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Abstract The problem of robust alignment of batches
of images can be formulated as a low-rank matrix
optimization problem, relying on the similarity of
well-aligned images. Going further, observing that
the images to be aligned are sampled from a union
of low-rank subspaces, we propose a new method
based on subspace recovery techniques to provide
more robust and accurate alignment. The proposed
method seeks a set of domain transformations which
are applied to the unaligned images so that the resulting
images are made as similar as possible. The resulting
optimization problem can be linearized as a series of
convex optimization problems which can be solved
by alternative sparsity pursuit techniques. Compared
to existing methods like robust alignment by sparse
and low-rank models, the proposed method can more
effectively solve the batch image alignment problem,
and extract more similar structures from the misaligned
images.

Keywords image alignment; subspace recovery;
sparse representation; convex
optimization; image similarity

1 Introduction

With the rapid development of the Internet
technologies, a huge amount of visual data can

1 College of Automation Science and Engineering, South
China University of Technology, Guangzhou, China. E-
mail: X. Lin, xhlin129@163.com; Z. L. Yu, zlyu@scut.
edu.cn; Z. Gu, zhgu@scut.edu.cn.

2 School of Information Engineering, Guangdong
University of Technology, Guangzhou, China. E-mail:
zhangjun7907@hotmail.com.

3 School of Computer Science, Huizhou University,
Huizhou, China. E-mail: caizhaoquan@139.com (�).

Manuscript received: 2016-12-31; accepted: 2017-02-22

be found online. These increasing data have the
potential for information mining, but also raises
some tough issues for preprocessing. In many image
data sets, misalignment of images is a common
problem in many computer vision and machine
learning applications. To deal with this batch
image alignment problem, one possible solution is
to seek a group of transformations to adjust the
unaligned images according to similarity or other
measures [1, 2]. A problem is that such methods
are not robust enough to handle corruption or
illumination variation which often occur in real-
world applications.

Clearly, if one finds a group of optimal
transformations and applies them to the unaligned
images, the resulting aligned images will be very
similar. If these images are vectorized and arranged
as columns of a matrix, the constructed matrix
will ideally be of low column rank. Since partial
corruption or occlusion will affect the low-rank
property, a method called robust alignment by
sparse and low-rank decomposition (RASL) [3] was
proposed to handle these issues, based on low-rank
models. These have recently shown strength in
many fields such as signal recovery and dimension
reduction [4]. The core of a low-rank model is
that high-dimensional data, such as images and
video sequences, are drawn from low-dimensional
structures which lie in low-rank subspaces [5]. This
idea is applied to batch image alignment by treating
the images as samples from the low-rank subspaces.

Since linear subspaces are embedded in a high-
dimensional space [6], it is possible to seek the
underlying structures for a batch of images by
subspace recovery. However, in practice, high-
dimensional data are seldom drawn from a single low-
rank subspace—it is more reasonable to expect that

295



296 X. Lin, Z. L. Yu, Z. Gu, et al.

high-dimensional data are drawn from several low-
rank subspaces rather than just from one. Based
on this idea, we propose a method that considers
the unaligned images to be lying in a union of low-
rank subspaces. Specifically, each aligned image
is sampled from one of the union of subspaces,
and can be represented as a linear combination of
other images in the same subspace [7]. Further
consideration of the sparse model in linear subspaces
and high-dimensional data analysis [6, 8], leads us to
model the subspace recovery problem using a sparse
representation.

In summary, in this paper, we propose a
new method for batch image alignment based on
seeking a set of optimal transformations via a
subspace recovery technique. The proposed method
is formulated as an optimization problem which
can be approximately solved by linearization and
alternative sparsity pursuit. After obtaining the
optimal solution, we can recover the underlying
structures of a batch of images to deal with
misalignment, and remove partial corruption and
occlusion.

2 Problem formulation

In this section, we formulate the problem of batch
image alignment by modeling unaligned images and
sparse errors. The aim is to search for a set of
transformations and to recover the low-dimensional
structures embedded in high-dimensional space.

2.1 Unaligned image model

Given a set of unaligned images I1, . . . , In of the
same object, we assume that they can be transformed
to similar images which are well-aligned by a set
of domain transformations τ1, . . . , τn. Stacking the
transformed images as vectors, we can construct the
matrix:

D ◦ τ =
[
vec

(
I0
1
)
| · · · |vec

(
I0
n

)]
∈ Rm×n (1)

where I0
i = Ii ◦ τi for i = 1, . . . , n is a well-aligned

version of image i and the operator ◦ denotes the
transformation applied to produce it. Pixel (x, y) of
the transformed image I0

i is given by
I0
i (x, y) = Ii ◦ τi(x, y) = Ii(τi(x, y)) (2)

Since the aligned images are similar, they
can be treated as samples from a union of
low-dimensional subspaces. Assuming a sufficient

sampling density, each image can be represented as
a linear combination of the other images from the
same subspace [9]. As shown in Fig. 1, compared
with the dimension of the entire union of subspaces
(i.e., several subspaces of a high-dimensional space),
the dimension of a single subspace is so small that
the representation of each image is sparse [10]. Thus,
we could model that:

D ◦ τ = A, A = AW, Wii = 0 (3)
where W ∈ Rn×n is a sparse coefficient matrix and
A ∈ Rm×n is a self-represented matrix. We may then
formulate the batch image alignment problem as

min
A,W,τ

‖W‖0 s.t. D ◦τ = A, AW = A, Wii = 0 (4)

where ‖·‖0 represents the `0-norm which counts the
number of nonzero entries of the matrix W .

2.2 Sparse error model

In general, partial corruption and occlusion may
exist which will disrupt the low-dimensional
subspaces. Since such errors usually occur in a
small region of an image and have arbitrarily large
magnitudes (especially for face images), these errors
can be modelled as sparse errors [11]. In order
to separate them from the well-aligned images, we
modify Eq. (4) to

min
A,W,E,τ

‖W‖0 + λ‖E‖0

s.t. D ◦ τ =A+ E, AW = A, Wii = 0
(5)

where E ∈ Rm×n is the sparse error matrix.
Our objective is to reconstruct A distributed over

a union of low-rank subspaces and to handle the
influence of sparse errors.

Fig. 1 Example ideal coefficient matrix W in Eq. (3), assuming
that each successive 5 data samples come from the same subspace of
a union of 4 subspaces, and that they are stacked as adjacent columns
of the data matrix A. Each column contains coefficients representing
a sample. The elements on the primary diagonal and at positions
corresponding to the other 3 subspaces are zero.
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3 Solution via iterative linearization
and alternative sparsity pursuit

In this section, we exploit an iterative scheme [3]
to obtain a practical solution to the batch image
alignment minimisation problem in Eq. (5).

3.1 Convex relaxation
The optimization problem in Eq. (5) is nonconvex
and NP-hard because of the `0-norm. Fortunately,
sparse representation and compressed sensing theory
shows that it can be approximately solved by
replacing the `0-norm by the `1-norm [4, 12, 13].
Doing so, Eq. (5) becomes:

min
A,W,E,τ

‖W‖1 + λ‖E‖1

s.t. D ◦ τ = A+ E, AW = A, Wii = 0
(6)

where ‖W‖1 =
∑
i,j |Wi,j | and ‖E‖1 =

∑
i,j |Ei,j |.

Since Gaussian noise always exists in real images,
to tolerate it to some extent, we reformulate Eq. (6)
as

min
A,W,E,τ

‖W‖1 + λ‖E‖1

s.t. ‖D ◦ τ −A− E‖F 6ε, AW = A, Wii = 0
(7)

where ‖·‖F represents the Frobenius norm and ε is
the tolerable noise level.
3.2 Problem linearization
The nonlinearity of the constraint D ◦ τ = A +
E makes the solution of Eq. (6) intractable. In
practice, we assume that the change produced by
τ is small enough that we can linearize the current
estimate τ to approximate the constraint. Each
transformation τi (an affine transformation, etc.)
can be represented by a vector of p parameters [14],
yielding τ = [τ1| · · · |τn] ∈ Rp×n. Specifically, if
initial transformations τ are known, we can change

D◦τ to D◦(τ + ∆τ) ≈ D◦τ+
n∑
i=1

Ji∆τiωiωT
i , where

Ji = ∂

∂τi
vec (Ii ◦ τi) ∈ Rm×p denotes the Jacobian

of the ith image with regard to the transformation
τi, and ωi denotes the standard basis for Rn. This
allows the problem to be relaxed to the following
convex optimization problem in which we seek the
optimal A,W,E,∆τ :

min
A,W,E,∆τ

‖W‖1 + λ‖E‖1

s.t. D◦τ+
n∑
i=1

Ji∆τωiωT
i =A+E,A=AW,Wii = 0

(8)

In order to obtain the approximate solution to
Eq. (6), we repeatedly linearize about the current
estimate of τ and solve a series of optimization
problems using Eq. (8). In other words, we seek
a small change in τ in each iteration, to gradually
approximate the correct transformations. In this
way, we can obtain approximate transformations [15,
16] to recover the underlying subspaces. The
detailed iterative linearization procedure to solve the
batch image alignment problem is summarized in
Algorithm 1. Iteration stops when the difference
between the current objective function and the
previous one meets a predefined stopping criterion.

3.3 Solution for inner loop by alternative
sparsity pursuit

In the linearized image alignment problem, a key step
is to find the solution to the convex optimization
subproblem in Eq. (8) in Step 3, the inner loop of
Algorithm 1. The recently developed alternating
direction method (ADM) and linearized alternating
direction method (LADM) can be applied to solve
such problems quickly and effectively [17, 18]. Before
using the ADM and LADM, the augmented Lagrange
multiplier (ALM) method [19] is applied to the
original problem. Firstly, we define:

f (A,W,E,∆τ) = AW + E −D ◦ τ −
n∑
i=1

Ji∆τωiωT
i

(9)
Algorithm 1 Iterative linearization (outer loop)
Input: Images I1, . . . , In, initial transformations τ1, . . . , τn,

λ

while not converged do
Step 1: normalize and warp the images:

D ◦ τ =
[

vec (I1 ◦ τ1)
‖vec (I1 ◦ τ1)‖2

| · · · | vec (In ◦ τn)
‖vec (In ◦ τn)‖2

]
;

Step 2: compute Jacobian matrices w.r.t. τ :

Ji = ∂

∂τi

(
vec (Ii ◦ τi)
‖vec (Ii ◦ τi)‖2

)
, i = 1, . . . , n;

Step 3 (inner loop): solve the linearized
optimization:(
Â, Ŵ , Ê,∆τ̂

)
= arg min

A,W,E,∆τ
‖W‖1 + λ‖E‖1 s.t.

D ◦ τ +
n∑
i=1

Ji∆τωiωT
i = A+ E, A = AW, Wii = 0;

Step 4: update transformations:
τ = τ + ∆τ̂ ;

end while
Output: solution to Eq. (6): Â, Ê, Ŵ , τ̂ .
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Then the augmented Lagrangian function for
Eq. (8) is
L (A,W,E,∆τ, Y, µ) = ‖W‖1 + λ‖E‖1

+〈Y, f (A,W,E,∆τ)〉+µ

2 ‖f (A,W,E,∆τ)‖2F (10)

where Y is a Lagrange multiplier matrix, 〈·, ·〉
denotes the inner product operation, and µ is a
positive penalty parameter.

In the ADM method, the unknowns in the
augmented Lagrangian function are iteratively
minimized one by one: in other words, the
sparsity of W and E are pursued alternatively until
convergence [7]. In this case, the iterations are given
by

Ak+1 = arg min
A

L (A,Wk, Ek,∆τk, Yk, µk)
Wk+1 = arg min

W
L (Ak+1,W,Ek,∆τk, Yk, µk)

Ek+1 = arg min
E

L (Ak+1,Wk+1, E,∆τk, Yk, µk)
∆τk+1 = arg min

∆τ
L (Ak+1,Wk+1, Ek+1,∆τ, Yk, µk)

(11)
while the updates for Y and µ are{

Yk+1 = Yk + µkf (Ak+1,Wk+1, Ek+1,∆τk+1)
µk+1 = ρµk

(12)
Hence, the solution to Ak+1 after one iteration is
given by

Ak+1 = D ◦ τ +
n∑
i=1

Ji∆τkωiωT
i − Ek −

1
µk
Yk (13)

Secondly, when updating W and E, considering
the constraints in Eq. (8) that A = D ◦ τ+
n∑
i=1

Ji∆τωiωT
i − E and A = AW , the augmented

Lagrangian function can be rewritten as
L (A,W,E, Y, µ) =

‖W‖1 + λ‖E‖1 + 〈Y, (AW −A)〉+ µ

2 ‖AW −A‖
2
F

(14)
Thus W and E can be updated alternatively using:
Wk+1 = arg min

W
‖W‖1 + 〈Ak+1W −Ak+1, Yk〉

+µk
2 ‖Ak+1W −Ak+1‖2F (15)

Ek+1 = arg min
E

λ‖E‖1 +
〈
−Ak+1W̃k+1, Yk

〉
+µk

2

∥∥∥Ak+1W̃k+1

∥∥∥2

F
(16)

where W̃ = I − W . By linearizing the quadratic
terms in Eqs. (15) and (16), we can obtain the

approximate solutions for W and E as

Wk+1 = Γ 1
µkη1

Wk +
AT
k+1

(
Ak+1W̃k − Yk/µk

)
η1


(17)

Ek+1 = Γ λ
µkη2

Ek +

(
Ak+1W̃k+1 − Yk/µk

)
W̃T
k+1

η2


(18)

where η1 > ‖A‖22 and η2 > ‖W̃‖22 guarantee the
solution generated by LADM converges to a KKT
(Karush–Kuhn–Tucker) point of Eq. (8) [20]. Γα (·)
is a soft-thresholding operator defined as

Γα (x) = sgn (x) max (|x| − α, 0) (19)
where sgn(·) represents the sign function. When
Γα (x) operates on a matrix, it acts element-wise.

Finally, the solution to ∆τ in Eq. (11) is easily
obtained as

∆τk+1 =
n∑
i=1

J†i
(
A′k+1 + Ek+1 −D ◦ τ + Yk/µk

)
ωωT

i

(20)
where J†i denotes the Moore–Penrose pseudoinverse
of Ji and A′k+1 is Ak+1Wk+1. The Lagrange
multiplier matrix Y and penalty parameter µ are
updated following Eq. (12). The complete procedure
for the inner loop of Algorithm 1 using alternative
sparsity pursuit is summarized in Algorithm 2.

4 Experimental results and discussion

In this section, we verify the proposed method on
several data sets, including face images, handwritten
digits, and video sequences. In all experiments,
we select the target regions from unaligned images
manually, or by using object detectors (such as a face
detector). These target regions are preprocessed to
a uniform size, and used as the original unaligned
images forming the input to our algorithm.

4.1 Robustness to sparse errors

In an experiment on images of a dummy head
which contains sparse errors including corruption
and occlusion [3], the correctness and robustness of
the proposed method are illustrated in Fig. 2. In this
experiment, the input images are the target regions
to align. After alignment, we achieve well-aligned
images, and reconstruct the underlying structures
shown in Figs. 2(b) and 2(c). The average of the
original, the aligned and the reconstructed images
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Algorithm 2 Alternative sparsity pursuit (inner loop)

Input: A0 ∈ Rm×n, W0 ∈ Rn×n, E0 ∈ Rm×n,
∆τ0 ∈ Rp×n, Ji ∈ Rm×p, for i = 1, . . . , n, λ, ρ, η1, η2

while not converged do
Step 1: update A:

Ak+1 = D ◦ τ +
n∑
i=1

Ji∆τkωiωT
i − Ek − 1

µk
Yk;

Step 2: update W :
Wk+1 = Γ 1

µkη1

(
Wk + AT

k+1(Ak+1W̃k−Yk/µk)
η1

)
;

W ii
k+1 = 0;

Step 3: update E:
W̃k+1 = I −Wk+1;
Ek+1 = Γ λ

µkη2

(
Ek + (Ak+1W̃k+1−Yk/µk)W̃T

k+1
η2

)
;

Step 4: update ∆τ :

∆τk+1 =
n∑
i=1

J†i
(
A′k+1 + Ek+1 −D ◦ τ + Yk/µk

)
ωωT

i ;

Step 5: update Y and µ:
Yk+1 = Yk + µkf (Ak+1,Wk+1, Ek+1,∆τk+1) ;
µk+1 = ρµk.

end while
Output: solution Â, Ê, Ŵ ,∆τ̂ to Eq. (8).

are shown in Fig. 2(e). These results demonstrate
that the set of transformations found can successfully
deal with misalignments. Moreover, the sparse errors
can be separated by recovering the underlying
structures from the union of subspaces. In this
experiment, since we do not know which subspace
each image belongs to, we cannot arrange the
images from the same subspaces together in the
data matrix. This leads to a different structure
for the estimated coefficient matrix Ŵ in this
experiment, shown in Fig. 3, and the ideal structure
in Fig. 1. However, each column of this coefficient
matrix still has many very small elements which
reveals the sparsity of the self-representation of the
reconstructed images, and supports the reasoning
behind the proposed model.

4.2 Face image alignment

To further verify the efficacy of the proposed method,
we carried out an experiment on more challenging
natural face images from the Labeled Faces in the
Wild (LFW) database [21]. These are real-world
face images with uncontrolled misalignments, under
varying illumination. About 35 face images of each
person were used in the experiment. The unaligned
face regions were used as input images. As shown in
Fig. 4, clearer average faces were obtained after

(a) Original images

(b) Aligned images

(c) Underlying structures

(d) Sparse errors

(e) Averages for (a), (b), (c)

Fig. 2 Representative result with a batch of images of a dummy
head. (a) Original unaligned images with partial corruption and
occlusion, D. (b) Images aligned by a set of transformations
generated by the proposed algorithm, D ◦ τ . (c) Reconstructed
underlying structures A, aligned images adjusted for sparse errors.
(d) Sparse errors E removed from D◦τ : E = D◦τ−A. (e) Averages of
all components in D, D ◦ τ , and A respectively, showing the accuracy
of the proposed method.
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Fig. 3 Estimated coefficient matrix Ŵ in the dummy head
experiment.

alignment with the proposed method.
Since we have no ground truth for these images,

we evaluate the experimental results according to the
similarity of the images: after alignment, the images
should be more similar. We thus measure image
similarity using peak signal to noise ratio (PSNR)
and structural similarity index (SSIM) [22, 23].
The mean PSNR and SSIM values for images of
each subject are shown in Fig. 4, while the mean
PSNR and SSIM values for all subjects in the LFW
database are given in Tables 1 and 2. They show that
the proposed method can reconstruct more similar
and general structures from the high-dimensional
data than the RASL method [3]. These results show
the strength of the proposed method for batch image
alignment.

We also validated the proposed method using
real face images from a video sequence. The video
sequence consists of 140 frames of Al Gore talking [3].
Selecting one from every 7 frames, 20 sampled images
from the video and their results after alignment
are shown in Fig. 5. In Figs. 5(b) and 5(c), the
proposed method successfully aligns the speaker.
The estimated coefficient matrix of this experiment
is shown in Fig. 5(d); it is similar to the ideal one
in Fig. 1. This result shows that the proposed
method works well with video sequence data. Since
adjacent frames from a video sequence are quite

Table 1 Mean PSNRs on LWF (Unit: dB)

Method Original Aligned Reconstructed
RASL [3] 28.49 28.71 29.43

Ours 28.79 40.29

Table 2 Mean SSIMs on LFW

Method Original Aligned Reconstructed
RASL [3] 0.3567 0.4750 0.7408

Ours 0.4297 0.9989

correlated, they are drawn from the same subspace
with high probability. In contrast, if a frame is far
from the current one, the structure of its subspace
may differ. This estimated coefficient matrix further
demonstrates the rationality of using a model based
on a union of subspaces in this task. The results in
Tables 3 and 4 show that the proposed method is
better at processing video sequences than RASL.

We can conclude that the proposed method
outperforms RASL based on the results of the above
experiments. The RASL method models data using
robust principal component analysis (RPCA) [4],
which assumes that data are drawn from a single
subspace [5]. Unlike RASL, the proposed method
reconstructs data from a union of subspaces, which
enables it to describe the structure of the data more
accurately, leading to better results.

4.3 Handwritten digit image alignment

A further kind of data set was used to verify
the proposed method. It comprises handwritten
digits, which are widely used in machine learning
algorithms [24]. The images of handwritten digits
were taken from the MNIST database [24]. We
experimented on 100 images of the digit “3”. Results
achieved by the proposed method and RASL are
shown in Fig. 6 and Tables 5 and 6. These results
again allow us to conclude that the proposed method
leads to better image alignment results.

Table 3 Mean PSNRs on video example (Unit: dB)

Method Original Aligned Reconstructed
RASL [3] 30.04 31.01 31.78

The proposed 31.12 47.33

Table 4 Mean SSIMs on video example

Method Original Aligned Reconstructed
RASL [3] 0.6233 0.7717 0.8345

The proposed 0.7878 0.9991

Table 5 Mean PSNRs for handwritten digits
(Unit: dB)

Method Original Aligned Reconstructed
RASL [3] 31.60 32.05 32.91

Ours 31.96 35.33

Table 6 Mean SSIMs on handwritten digits

Method Original Aligned Reconstructed
RASL [3] 0.3163 0.5160 0.7575

Ours 0.4792 0.8480
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(a) Average faces of original images D (b) Comparison of mean PSNRs of the aligned and the original

(c) Average faces of aligned images D ◦ τ (d) Comparison of mean PSNRs of the reconstructed and the original

(e) Average faces of the reconstructed A (f) Comparison of mean SSIMs of the reconstructed and the original

Fig. 4 Experimental results using real face images. (a) Averages of original unaligned face images of 20 persons from LFW. (b) Mean PSNR
of original images and images aligned by two methods, for each person. (c) Average faces using aligned images for each person. (d) Mean
PSNR of original images and images reconstructed by two methods, for each person. (e) Average faces using reconstructed images for each
person. (f) Mean SSIM of original images and images aligned by two methods, for each person.
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(a) Original frames (b) Aligned frames (c) Reconstructed frames (d) Estimated coefficient matrix Ŵ

Fig. 5 Experimental results for real face images from a video sequence. (a) 20 original frames of unaligned faces selected from a 140-frame
video. (b) Frames after alignment. (c) Reconstructed underlying structures. (d) Coefficient matrix.

(a) Original digits (b) D ◦ τ of Ref. [3] (c) D ◦ τ of the proposed method

(d) A of Ref. [3] (e) A of the proposed method

Fig. 6 Experimental results for handwritten “3” digits. (a) 100 original images from MNIST. (b) and (d) were generated by RASL, (c) and
(e) by our proposed method. The red circles mark some obvious differences between two method, which support that conclusion that our
proposed method is more accurate.

5 Conclusions

In this paper, a new method for batch image
alignment has been proposed which can handle
sparse errors. Several experiments have verified
the robustness of the proposed method, as well

as its effectivity and superiority. Compared to
existing methods, the proposed method is better
at extracting the general underlying structures from
high-dimensional data with misalignment and sparse
errors. It could readily be extended to deal with 3D
structures or much higher-dimensional data; this will
be studied in our further work.
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