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Abstract The recent development of light field
cameras has received growing interest, as their rich
angular information has potential benefits for many
computer vision tasks. In this paper, we introduce
a novel method to obtain a dense disparity map by
use of ground control points (GCPs) in the light field.
Previous work optimizes the disparity map by local
estimation which includes both reliable points and
unreliable points. To reduce the negative effect of the
unreliable points, we predict the disparity at non-GCPs
from GCPs. Our method performs more robustly in
shadow areas than previous methods based on GCP
work, since we combine color information and local
disparity. Experiments and comparisons on a public
dataset demonstrate the effectiveness of our proposed
method.

Keywords disparity estimation; ground control points
(GCPs); light field; global optimization

1 Introduction

With the rapid development of computational
photography, many computational imaging
devices have been invented, based on, e.g.,
coded apertures [1], focal sweep [2], and light
fields [3, 4], examples of the latter being the Lytro
(https://lytro.com) and Raytrix (http://www.
raytrix.de) cameras. As a light field camera captures
both spatial and angular information about the
distribution of light rays in space, it provides a
potential basis for many fundamental operations in
computer vision [5–8]. In this paper, we focus on
accurate disparity estimation using the light field.
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Disparity estimation in stereo [9–11] is a long-
standing problem in computer vision, and it plays
an important role in many tasks. Given two or
more images captured from different viewpoints,
the fundamental problem is to find the optimal
correspondence between these images. Unlike the
point information captured by a traditional camera,
a light field camera captures information about the
light, providing a full description of the real world
via a 4D function. We can obtain so-called sub-
aperture images [12], and synthesize a multi-view
representation of the real world. Unlike the wide
baseline used in traditional multi-view stereo, the
multi-view representation synthesized by the light
field has a narrow baseline, which can provide more
accurate sub-pixel disparity estimation.

Previous work [13, 14] has computed an optimized
disparity map based on local estimation, which
includes both reliable and unreliable information.
Undoubtedly, reliable points will have a positive
effect on the global disparity map, but the effect
of unreliable points may be detrimental. To reduce
the negative effects of unreliable points, we propose
to obtain a dense disparity map from certain
reliable estimation points in the light field called
ground control points (GCPs) [15]. GCPs are
sparse points which can be matched reliably in
stereo, and are often obtained by stable matching
or laser scanning. We determine GCPs by the
reliability of the structure tensor, and construct
the GCP spread function based on color similarity
and local disparity similarity. By combining local
disparities, the proposed method performs more
robustly than the previous GCP method in shadow
areas: experimental results on the LFBD dataset [16]
show that our method performs more robustly than
the original light field method [14] and the original
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GCP method [15].
The rest of this paper is organized as follows.

In Section 2, we review the background and prior
work on depth estimation from a light field and the
GCP method. Section 3 describes our algorithm.
We give the experimental results in Section 4, and
our conclusions and suggestions for future work are
provided in Section 5.

2 Background and related work

A light field [17] is represented by a 4D function
f(x, y, u, v), where the dimensions (x, y) describe
the spatial distribution of light, and the dimensions
(u, v) describe the angular distribution of light.
When we fix one spatial dimension y∗ and one
angular dimension v∗, we get the epipolar plane
image (EPI) [18] (see Fig. 1).

In a rectified EPI, the slope k of a line has a linear
relationship with the depth d (see Fig. 2), the larger
the depth, the larger the slope: d = fsk/c, where f is
the focal length of the lens, s is the baseline between
the two views, and c is the pixel size. Given the EPI
structure, the depth estimation problem is converted
into a slope detection problem. As light field cameras
capture angular information, analyzing the EPI is a
suitable way to estimate depth using the light field.

Fig. 1 The epipolar plane image obtained by fixing one spatial
dimension and one angular dimension.

Fig. 2 Left: epipolar plane image. Note that the slope is the
reciprocal of the disparity. Right: the inverse relationship between
disparity and depth. The relationship between slope and depth is
linear.

Structure tensor (ST). Wanner and
Goldluecke [14] proposed to analyze the EPI
by the structure tensor, obtaining the local disparity
and the corresponding reliability at the same
time. They then optimized the local disparity map
by a global energy function based on variational
regularization. However, as they pointed out, the
sampling of viewpoints must be dense enough to
guarantee that the disparity between two views
is less than 2 pixels, otherwise the straight line
will become a broken line in the EPI, leading
to inaccurate local estimation. This issue will be
discussed in Section 3.1.

Lisad transform. Tosic and Berkner [19]
proposed the light field scale and depth transform.
They initially detected the slope of the epi-
tube [20] in Lisad-2 space, and then repaired depth
discontinuous areas using the slope of the epi-
strip [20] detected in Lisad-1 space.

Multiple cues. Tao et al. [21] proposed a method
to estimate depth by combining multiple cues,
including correspondence cues and defocus cues. The
advantages of using different cues in different areas
were exploited, and they obtained good results for
real scenes.

RPCA (robust principle component
analysis) matching. Heber and Pock [22]
considered the highly redundant nature of the
light field, and proposed a new global matching
term based on low rank minimization. Their method
achieves the best results on synthetic datasets.

GCP method. Ground control points are sparse
points which can be matched reliably in stereo.
Wang and Yang [15] proposed to predict the
disparity of non-GCPs from GCPs, and optimized
the initial disparity map using a Markov random
field (MRF) energy function containing three terms:
a data term, a smoothness term, and the GCP term.
The top ranking results achieved on the Middlebury
dataset prove that it is a good approach to stereo
matching. However, it performs poorly in shadow
(see Fig. 5) as it assumes that two points with similar
colors should have similar disparities, but the colors
may differ between a center point and its neighbors
while their disparities are similar.

3 Theory and algorithm

3.1 Algorithm overview
Our approach is given in Algorithm 1. The input
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Algorithm 1: Our GCP algorithm
Input:
Multi-view images I1, . . . , IN generated from light field L;
reference view index r.
Output:
Global optimal disparity map D.
Process:
(D0, R0) = StructureTensor(I1, . . . , IN ); . Section 3.2
G = GetGCPs(R0); . Section 3.2
D̃ = GCPSpread(Ir, D0, G); . Section 3.3
E = Edata + Esmooth + EGCP(D̃); . Section 3.4
D = GraphCut(E). . Section 3.4

is the 4D light field L(x, y, u, v) and the reference
view index r. The output is the disparity map D.
The algorithm consists of five steps:
1. Local estimation. The local disparity map and

its reliability map are obtained by using the
structure tensor method (see Section 3.2).

2. GCP detection. The most credible points as
determined by the reliability map are selected as
the GCPs (see Section 3.2).

3. GCP optimization. The GCP spread function is
built using the local disparity map and the set
of GCPs. By using this function, intermediate
results are obtained (see Section 3.3).

4. Building the energy function. The intermediate
results from GCP optimization are combined
with traditional stereo matching function results
(see Section 3.4).

5. Final optimization. The energy function is found
by optimization (see Section 3.4).

3.2 Local disparity and GCPs

We use the structure tensor to detect the slopes of
lines in the EPI:

J =
[
Gσ(SxSx) Gσ(SxSy)
Gσ(SxSy) Gσ(SySy)

]
=
[
Jxx Jxy
Jxy Jyy

]
(1)

where Gσ represents a Gaussian smoothing operator,
and Sx, Sy represent the gradients of the EPI in x

and y directions respectively.
Then, the direction of the line is

φ = 1
2 arctan(Jyy − Jxx2Jxy

) (2)

and its reliability is measured by the coherence of
the structure tensor:

r =
(Jyy − Jxx)2 + 4J2

xy

(Jxx + Jyy)2 (3)

It is worth noting that the structure tensor
performs poorly in the near field (see Fig. 4), which
corresponds to the low-slope area in the EPI; in other
words, the disparity between two views is larger than
2 pixels in these areas. We adopt the easiest method
to solve this issue—by scaling up the EPI along the y
axis in these areas to convert the low-slope area into
a high-slope area. We use bicubic interpolation to
scale up the EPI. After calculating the slope of the
scaled EPI, we can recover the slope of the original
EPI by dividing by the scaling factor. An original
EPI and the scaled up EPI can be seen in Fig. 3. The
improvement of our method can be seen in Fig. 4.

Having obtained the coarse disparity map D0 and
its reliability map R0 from the structure tensor,

Fig. 3 Top: an original EPI. Bottom: the scaled up EPI. Clearly,
the slopes of the lines are greater in the latter.

(a) (b)

(c) (d)

Fig. 4 Disparity and error map obtained by the basic structure
tensor method and our method for the Buddha dataset. (a) Disparity
map obtained by the basic structure tensor method. (b) Disparity
map obtained by our improved method. The basic structure tensor
method performs poorly at close range. (c) and (d) Relative depth
error maps for the above two methods. Relative depth errors of more
than 1% are indicated in red. The error rates of these two methods
are 7.87% and 3.97%, respectively.
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it is unnecessary to do stable matching or laser
scanning to obtaining GCPs; to do so would be time-
consuming and laborious. We obtain the set of GCPs
G from the reliability map R0.

3.3 GCP spread function
The inputs to our GCP spread function are the
reference view image Ir, the local disparity map D0,
and the set of GCPs G.

Unlike Wang and Yang’s method [15], which
constrains similar colors to have similar disparities,
we use the constraint that two neighboring pixels
p and q should have similar disparities if not only
their colors are similar but also their local disparities
are similar. This constraint can be described by
minimizing the difference between the disparity of
p and a weighted combination of its neighbors’
disparities. The global cost function is given by

J(D̃) =

D̃p −

∑
q∈N8(p)

ωpqD̃q∑
q∈N8(p)

ωpq


2

(4)

where D̃ is the optimal disparity map found
by minimizing this global cost function. N8(p)
comprises p’s 8-connected neighbors; ωpq are weights
based on a color term and a disparity term:

ωpq = max
(

exp
(−∆Cpq

γc
+ −∆D0,pq

γd

)
, ε

)
(5)

where ∆Cpq and ∆D0,pq are respectively the
Euclidean distances between pixels in RGB color
space and local disparity (D0) space. Parameters
γc, γd, and ε control sharpness of the function. To
ensure that the disparity term and the color term
have the same order of magnitude, the parameter
γd is not independent, and is calculated from the
following equation:

γd = sγd

γc(dmax − dmin)
(Cmax − Cmin)

√
NC

(6)

where Cmax and Cmin are the maximum and
minimum values in color space, 255 and 0
respectively. NC is the number of color channels,
here 3. Parameters dmax and dmin are the maximum
and minimum values in hypothetical disparity space,
respectively. sγd

is a weight to control the strength
of the disparity term. We suggest that the disparity
term should be larger than the color term, so sγd

< 1.
Equation (4) is a quadratic function. After taking

its derivative to find the extremum, we find that
the disparity of the center point p has a linear

relationship with the disparities of its neighbors:

D̃p =

∑
q∈N8(p)

ωpqD̃q∑
q∈N8(p)

ωpq

=
∑

q∈N8(p)
αpqD̃q (7)

αpq = ωpq∑
q∈N8(p)

ωpq (8)

Given the linear relationship above, we can derive
the disparity of non-GCPs from GCPs by solving a
system of sparse linear equations (I−A)x = b, where
I is an identity matrix, and A is an N×N matrix (N
is the number of points in the image). In each row of
A, if the corresponding pixel p belongs to the GCPs,
all elements are zero, otherwise only the 8-connected
neighbor points q have non-zero values, equal to their
weights αpq. Similarly, for the elements in vector
b, only the pixels belonging to GCPs have non-zero
values, and are equal to their initial disparities. x is
the optimal disparity map that we hope to obtain.
3.4 Energy functions with the GCPs
Our energy function contains three terms: a data
term, a smoothness term, and the GCP term.

As the length of the baseline between two views in
the light field camera is narrow, we combine the basic
sum of squared differences (SSD) and sum of squared
gradient differences (SSGD) as our data term to
ensure good matching:
Edata(D) = Ebasic(p,D(p)) + Egrad(p,D(p)) (9)

where
Ebasic(p,D(p))

=
∑
i∈V

∑
q∈N(p)

{Ii(q)− Ir[q +D(p)(i− r)]}2 (10)

and
Egrad(p,D(p))

=(1− α) ·
∑
i∈V

∑
q∈N(p)

{Ii,gx(q)− Ir,gx[q +D(p)(i− r)]}2

+ α ·
∑
i∈V

∑
q∈N(p)

{Ii,gy(q)− Ir,gy[q +D(p)(i− r)]}2

(11)
Here, D is the global optimal disparity map, D(p)
is the disparity value of point p, V is the number
of views in the light field, N(p) is an image patch
centered at pixel p, Ir is the reference view in the
light field, and Ii,gx and Ii,gy are the gradients of the
i-th view image in x and y directions, respectively.
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We select the widely used linear model based on a
4-connected neighborhood system as our smoothness
term, which is expressed as

Esmooth(D) = λs
∑
p∈Ir

∑
q∈N4(p)

ωpq∆Dpq (12)

where ∆Dpq is the difference in disparity between
pixels p and q, λs is a smoothness coefficient to
control the strength smoothing, and ωpq is a weight
based on the distance between p and q in RGB color
space:

ωpq = max
(

exp
(−∆Cpq

γc

)
, ε

)
(13)

Given the optimal disparity D̃p obtained by the
GCP spread function in Eq. (7), we can now employ
the robust penalty function [15]:
EGCP(D) = λr

∑
p∈Ir

ϕ(Dp, D̃p)

= −λr
∑
p∈Ir

ln((1− η) exp(−|Dp − D̃p|
γd

) + η)

(14)
where λr is a regularization coefficient that controls
the strength of the GCP energy; γd and η control the
sharpness and upper-bound of the penalty function.

4 Experimental results

4.1 Parameters and dataset
In our experiments, we have found that the structure
tensor method performs poorly for lines in the EPI
with slope larger than 0.65. So, we first analyze the
EPI by structure tensor, and then if the slope of 50%
of points is larger than 0.65, we scale this EPI from
9 to 17 pixels in the y direction, and reanalyze the
EPI.

We set two thresholds to select GCPs, using
absolute reliability and relative reliability.
The absolute reliability is set to 0.99 in our
implementation. If the reliability of a point is larger
than 0.99, it is classified as a GCP. If only this
criterion is used, GCPs may be too sparse in some
datasets to reliably determine the disparity map
calculated from the GCPs. We thus also consider
relative reliability. If the fraction of GCPs obtained
by considering absolute reliability is smaller than
a set percentage (20%), we select the 20% most
relaible points as GCPs.

For the disparity map obtained from GCPs, the
parameters γc and ε are set to 30 and 0, respectively.

The weight parameter sγd
is set to 0.25. Note that if

γc or γd is unsuitable, the sparse linear system may
be singular.

In the data term, the parameter α is set to 0.5, and
the size of image patches is 7 × 7. The parameters
γc and ε in the smoothness term are set to 3.6
and 0.3, respectively. And the parameters η and
γd are set to 0.005 and 2 according to Wang and
Yang [15], respectively. In the final energy function,
the smoothness coefficient λs and the GCP scaling
coefficient λr are set to 1.67 and 4.67, respectively.
We divide the disparity into 120 levels, and use linear
interpolation to get floating point values for use in
the data term. We use GCO-v3 [23–25] to optimize
our energy function.

We tested our method using HCI LFBD [16],
which contains synthetically generated light fields,
each of which is represented by 9 × 9 sub-aperture
images. The dataset was rendered by Blender
(http://www.blender.org), and contains the ground
truth.

Our algorithm was implemented in MATLAB, on
MacOS X 10.11.1 with 8 GB RAM and a 2.7 GHz
processor. The running time for a 9×9×768×768×3
light field is 60 minutes. Most of the cost is to build
two large sparse matrices for the smoothness term
and the GCP term, and could be greatly reduced by
reimplementation in C.

4.2 Comparision with previous works

We compare our GCP propagation method with the
basic structure tensor method and Wang and Yang’s
method [15] in Fig. 5. Our method performs more
robustly than Wang and Yang’s in shadows and in
color discontinuous areas.

We also compare our results with Wanner and
Goldluecke’s [14] and Wang and Yang’s [15] results,
as shown in Fig. 6. Note that there is much
noise in the initial map; there is reduced noise
after the GCPs’ spread. A quantitative comparison
can be seen in Table 1. We select the relative
depth error as our criterion (we used 0.2% here).
Our method performs better than Wanner and
Goldluecke’s on 4 datasets, but worse on 3 datasets.
On analyzing these 7 datasets we find that there
are few transparent materials in the Buddha,
StillLife, Horses, and Medieval datasets, but more
transparent materials and shadows, lamps, and
mirrors in the Buddha2, Mona, and Papillon
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 6 Results of our method on Buddha, StillLife, Mona, and Horses datasets from LFBD. Top: initial disparity map D0. 2nd row: results
D̃ from the GCP spread function. 3rd row: final results of our method. 4th row: ground truth. Bottom: error map. Relative depth errors of
more than 0.2% are shown in red.
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Table 1 Percentage of pixels with depth error more than 0.2% for LFBD [16]. The results of Wanner and Goldluecke’s method were obtained
by running their public source code. The results of Wang and Yang’s method were obtained by our implementation (Unit: %)

Buddha Buddha2 Mona Papillon StillLife Horses Medieval
Wanner and Goldluecke’s [14] 7.28 26.55 15.08 16.64 4.50 16.44 24.33
Wang and Yang’s [15] 5.50 35.31 25.80 18.39 4.55 14.25 24.75
Our method 5.50 34.81 25.86 17.56 3.61 13.29 23.24

(a) (b)

(c) (d)

Fig. 5 Comparison. (a) Input dataset; there are two colors in the
butterfly and a shadow on the leaves to the left of the butterfly. (b)
Basic structure tensor result, showing many points with wrong values.
(c) Wang and Yang’s propagation strategy assigns wrong disparities
to shadow areas and divides the butterfly into 2 parts along the color
boundary in its tail. (d) Result of our GCP propagation method,
with few wrong values and good performance in shadow areas.

datasets. Stereo matching outperforms the structure
tensor method in a Lambertian environment, whilst
the structure tensor performs better in non-
Lambertian environments.

Our method performs better than Wang and
Yang’s method, especially for the Papillon, StillLife,
and Horses datasets. Note that there exist some
shadows in these datasets; the disparities of shadow
areas ought to be the same as those of their
neighborhoods. As local disparity information is
combined in our GCP spread function, our method
outperforms Wang and Yang’s.

5 Conclusions and future work

In this paper, we have proposed the idea to determine
GCPs by using the reliability of the structure tensor.

We also give a more robust GCP spread function
than Wang and Yang’s [15] to propagate disparity
from GCPs to non-GCPs. Experimental results on
LFBD show that our method performs more robustly
than Wanner and Goldluecke’s and Wang and Yang’s
methods. However, our method performs less well in
strong light and complicated shadow areas; this is a
problem for most stereo methods. In the future, we
will continue to investigate stereo in light fields, and
take the advantages of more features of light field to
solve these problems.
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