
term that depends on l is always zero unless l = 0⇔
ϕ2M2(l = 0) = 1. Hence, Eq. (26) simplifies to

σ(u, 0) =
M1−1∑
k=0

c[k, 0]ϕM1,per(M1u− k) := cN (27)

Because the integer shifts of ϕM1 build a basis [39]
and ϕM1 satisfies the partition of unity property,
Eq. (27) only holds if c[k, 0] = C, with C a constant
vector for all k. Thus,

σ(u, 0) =
M1−1∑
k=0

CϕM1,per(M1u− k)

= C
M1−1∑
k=0

ϕM1,per(M1u− k)︸                     ︷︷                     ︸
=1

= C

= c[k, 0] = cN ∀k ∈ [0, . . . ,M1 − 1]
A similar derivation leads to the interpolation
condition at the South pole.

Appendix D Flux across surface

We denote by n the normal vector to the surface and
make use of the divergence theorem to compute:

E(σ) =
	

S

f · dS =
	

S

(
f · n
‖n‖

)
dS

=
$

V

divf︸ ︷︷ ︸
g

dV =
	
∂V=S

gx dy ∧ dz

=
	
∂V=S

gy dx ∧ dz =
	
∂V=S

gz dx ∧ dy

where gx, gy, gz are the pre-integrated functions
along directions x, y, or z. The wedge operator is
defined as

dy ∧ dz = ∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u
(28)

and is explicitly computed using ∂σ/∂u = (∂x/∂u,
∂y/∂u, ∂z/∂u) and ∂σ/∂v = (∂x/∂v, ∂y/∂v, ∂z/∂v)
with
∂σ

∂u
(u, v) =

M1

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕ′M1,per(M1u− k)ϕ2M2(M2v − l)

(29)
and
∂σ

∂v
(u, v) =

M2

M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u− k)ϕ′2M2
(M2v − l)

(30)

Appendix E Volume computation

By the divergence theorem, the volume of a
parametric surface is given by

Vol(σ) =
	

S

(x, 0, 0) · ndS =
	

S

x dy ∧ dz (31)

By applying the same simplifications to compute the
wedge operator (28) as in Appendix D, and using

x(u, v)=
M1−1∑
k=0

M2+1∑
l=−1

c[k, l]ϕM1,per(M1u−k)ϕ2M2(M2v−l)

the volume computation simplifies to

Vol(σ) =
∫ 1

0

∫ 1

0
x(u, v)

·
(∂y(u, v)

∂u

∂z(u, v)
∂v

− ∂y(u, v)
∂v

∂z(u, v)
∂u

)
dudv

Because only the basis functions depend on u and
v, the integral-dependent terms can be isolated and
precomputed to obtain Eq. (21).
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