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Abstract Texture provides an important cue for
many computer vision applications, and texture image
classification has been an active research area over the
past years. Recently, deep learning techniques using
convolutional neural networks (CNN) have emerged
as the state-of-the-art: CNN-based features provide
a significant performance improvement over previous
handcrafted features. In this study, we demonstrate
that we can further improve the discriminative power
of CNN-based features and achieve more accurate
classification of texture images. In particular, we
have designed a discriminative neural network-based
feature transformation (NFT) method, with which
the CNN-based features are transformed to lower
dimensionality descriptors based on an ensemble
of neural networks optimized for the classification
objective. For evaluation, we used three standard
benchmark datasets (KTH-TIPS2, FMD, and DTD)
for texture image classification. Our experimental
results show enhanced classification performance over
the state-of-the-art.
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feature learning; feature transformation

1 Introduction

Texture is a fundamental characteristic of objects,
and classification of texture images is an important
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component in many computer vision tasks such as
material classification, object detection, and scene
recognition. It is however difficult to achieve accurate
classification due to the large intra-class variation
and low inter-class distinction [1, 2]. For example,
as shown in Fig. 1, images in the paper and foliage
classes have heterogeneous visual characteristics
within each class, while some images in the paper
class show similarity to some in the foliage class.

Design of feature descriptors that can well
accommodate large intra-class variation and low
inter-class distinction has been the focus of research
in most studies. Until recently, the predominant
approach was based on mid-level encoding of
handcrafted local texture descriptors. For example,
the earlier methods use vector quantization based
on clustering to encode the local descriptors
into a bag-of-words [3–7]. More recent methods
show that encoding using Fisher vectors is more
effective than vector quantization [8, 9]. Compared
to bag-of-words, the Fisher vector representation
based on Gaussian mixture models (GMM) is
able to better exploit the clustering structure in

Fig. 1 Sample images from the FMD dataset in the (a) paper and
(b) foliage classes.
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the feature space and provide more discriminative
power for images with low inter-class distinction.
When designing local descriptors, feature invariance
to transformations is often a key consideration.
For example, the scale-invariant feature transform
(SIFT) [10], local binary patterns (LBP) and their
variations [11–13], basic image features [14], and
fractal analysis [2, 15] are commonly used.

Recent studies in texture image classification have
shown that features generated using convolutional
neural networks (CNN) [16] are generally more
discriminative than those from previous approaches.
Specifically, the DeCAF and Caffe features, which
are computed using the pretrained ImageNet models,
provide better classification performance than the
Fisher vector encoding of SIFT descriptors on
a number of benchmark datasets [9, 17]. The
current state-of-the-art [18, 19] in texture image
classification is achieved using CNN-based features
generated from the VGG-VD model [20]. Using
the VGG-VD model pretrained on ImageNet,
the FV-CNN descriptor is generated by Fisher
vector (FV) encoding of local descriptors from the
convolutional layer [18], and the B-CNN descriptor
is computed by bilinear encoding [19]. These two
descriptors have similar performance, providing
significant improvement over previous approaches.
By integrating FV-CNN and the descriptor from
the fully-connected layer (FC-CNN), the best
classification performance is obtained [18]. In all
these approaches, a support vector machine (SVM)
classifier with linear kernel is used for classification.

A common trait of these CNN-based features
is their high dimensionality. With 512-dimensional
local descriptors, the FV-CNN feature has 64k
dimensions and B-CNN has 256k dimensions.
Although an SVM classifier can intrinsically handle
high-dimensional features, it has been noted
that there is high redundancy in the CNN-
based features, but dimensionality reduction using
principal component analysis (PCA) has little
impact on the classification performance [18]. This
observation prompts the following question: is it
possible to have an algorithm that can reduce
the feature redundancy and also improve the
classification performance?

There have been many dimensionality reduction
techniques proposed in the literature and a detailed

review of well-known techniques can be found in
Refs. [21, 22]. Amongst them, PCA and linear
discriminant analysis (LDA) are representative of the
most commonly used unsupervised and supervised
algorithms, respectively. With these techniques,
the resultant feature dimension is limited by the
number of training data or classes, and this
can result in undesirable information loss. A
different approach to dimensionality reduction is
based on neural networks [23–25]. These methods
create autoencoders, which aim to reconstruct the
high-dimensional input vectors in an unsupervised
manner through a number of encoding and decoding
layers. The encoding layers of the network produce
the reduced dimensionality features. The sizes
of the layers are specified by the user and
hence autoencoders provide flexibility in choosing
the feature dimension after reduction. However,
autoencoders tend to result in lower performance
than PCA in many classification tasks [21]. In
addition, to the best of our knowledge, there
is no existing study that shows dimensionality
reduction methods can be applied to CNN-based
methods (especially FC-CNN and FV-CNN) to
further enhance classification performance.

In this paper, we present a texture image
classification approach built upon CNN-based
features. While the FC-CNN and FV-CNN
descriptors are highly effective, we hypothesize
that further reducing the feature redundancy would
enhance the discriminative power of the descriptors
and provide more accurate classification. We have
thus designed a new discriminative neural network-
based feature transformation (NFT) method with
this aim. Compared to existing neural network-
based dimensionality reduction techniques that
employ the unsupervised autoencoder model [23–
25], our NFT method incorporates supervised label
information to correlate feature transformation with
classification performance. In addition, our NFT
method involves an ensemble of feedforward neural
network (FNN) models, by dividing the feature
descriptor into a number of blocks and training one
FNN for each block. This ensemble approach helps
to reduce the complexity of the individual models
and improve the overall performance. We also
note that in order to avoid information loss when
reducing feature redundancy, our NFT method does
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not greatly reduce the feature dimension, and the
transformed descriptor tends to have a much higher
dimensionality than those resulted from the usual
dimensionality reduction techniques.

Our experiments were performed on three
benchmark datasets commonly used for texture
image classification: the KTH-TIPS2 dataset [26],
the Flickr material dataset (FMD) [27], and the
describable texture dataset (DTD) [9]. We show that
improved performance is obtained over the state-of-
the-art on these datasets.

The rest of the paper is organized as follows.
We describe our method in Section 2. Results,
evaluation, and discussion are presented in Section
3. Finally, we conclude the paper in Section 4.

2 Our approach

Our method has three components: CNN-based
texture feature extraction, feature transformation
based on discriminative neural networks, and
classification of the transformed features using a
linear-kernel SVM. Figure 2 illustrates the overall
framework of our method.

2.1 CNN-based feature extraction

During texture feature extraction, we use two
types of feature descriptors (FC-CNN and FV-
CNN) that have recently shown state-of-the-art
texture classification performance [18]. With FC-
CNN, the VGG-VD model (very deep with 19 layers)
pretrained on ImageNet [20] is applied to the image.
The 4k-dimensional descriptor extracted from the
penultimate fully-connected (FC) layer is the FC-
CNN feature. This FC-CNN feature is the typical
CNN descriptor when pretrained models are used
instead of training a domain-specific model.

Differently from FC-CNN, FV-CNN involves

Fisher vector (FV) encoding of local descriptors [28].
Using the same VGG-VD model, the 512-
dimensional local descriptors from the last
convolutional layer are pooled and encoded using
FVs to obtain the FV-CNN feature. During this
process, the dense local descriptors are extracted
at multiple scales by scaling the input image to
different sizes (2s, s = −3,−2.5, . . . , 1.5). A visual
vocabulary of 64 Gaussian components is then
generated from the local descriptors extracted from
the training images, and encoding is performed based
on the first and second order differences between
the local descriptors and the visual vocabulary. The
FV-CNN feature has dimension 512× 64× 2 = 64k.

2.2 FNN-based feature transformation

Since the FC-CNN and FV-CNN descriptors
have high dimensionality, we expect there to be
some redundancy in these features, and that the
discriminative power of these descriptors could be
improved by reducing the redundancy. We have
thus designed a discriminative neural network-
based feature transformation (NFT) method to
perform feature transformation; the transformed
descriptors are then classified using a linear-kernel
SVM. We choose to use FNN as the basis of
our NFT model, since the multi-layer structure of
FNN naturally provides a dimensionality reduction
property using the intermediate outputs. In addition,
the supervised learning of FNN enables the model
to associate the objective of feature transformation
with classification. In this section, we first give some
preliminaries about how FNN can be considered as
a dimensionality reduction technique, and then we
describe the details of our method.
2.2.1 Preliminary
Various kinds of artificial neural networks can be
used to classify data. One of the basic forms is

Fig. 2 Method.
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the feedforward neural network (FNN) [29], which
contains an input layer, multiple hidden layers, and
an output layer. The interconnection between layers
of neurons creates an acyclic graph, with information
flowing in one direction to produce the classification
result at the output layer.

Figure 3 shows a simple FNN model with one
hidden layer of 4 neurons and one output layer
corresponding to two classes. The functional view
of this model is that first the 10-dimensional input
x is transformed into a 4-dimensional vector h by
multiplying a weight matrix W ∈ R4×10 by x, adding
a bias b, and passing through an activation function
(typically tanh, the hyperbolic tangent sigmoid
transfer function). Then similarly h is transformed to
the 2-dimensional label vector y. The weight matrix
and bias can be learned using backpropagation.

Here, rather than using the output y as the
classification result, we can consider the intermediate
vector h as a transformed representation of the input
x, and h can be classified using a binary SVM to
produce the classification outputs. This design forms
the underlying concept of our NFT method.
2.2.2 Algorithm design
In our NFT method, the intermediate vector from
the hidden layer of FNN is used as the transformed
feature. There are two main design choices to make
when constructing this FNN model, corresponding
to the various layers of the network.

Firstly, we define the input and output layers. The
output layer simply corresponds to the classification
output, so the size of the output layer equals the
number of image classes in the dataset. For the
input layer, while it would be intuitive to use the
FC-CNN and FV-CNN feature vectors directly, the
high dimensionality of these features would cause
difficulty in designing a suitable network architecture
(i.e., the number of hidden layers and neurons).
Our empirical studies furthermore showed that using
the features as input does not provide enhanced
classification performance. Instead, therefore, we
designed a block-based approach, in which the FC-

Fig. 3 A simple FNN model.

CNN and FV-CNN features are divided into multiple
blocks of much shorter vectors, and each of the
blocks is used as the input: given the original feature
dimension d, assume that the features are divided
into blocks of n dimensions each. We create one FNN
for each block with n as the size of input layer. An
ensemble of d/n FNNs is thus created.

Next, the hidden layers must be determined; all
d/n FNNs employ the same design. Specifically,
we opt for a simple structure with two hidden
layers of size h and h/2 respectively. We also
specify h 6 n so that the transformed feature
has lower dimensionality than the original feature.
The simple two-layer structure helps to enhance
the efficiency of training of the FNNs, and our
experiments demonstrate the effectiveness of this
design. Nevertheless, we note that other variations
might achieve better classification performance,
especially if our method is applied to different
datasets.

The intermediate vector outputs of the second
hidden layer of all d/n FNNs are concatenated
as the final transformed feature descriptor.
Formally, define the input vector as x ∈ Rn×1. The
intermediate vector v ∈ R(h/2)×1 is derived as

v = W2 tanh(W1x + b1) + b2 (1)
where W1 ∈ Rh×n and W2 ∈ R(h/2)×h are the
weight matrices at the two hidden layers, and
b1 ∈ Rh×1 and b2 ∈ R(h/2)×1 are the corresponding
bias vectors. These W and b parameters are learned
using the scaled conjugate gradient backpropagation
method. To avoid unnecessary feature scaling,
the tanh function is not applied to the second
hidden layer. Instead, L2 normalization is applied
to v before concatenation to form the transformed
feature descriptor f, which is of size hd/(2n). Since
h 6 n, the dimensionality of f is at most half of
that of the original feature. Figure 4 illustrates
the feature transformation process using our NFT
model, and Fig. 5 shows the overall information flow.

3 Experimental results

3.1 Datasets and implementation

In this study, we performed experiments using three
benchmark datasets: KTH-TIPS2, FMD, and DTD.
The KTH-TIPS2 dataset has 4752 images in 11
material classes such as brown bread, cotton, linen,



Texture image classification with discriminative neural networks 371

Fig. 4 How our NFT method transforms CNN-based features using an ensemble of FNNs, for the FMD dataset with 10 output classes. The
CNN-based feature descriptor is divided into blocks of size n = 128, and one FNN is constructed for each feature block. The two hidden
layers have sizes of h = 128 and h/2 = 64, respectively. The dimensionality of the final transformed descriptor f is half of that of the original
CNN-based descriptor.

Fig. 5 Information flow. During training, an ensemble of FNN models is learned for feature transformation, and a linear-kernel SVM is
learned from the transformed descriptors. Given a test image, the FC-CNN and FV-CNN descriptors are extracted and then transformed
using the learned FNN ensemble, and SVM classification is finally performed to label the image.

and wool. FMD has 1000 images in 10 material
classes, including fabric, foliage, paper, and water.
DTD contains 5640 images in 47 texture classes
including blotchy, freckled, knitted, meshed, porous,
and sprinkled. These datasets present challenging
texture classification tasks and have frequently been
used in earlier studies.

Following the standard setup used in earlier
studies [9], we perform training and testing as
follows. For the KTH-TIPS2 dataset, one sample
(containing 108 images) from each class was used for
training and three samples were used for testing. For
FMD, half of the images were selected for training
and the other half for testing. For DTD, 2/3 of the
images were used for training and 1/3 for testing.

Four splits of training and testing data were used
for evaluation of each dataset. Average classification
accuracy was computed from these tests.

Our program was implemented using MATLAB.
The MatConvNet [30] and VLFeat [31] packages
were used to compute the FC-CNN and FV-CNN
features. The FNN model was generated using
the patternnet function in MATLAB. To set the
parameters n and h, we evaluated a range of possible
values (1024, 512, 256, 128, and 64, with h 6 n),
and selected the best performing parameters. This
selection process was conducted by averaging the
classification performance on two splits of training
and testing data, and these splits were different from
those used in performance evaluation. The selected



372 Y. Song, Q. Li, D. Feng, et al.

settings were n = 64 and h = 64 for the KTH-TIPS2
and DTD datasets, and n = 128 and h = 128 for
FMD. The dimensionality of the transformed feature
descriptor was thus half of the original feature
dimension. In addition, LIBSVM [32] was used for
SVM classification. The regularization parameter C

in the linear-kernel SVM was chosen based on the
same split of training and testing data, and C = 15
was found to perform well for all datasets.

3.2 Classification performance

Table 1 shows the classification performance on the
three datasets. For each dataset, we evaluated the
performance using the FC-CNN descriptor, the FV-
CNN descriptor, and the concatenated FC-CNN
and FV-CNN descriptors. For each descriptor, we
compared the performance using three classifiers,
including the linear-kernel SVM, FNN, and our
classification method (NFT then linear-kernel SVM).
With FNN, we experimented with various network
configurations of one, two, or three hidden layers
and each layer containing 32 to 1024 neurons; and it
was found that two layers with 128 and 64 neurons
provided the best performance. The results for FNN
in Table 1 were obtained using this configuration.

Overall, using FC-CNN and FV-CNN combined as
the feature descriptor achieved the best classification
performance for all datasets. The improvement of
our approach over SVM indicates the advantage
of including the feature transformation step, i.e.,

our NFT method. The largest improvement was
obtained on the KTH-TIPS2 dataset, showing a 2.0%
increase in average classification accuracy. For FMD
and DTD, the improvement was 1.1% and 0.7%,
respectively. The state-of-the-art [18] is essentially
the same method as SVM but with slightly different
implementation details, hence the results were
similar for SVM and Ref. [18]. The results also show
that NFT had more benefit when FV-CNN was used
compared to FC-CNN. We suggest that this was due
to the higher dimensionality of FV-CNN than that
of FC-CNN, and hence more feature redundancy in
FV-CNN could be exploited by our NFT method to
enhance the discriminative power of the descriptors.
It can also be seen that the FNN classifier resulted
in lower classification performance than SVM and
our method. The linear-kernel SVM classifier has
regularly been used with FV descriptors in computer
vision [18, 28], and our results validated this design
choice. Also, the advantage of our method over
FNN indicates that it is beneficial to include an
ensemble of FNNs as an additional discriminative
layer before SVM classification, but direct use of
FNN for classifying FV descriptors is not effective.

The classification recall and precision for each
image class are shown in Figs. 6–8. The results
were obtained by combining the FC-CNN and FV-
CNN features with our NFT method. It can be seen
that the classification performance was relatively
balanced on the FMD and DTD datasets. On

Table 1 Classification accuracies, comparing our method (NFT+SVM) with SVM only, FNN, and the state-of-the-art [18]
(Unit: %)

FC-CNN FV-CNN
SVM FNN Ours SVM FNN Ours

KTH-TIPS2 75.2±1.8 74.5±2.3 75.8±1.7 81.4±2.4 80.1±2.8 82.5±2.5
FMD 77.8±1.5 72.2±3.2 78.1±1.6 79.7±1.8 76.2±2.3 80.2±1.8
DTD 63.1±1.0 58.9±1.8 63.4±0.9 72.4±1.2 67.2±1.6 72.9±0.8

FC-CNN + FV-CNN
SVM FNN Ours Ref. [18]

KTH-TIPS2 81.3±1.2 81.1±2.1 83.3±1.4 81.1±2.4
FMD 82.1±1.8 75.5±1.6 83.2±1.6 82.4±1.4
DTD 74.8±1.0 70.2±1.8 75.5±1.1 74.7±1.7

Fig. 6 Classification recall and precision for the KTH-TIPS2 dataset. Each class is represented by one image. The two numbers above the
image indicate the classification recall and precision for that class, respectively.
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Fig. 7 Classification recall and precision for the FMD dataset.

Fig. 8 Classification recall and precision on the DTD dataset.

the KTH-TIPS2 dataset, however, there was a
larger variation in classification performance for
different classes. In particular, misclassification often
occurred between the fifth (cotton), eighth (linen),
and last (wool) classes, resulting in low recall and
precision for these classes. The high degree of visual
similarity between these image classes explains these
results. On the other hand, the characteristics of
the forth (cork), seventh (lettuce leaf), and tenth
(wood) classes were quite unique. Consequently, the
classification recall and precision for these classes
were excellent.

Figure 9 shows the classification performance with
different parameter settings for n (the size of the
input vector block) and h (the size of the first
hidden layer). In general, larger n decreases the
classification performance: it is more advantageous
to divide the high-dimensional FC-CNN and FV-
CNN descriptors into small blocks of vectors for
feature transformation. This result validated our
design choice of building an ensemble of FNNs with
each FNN processing a local block within the feature
descriptor. Such block-based processing can reduce

the number of variables, making it possible to build
a simple FNN model with two hidden layers which
fits the discriminative objective effectively.

The results also show that for a given value of
n, the classification performance fluctuates with
different settings of h. For the KTH-TIPS2 and
DTD datasets, there was a general tendency for
lower h to give higher classification accuracy. This
implies that there was a relatively high degree of
redundancy in the CNN-based features for these
images, and reducing the feature dimensionality
could enhance the discriminative capability of
the features. However, for the FMD dataset,
lower h tended to produce lower classification
accuracy, indicating a relatively low degree of feature
redundancy in this dataset. This is explained by the
high level of visual complexity in the FMD images.

3.3 Dimensionality reduction

To further evaluate our NFT method, we
compared it with other dimensionality reduction
techniques including PCA, LDA, and autoencoders.
PCA and LDA are popular dimensionality
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Fig. 9 Classification results using FC-CNN + FV-CNN as the feature descriptor, for varying values of parameters n and h.

reduction techniques and key representatives of
the unsupervised and supervised approaches,
respectively. Autoencoders are closely related to our
NFT method, since they are also built on neural
networks. All approaches were conducted on the
same sets of training and testing data as for our
method, and SVM was used as the classifier.

The main parameter in PCA and LDA was
the feature size after reduction. We found that
using the maximum possible dimension after
reduction provided the best classification results. For
autoencoders, we experimented with one to three
encoding layers of various sizes ranging from 64 to
1024. Using one encoding layer provided the best
classification results; the results were not sensitive
to the size of this layer. We did not conduct more
extensive evaluation using deeper structures or larger
layers due to the cost of training. In addition, for
a more comprehensive comparison with our NFT
method, we also experimented with an ensemble of
autoencoders. Specifically, similarly to the approach
used in our NFT method, we divided the CNN-
based feature descriptors into blocks and trained
an autoencoder model for each block. Experiments
tested each model with one or two encoding layers
of various sizes (64 to 1024). The best performing

configuration was used for comparison as well.
As shown in Fig. 10, our method achieved the

highest performance. It was interesting to see that
besides our NFT method, only LDA was able to
improve the classification performance relative to
using the original high-dimensional descriptors. PCA
had no effect on the classification performance if the
reduced feature dimension equalled the total number
of principal components, but lower performance
was obtained when fewer feature dimensions were
used. These results suggest that it was beneficial
to use supervised dimensionality reduction with
CNN-based feature descriptors. The degree of
improvement provided by LDA was smaller than
that for our method, demonstrating the advantage
of our NFT method. The autoencoder (AE) and
ensemble of autoencoders (EAE) techniques were
the least effective and the resultant classification
accuracies were lower than when using the original
high-dimensional descriptors. EAE performed better
than AE on the KTH-TIPS2 and FMD datasets
but worse on the DTD dataset. Such results
show that autoencoder models are unsuitable for
dimensionality reduction of CNN-based features.
The superiority of our method to EAE indicates

Fig. 10 Classification results using various dimensionality reduction techniques, with FC-CNN + FV-CNN as the feature descriptor. SVM
classification without dimensionality reduction is also included as a baseline.
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that by replacing the unsupervised reconstruction
objective in autoencoders with the supervised
discriminative objective in our NFT method,
dimensionality reduction is better correlated with
classification output and hence can enhance
classification performance.

4 Conclusions

We have presented a texture image classification
method in this paper. Recent studies have shown
that CNN-based features (FC-CNN and FV-
CNN) provide significantly better classification
than handcrafted features. We hypothesized that
reducing the feature redundancy of these high
dimensionality of these features could lead to
better classification performance. We thus designed
a discriminative neural network-based feature
transformation (NFT) method to transform the
high-dimensional CNN-based descriptors to ones of
lower dimensionality in a more discriminative feature
space before performing classification. We conducted
an experimental evaluation on three benchmark
datasets: KTH-TIPS2, FMD, and DTD. Our results
show the advantage of our method over the state-of-
the-art in texture image classification and over other
dimensionality reduction techniques. As a future
study, we will investigate the effect of including more
feature descriptors into the classification framework.
In particular, we will evaluate FV descriptors based
on other types of local features that are handcrafted
or learned via unsupervised learning models.
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