
Computational Visual Media
DOI 10.1007/s41095-016-0034-8 Vol. 2, No. 1, March 2016, 45–56

Research Article

VoxLink—Combining sparse volumetric data and geometry for
efficient rendering

Daniel Kauker1, Martin Falk2(�), Guido Reina1, Anders Ynnerman2, and Thomas Ertl1

c© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Processing and visualizing large scale
volumetric and geometric datasets is mission critical
in an increasing number of applications in academic
research as well as in commercial enterprise. Often the
datasets are, or can be processed to become, sparse.
In this paper, we present VoxLink, a novel approach
to render sparse volume data in a memory-efficient
manner enabling interactive rendering on common, off-
the-shelf graphics hardware. Our approach utilizes
current GPU architectures for voxelizing, storing, and
visualizing such datasets. It is based on the idea of per-
pixel linked lists (ppLL), an A-buffer implementation
for order-independent transparency rendering. The
method supports voxelization and rendering of dense
semi-transparent geometry, sparse volume data, and
implicit surface representations with a unified data
structure. The proposed data structure also enables
efficient simulation of global lighting effects such as
reflection, refraction, and shadow ray evaluation.

Keywords ray tracing; voxelization; sparse volumes;
GPGPU; generic rendering

1 Introduction

Nowadays, datasets obtained from measurements,
modeling, simulations, or other sources grow larger
and larger in size. Regardless of their origin, these
large datasets have to be processed and visualized,
pushing the limits of available hardware. In most

1 VISUS, University of Stuttgart, 70569 Stuttgart,
Germany. E-mail: D. Kauker, kauker@visus.uni-
stuttgart.de; G. Reina, reina@visus.uni-stuttgart.de; T.
Ertl, ertl@visus.uni-stuttgart.de.

2 Immersive Visualization Group, Linköping University,
601 74 Norrköping, Sweden. E-mail: M. Falk, martin.
falk@liu.se (�); A. Ynnerman, anders.ynnerman@liu.se.

Manuscript received: 2015-12-01; accepted: 2015-12-09

cases, however, the original raw data contains much
information which is of no interest in the subsequent
processing or visualization steps. This uninteresting
data can be filtered out beforehand in the pre-
processing step, for example by applying a transfer
function or threshold filters.

In this paper, we present our research on
rendering and storing sparse data with the VoxLink
approach—a spatial data structure based on linked
voxels. We extend the concept of per-pixel linked
lists (ppLL) [1], using it for voxelization, voxel-
based rendering, and the visualization of sparse
volume data. Mesh objects are voxelized by
intersecting the voxel position with the triangles, and
implicit representations like spheres are voxelized
by evaluating samples at the voxel position [2]. In
addition, continuous volumetric data can be sampled
as well. In Fig. 1, four exemplary scenarios are
depicted in which our method can be utilized.

To summarize the contribution, our method is
able to render voxelized scenes—including global
rendering effects—at interactive frame rates. For
sparse volume data, we are able to reduce the
required memory footprint, allowing the inspection
of sparse high resolution volumes even on low-end
graphic devices.

In contrast and as extensions to existing
approaches, VoxLink can render meshes, volumes,
and implicit surfaces by storing the voxels internally
in linked lists. It displays volumes combined with
rasterized data and uses ray tracing for rendering
and visualizing global lighting effects.

2 Related work

Order-independent transparency (OIT).
When rendering a scene containing semi-transparent

45



46 D. Kauker, M. Falk, G. Reina, et al.

Fig. 1 Example applications of our VoxLink approach: sparse
volume representation of data from geostatistics and CT scans (top
row), voxelized triangle meshes (bottom left), and global lighting
effects for combined voxel data, implicit geometry, and volume data
(bottom right).

objects, the correct result requires a consistent
depth ordering of all objects. Depth peeling [3]
utilizes the rendering pipeline of the GPU for correct
sorting but requires multiple rendering passes to
do so. The A-buffer presented by Carpenter avoids
the problem of multiple rendering passes by storing
all potentially visible fragments per pixel during
rendering and then sorting and blending them [4].
In 2014, Lindholm et al. [5] presented a hybrid
volume–geometry rendering algorithm and two
optimizations for current A-buffer implementations.
Yang et al. [1] introduced per-pixel linked lists
(ppLL) as an efficient GPU-based implementation
of the A-buffer. The linked list technique allows
for OIT rendering, constructive solid geometry
(CSG) effects, depth-of-field effects [6], and even
distributed rendering with semi-transparent models
and object-space decomposition [7]. We extend the
linked list approach of the A-buffer in our work so
it not only contains the information of a particular
view but comprises the entire scene.

Voxelization. The method of voxelization has
long been used for voxel-based graphics systems [8]
and to speed up ray tracing [9]. Karabassi et al. [10]
utilized the depth buffer of the GPU to voxelize
non-convex objects and their surfaces. In 2000,
Fang and Liao [11] presented a voxelization approach
for CSG models, evaluating multiple slices along
the view direction. Eisemann et al. [12] voxelized
polyhedral objects in a single rendering pass on the

GPU. GigaVoxels [13] is a voxel-based framework
for real-time rendering of large and highly detailed
volumetric scenes. These works are specialized to
voxelizing either volumes or geometric objects while
VoxLink can voxelize and visualize both data types.
Kämpe et al. [14] evaluated directed acyclic graphs
instead of octrees to store the voxels in hierarchical
levels for polygonal models.

Sparse volume rendering. Volume ray casting
was first presented in 1988 [15–17]. In recent GPU-
based approaches, the volumetric data is stored in a
3D texture and the volume rendering is performed
within a single pass [18]. For large, sparse datasets,
naive storage often exceeds available GPU memory
so advanced schemes exploiting sparsity have to be
used. VDB (volumetric, dynamic grid) [19] is a
framework for sparse, time-varying volumetric data
that is discretized on a grid. This kind of data is
used for animations and special effects in movies.
Teitzel et al. [20] presented an approach to render
sparse grid data by interpolating the sparse grid
and in fact turning it into a volume. Köhler et
al. [21] used adaptive hierarchical methods to render
sparse volumes, effectively partitioning the whole
volume into smaller volumes which are then used for
volume ray casting. Gobetti et al. [22] presented
an alternative single-pass approach for rendering
out-of-core scalar volumes. For additional state of
the art, we refer to Balsa et al. [23] and Beyer et
al. [24]. Other methods for storing sparse data are
the compressed row storage (CRS) or compressed
sparse row (CSR) patterns [25]. Here, sparse
matrices are compressed by removing the entries
which contain zeros. Our approach adopts these
notions of sparse matrices and extends it to 3D by
relying on linked lists. Instead of storing all volume
data, we pre-classify the volume data with a given
transfer function and store only non-zero voxels.

Nießner et al. [26] used layered depth images
(LDIs) [27], a concept similar to the VoxLink
approach. Instead of using three orthographic
projections and linked lists of voxels, they used n

orthographic LDIs to store the scene’s geometric
data. Frey et al. [28] extended the LDI approach
to volumetric depth images generating proxy data
for displaying volume datasets. Bürger et al. [29]
proposed orthogonal frame buffers as an extension
to LDIs to allow surface operations like recoloring
or particle flow on rendered meshes. Reichl et
al. [30] used a hybrid of rasterization and ray tracing



VoxLink—Combining sparse volumetric data and geometry for efficient rendering 47

technologies to render meshes.

3 From pixel to voxel–per-voxel linked
lists

Rendering semi-transparent scenes in a single
rendering pass is possible when employing the
A-buffer approach [4]. The A-buffer is aligned with
the screen and each rendered fragment is stored in
a list at its respective pixel location on the screen.
To improve memory efficiency and account for local
variations in depth complexity, ppLLs [1] can be
used instead of pre-allocated memory blocks. After
all fragments have been gathered in lists, the lists
are sorted according to fragment depth. The final
image is obtained by blending the sorted fragments
based on their opacity. Since the A-buffer is created
for a particular camera setting, its contents have to
be updated when the view point is changed. The
A-buffer also reflects the camera projection. Thus,
the contents of the A-buffer describe only parts of
the scene.

In contrast, we use orthographic projections along
the three coordinate axes to capture the entire
scene in a view-independent manner. We extend
the 2D ppLL concept to per-voxel linked lists
which allows us to combine the results of the three
individual views in a single buffer—the VoxLink
buffer. This buffer stores the voxelized scene in a
memory-efficient way which can be reconstructed in
the subsequent rendering step. Since the VoxLink
buffer is not view-dependent, it is created in a pre-
processing step (Fig. 2) and has to be updated only
when the scene changes. By using three orthogonal
cameras we are able to rasterize the entire scene.
This is due to the fact that if an object is not visible
in one view, e.g., a plane parallel to the viewing
direction yields no fragments for that particular
direction, it will be visible in one of the other views.
Thus, the scene is fully rasterized and the final voxel
volume will include each rendered fragment. Please
note that the depth test is disabled to capture all
depth layers of the scene.

From a conceptual point of view, we define the
bounding volume with a given volume resolution to
enclose the scene via an axis-aligned bounding box.
One axis of the bounding volume is chosen to be
the predominant axis for storing our voxel linked
lists—without loss of generality let it be the z-axis.

Fig. 2 The pre-processing step for creating the sparse VoxLink
buffer. Geometry and implicit surfaces are voxelized for each of the
three coordinate axes whereas the per-voxel buffer is set up in one
pass for sparse volumes. The final rendering stage is identical.

We further refer to this as VoxLink space. Using
an orthographic camera along one of the major
coordinate axes, we can transform each rendered
fragment into VoxLink space by a simple coordinate
swizzle. The bounding volume itself is subdivided
into multiple bricks. For reasons of simplicity, the
brick resolution is set to 1× 1× 1 unless otherwise
noted. The voxels represent spatially extended pixels
which can either be filled or empty. Our VoxLink
approach only stores filled voxels by utilizing the
linked-list concept.

3.1 Algorithm

Our VoxLink algorithm consists of two stages:
pre-processing and rendering. During setup, the
necessary buffers are created and initialized. For
both geometric and volumetric data, a single
VoxLink buffer, i.e., one A-buffer based on per-voxel
linked lists, is sufficient.
3.1.1 Geometry
Geometric objects, i.e., mesh-based models, are
voxelized in three steps. First, we render an
orthographic projection of the scene for each of the
major coordinate axes. During the rendering of one
view, all fragments are transformed into a common
coordinate system, VoxLink space, to match the
predominant axis of the VoxLink buffer—the growth
direction of the buffer. Each fragment is inserted into
the respective per-voxel list. If a voxel entry does
not exist for that position, the entry is created and
added to the A-buffer, the fragment data, i.e., surface
normal and material ID, is stored, and a pointer links
the entry to the fragment data. In case the entry
already exists, the fragment data is appended to the
fragment list of the voxel.

After rendering the scene into the VoxLink buffer,



48 D. Kauker, M. Falk, G. Reina, et al.

the buffer contents have to be sorted. As in the ppLL
approach, each list is sorted according to depth along
the predominant axis independently.
3.1.2 Implicit geometry
Besides rasterized polygons, voxelization can also
process implicit object representations that are
typically used for ray casting, e.g., to visualize
particle datasets [31]. Parameters like sphere center
and radius are embedded into the bounding volume
and intersecting voxels are updated with a reference
to the respective object [2].
3.1.3 Volume data
Volume data can be transformed into a VoxLink
buffer. The volume is processed along the
predominant axis in slices that are one voxel
thick to keep the memory requirements down. On
the GPU, we perform a pre-classification of the
volume slice by applying the transfer function for
alpha-thresholding thereby discarding transparent
voxels. The remaining voxels are added to the
respective voxel lists. Since the volume is sliced
along the same axis we use for the VoxLink buffer,
a sorting step is not necessary. The scalar value
as well as the volume gradient is stored in the
fragment data of each voxel. The gradient of the
density volume is computed by means of central
differences. The transfer function can be changed
interactively by the user, affecting the data stored
in the VoxLink buffer during rendering. Only if
adjustments to the transfer function affect discarded
data, i.e., by assigning a non-zero opacity to
previously transparent voxels, is the VoxLink buffer
updated; the pre-classification is performed within
3–5 seconds.

In the last step of VoxLink buffer generation,
the brick states are updated. A brick is marked
as occupied if it contains at least one filled voxel.
Brick occupancy is used during the rendering stage
to support empty-space skipping. Note that the
VoxLink buffer holds only individual non-empty
bricks and information on empty space is encoded
indirectly.
3.1.4 Voxel ray tracing
The final rendering is obtained by voxel ray tracing
within the bounding volume. Initial rays starting
at the bounding volume are created for each pixel.
Figure 3 shows a scene containing a semi-transparent
bunny and exemplary primary rays (orange) and

VoxLink—Combining sparse volumetric data and geometry for efficient rendering 3

Voxel Ray Tracing 

Voxelization Setup 

Initialize 

buffers 
Render X 

Render Y 

Render Z 

Sort in Z 

direction 

Brick and volume 

buffer creation 

Initialize 

buffers 

Render 

Slice 
Upload 

Slice 

V
o

lu
m

e
 

G
e
o

m
e
tr

y
 &

 

im
p

lic
it
 s

u
rf

a
ce

s 

Fig. 2 The pre-processing step for creating the sparse VoxLink buffer.
Geometry and implicit surfaces are voxelized for each of the three coordinate
axes whereas the per-voxel buffer is set up in one pass for sparse volumes. The
final rendering stage is identical.

to per-voxel linked lists which allows us to combine the
results of the three individual views in a single buffer—
the VoxLink buffer. This buffer stores the voxelized scene
in a memory-efficient way which can be reconstructed in
the subsequent rendering step. Since the VoxLink buffer is
not view-dependent, it is created in a pre-processing step
(Fig. 2) and has to be updated only when the scene changes.
By using three orthogonal cameras we are able to rasterize
the entire scene. This is due to the fact that if an object is
not visible in one view, e.g. a plane parallel to the viewing
direction yields no fragments for that particular direction, it
will be visible in one of the other views. Thus, the scene is
fully rasterized and the final voxel volume will include each
rendered fragment. Please note that the depth test is disabled
to capture all depth layers of the scene.

From a conceptual point of view, we define the bounding
volume with a given volume resolution to enclose the scene
via an axis-aligned bounding box. One axis of the bounding
volume is chosen to be the predominant axis for storing our
voxel-linked lists—without loss of generality the z-axis. We
further refer to this as VoxLink space. Using an orthographic
camera along one of the major coordinate axes, we can
transform each rendered fragment into VoxLink space by
a simple coordinate swizzle. The bounding volume itself is
subdivided into multiple bricks. For reasons of simplicity,
the brick resolution is set to 1 × 1 × 1 unless otherwise
noted. The voxels represent spatially extended pixels which
can either be filled or empty. Our VoxLink approach only
stores filled voxels by utilizing the linked-list concept.

3.1 Algorithm

Our VoxLink algorithm consists of two stages: pre-
processing and rendering. During setup, the necessary
buffers are created and initialized. For both geometric and
volumetric data, a single VoxLink buffer, i.e. one A-buffer
based on per-voxel linked lists, is sufficient.

Bounding volume

Camera

Fast traversal

Shadow ray
Primary ray

Reflected ray

Slow traversal

Ray start / end
Ray intersection

Brick: empty

Light source

Geometry outline

occupied

Ray section type

Fig. 3 Schematic two-dimensional view of the bounding volume and the ray
tracing process of a translucent bunny on a mirroring surface. Rays (orange)
are traced from the camera through the voxelized geometry (dark blue outline)
including secondary shadow rays (light blue) and a reflection on the ground
surface. Dashed lines denote fast grid traversal in empty bricks.

3.1.1 Geometry
Geometric objects, i.e. mesh-based models, are voxelized

in three steps. First, we render an orthographic projection
of the scene for each of the major coordinate axes. During
the rendering of one view, all fragments are transformed
into a common coordinate system, VoxLink-space, to match
the predominant axis of the VoxLink buffer—the growth
direction of the buffer. Each fragment is inserted into the
respective per-voxel list. If a voxel entry does not exist for
that position, the entry is created and added to the A-buffer,
the fragment data, i.e. surface normal and material ID, is
stored, and a pointer links the entry to the fragment data. In
case the entry already exists, the fragment data is appended
to the fragment list of the voxel.

After rendering the scene into the VoxLink buffer, the
buffer contents have to be sorted. As in the ppLL approach,
each list is sorted according to depth along the predominant
axis independently.

3.1.2 Implicit Geometry
Besides rasterized polygons, voxelization can also

process implicit object representations that are typically
used for ray casting, e.g. to visualize particle datasets [31].
Parameters like sphere center and radius are embedded into
the bounding volume and intersecting voxels are updated
with a reference to the respective object [2].

3.1.3 Volume Data
Volume data can be transformed into a VoxLink

buffer. The volume is processed along the predominant
axis in slices that are one voxel thick to keep the
memory requirements down. On the GPU, we perform
a pre-classification of the volume slice by applying the
transfer function for alpha-thresholding thereby discarding
transparent voxels. The remaining voxels are added to the

Fig. 3 Schematic two-dimensional view of the bounding volume
and the ray tracing process of a translucent bunny on a mirroring
surface. Rays (orange) are traced from the camera through the
voxelized geometry (dark blue outline) including secondary shadow
rays (light blue) and a reflection on the ground surface. Dashed lines
denote fast grid traversal in empty bricks.

secondary rays (teal). A lookup in the brick volume
determines whether the local area is completely
empty (white cells) or whether there is a populated
voxel (blue cells). In the first case, the ray can
fast-forward to the next brick (indicated by dashed
lines). Otherwise, each voxel within this brick has
to be traversed to compute its contribution. The
contribution of a voxel, i.e., its color, is obtained by
applying the transfer function to volumetric data and
evaluating the illumination model using material IDs
and normals for meshes and implicit geometry.

Rays are traversed by projecting the direction
vector onto the voxel boundary, thereby entering
the next voxel. Similarly, empty-space skipping
is performed by projecting the direction vector
onto the next non-empty brick. Within a brick we
employ a generic ray–voxel traversal with a slight
modification. Finding the next voxel along the
principal direction of the VoxLink space is straight
forward, i.e., the next list element. To find a voxel
in a neighboring list, we first identify the respective
list and traverse it from its beginning until we arrive
at the correct depth. If no stored information is
available at this position, the voxel is empty and
we can proceed with the next. Otherwise, the color
value is computed for contributing fragments using
the stored normal. The color value is then blended
with the respective screen pixel utilizing front-to-
back blending. Secondary rays can be generated and
traversed as well to achieve shadowing, reflection, or
refraction. Early-ray termination is carried out once
a ray leaves the bounding volume or the accumulated
opacity exceeds a threshold.



VoxLink—Combining sparse volumetric data and geometry for efficient rendering 49

4 Implementation details

We utilize the OpenGL rendering pipeline and GLSL
shaders for voxelization and subsequent ray tracing.
The data layout of the lists is adjusted to benefit
from cache coherency during ray tracing.

4.1 Data structures

Our proposed data structure is depicted in Fig. 4.
The top part shows the bricking of the physical
space and the linked voxels. In the bottom part,
the data structures and buffers are shown; these are
stored in GPU memory. All links are realized as
indices into particular buffers, i.e., pointers referring
to the respective linked lists. The global header, a 2D
buffer, covers the front face of the bounding volume,
which is perpendicular to the predominant axis.
The voxels are stored in the voxel buffer as linked
lists and each element consists of a fragment index,
the fragment depth transformed to the predominant
axis, and a pointer to the next element.

The fragment index refers to the fragment buffer,
which holds material IDs and normals used for
deferred shading. The material ID is used for lookup
in the material buffer holding all materials. Both
mesh normals and volume gradients are stored in
16 bit polar coordinates.

To support empty-space skipping, we subdivide
the bounding volume of the scene into multiple bricks
of size n. Each brick has a unique brick header
representing n2 entry indices. The combined brick
headers of the first layer represent exactly the same

Fig. 4 Data structure and auxiliary buffers of two bricks, each
holding 4 × 4 voxels. The brick header points to the first non-empty
voxel in that respective row. Filled voxels only contain data needed
for ray traversal and are linked as in the ppLL approach.

information as the global header. Thus, the global
header can be discarded during rendering.

5 Rendering

After the VoxLink buffer has been created by
either voxelizing geometric objects or embedding
sparse volume data, the final image is obtained by
ray tracing. In the following, we point out some
data-dependent peculiarities.

5.1 Sparse volume rendering

Depending on the volume data and the associated
transfer function, typically only a low percentage of
voxels is of interest (see Table 3). All other density
values can be omitted since their content is invisible,
e.g., surrounding air.

The rendering of the sparse volume data itself
maps well to the proposed rendering algorithm. The
main difference is, however, that changes of the
transfer function are somewhat limited. Since we
rely on a pre-segmentation, the transfer function
can only be adjusted interactively for all densities
occurring in the sparse volume. Voxels which were
discarded during voxelization cannot be made visible
without a re-computation of the sparse volume.

5.2 Global effects rendering for geometry

With the availability of an in-memory representation
of the whole scene additional global effects are
feasible. Adding support for secondary rays enables
shadows, refraction, and reflection. We extend the
algorithm described in Section 3.1 by performing
the ray traversal in a loop (see Fig. 2, dashed line)
and adding an additional ray buffer for dynamically
managing rays generated during the rendering phase.
Besides ray origin and direction, the ray buffer holds
the accumulated opacity and the pixel position of
the primary ray from the camera. The explicitly
stored pixel position allows us to process primary
and secondary rays independently of the final pixel
position while contributing to the correct pixel. To
account for correct blending the accumulated opacity
is propagated as well.
5.2.1 Opacity transport
Figure 5 depicts an opacity-value transportation
scenario where voxel A is refractive as well as
reflective. The refraction ray hits voxel B and
the reflection ray hits C. The standard color



50 D. Kauker, M. Falk, G. Reina, et al.

Fig. 5 Correct color blending for split rays. The ray is split in
voxel A and directly traversed to voxel B while the ray going to voxel
C is stored for the next iteration.

blending equation for front-to-back compositing is
not applicable since rays can split. However, if we
split the contribution of the rays and propagate the
alpha value with them, the equation can be rewritten
yielding the correct color as
C = (1− α0)αACA + CB(1− αAB) + CC(1− αAC)
where

αAB = 1− (1− βA)(1− α′A)
αAC = 1− βA(1− α′A)
α′A = α0 + (1− α0)αA = 0.5

and βA denotes the reflection coefficient of A. This
principle is applied at each ray split by propagating
the new opacity, and hence yields proper compositing
of the final image.
5.2.2 Ray traversal
The ray traversal step of the algorithm is adjusted
for the iterative ray storage to take care of potential
ray splits, depending on the material. Storing the
rays causes memory writes using atomic counter
operations and after each pass the CPU starts the
next ray batch with the respective number of shaders
derived from the atomic counter holding the number
of active rays. If the material at the intersection
point has either a reflective component or a refractive
component, but not both, the current ray direction
is adjusted accordingly and no split occurs. In the
case of reflection and refraction, one ray is continued
directly and the other is stored in the ray buffer for
the next iteration. Whenever a ray hits a fragment,
a new shadow ray is created which targets a light
source.

To keep the shader executions from diverging too
much, a ray is only iterated for a fixed number of
steps n. After all rays have either finished or reached
their iteration count in the current pass, only active
and newly created rays are traced in the subsequent
ray traversal-pass during the current frame.

6 Results and discussion

A performance evaluation was carried out on an Intel
Xeon E5-2637 machine with 128 GB of RAM and an
NVIDIA Quadro K6000 graphics card. A viewport
of size 1000 × 1000 was used for all measurements.
The frame rates were determined by averaging the
frame rates of a 360◦ rotation around the y-axis
followed by a 360◦ rotation around the x-axis. With
these two rotations the entire scene is covered. Since
the per-voxel linked lists are generated along the
z-axis, a rotation around this axis will have only
minor effects on performance due to rather similar
bounding volume traversals for this direction.

Figure 6 depicts the three scenes used in the
evaluation. The dragon model features a non-
reflective, non-refractive material. The window panes
in the house scene are refractive. The bunny scene
contains a refractive Stanford bunny and a reflective
implicit sphere. Performance was measured for a
plain rendering of the voxelized dragon and with
global effects enabled for all scenes (denoted by ray
tracing). Results are shown in Table 1. Please
note that measurements in Table 1 include only
the rendering; the one-time costs of voxelization are
omitted. Information on voxelization can be found
in Section 6.1. For all scenes, rendering is possible
at high interactive frame rates.

To investigate the influence the view direction has
on voxel traversal, we set up a scene containing a
single sphere. Again, the frame rate was recorded
while the scene was rotated around the y-axis and
the x-axis. The results for different bounding volume
resolutions as well as varying brick sizes are shown
in Fig. 7. Since the sphere always has the same
appearance for every view direction, we can conclude
that the variations are due to voxel lookup. The
evaluation shows that while a brick size of 8 works
best for bounding volumes of size 256 and 512, for a
volume resolution of 1024, a brick size of 16 yields the
best performance. All lines share the same features
with slight variations. At y rotations of 90◦ and
270◦ for example, the spikes indicate the highest
performance is achieved for that particular view of
the scene, as this allows for the most performance-
friendly traversal of the per-voxel linked lists.



VoxLink—Combining sparse volumetric data and geometry for efficient rendering 51
6 D. Kauker et al.

Fig. 6 Dragon, house, and bunny scenes as used in the evaluation. Performance measurements are shown in Tab. 1.

Tab. 1 Results of the performance measurements for our test scenes. Columns denote the resolution of the bounding volume with brick size in brackets, number of
non-empty voxels, percentage of non-empty bricks, memory footprint, and frame rate.

Scene Render Mode Resolution # Voxel (103) non-empty Bricks Memory [MiB] FPS

Dragon plain 256, [8] 81.6 5.0 % 9.4 307.8
512, [8] 326.2 2.6 % 70.0 134.5

1024, [16] 1303.2 2.6 % 277.0 87.3

Dragon ray tracing 256, [8] 81.6 5.0 % 9.4 47.6
512, [8] 326.2 2.6 % 70.0 39.6

1024, [16] 1303.2 2.6 % 277.0 33.0

House ray tracing 256, [8] 560.0 18.8 % 16.7 45.2
512, [8] 2319.3 12.2 % 100.0 38.8

1024, [16] 9444.9 12.2 % 401.0 31.1

Bunny ray tracing 256, [8] 139.2 6.9 % 10.2 37.3
512, [8] 557.3 3.6 % 73.5 26.4

1024, [16] 2233.8 3.6 % 291.0 20.8

minor effects on performance due to rather similar bounding
volume traversals for this direction.

Fig. 6 depicts the three scenes used in the evaluation.
The dragon model features a non-reflective, non-refractive
material. The window panes in the house scene are
refractive. The bunny scene contains a refractive Stanford
bunny and a reflective implicit sphere. Performance was
measured for a plain rendering of the voxelized dragon and
with global effects enabled for all scenes (denoted by ray
tracing). Results are shown in Tab. 1. Please note that
measurements in Tab. 1 include only the rendering; the
one-time costs of voxelization are omitted. Information on
voxelization can be found in Section 6.1. For all scenes,
rendering is possible at high, interactive, frame rates.

To investigate the influence the view direction has on
voxel traversal, we set up a scene containing a single sphere.
Again, the frame rate was recorded while the scene was
rotated around the y-axis and the x-axis. The results for

Y rotation X rotation 

0 FPS

50 FPS

100 FPS

150 FPS

200 FPS

250 FPS

300 FPS

0° 90° 180° 270° 360°
/ 0°

90° 180° 270° 360°

256 [4]

256 [8]

256 [16]

512 [4]

512 [8]

512 [16]

1024 [4]

1024 [8]

1024 [16]

Fig. 7 Ray-casted sphere rotated around the y-axis and x-axis for 360◦ at
different bounding volume resolutions and brick sizes (denoted in brackets).

6

Fig. 6 Dragon, house, and bunny scenes as used in the evaluation. Performance measurements are shown in Table 1.

Table 1 Results of the performance measurements for our test scenes. Columns denote the resolution of the bounding volume with brick
size in brackets, number of non-empty voxels, percentage of non-empty bricks, memory footprint, and frame rate (frames per second, FPS)

Scene Render mode Resolution Number of voxels (103) Non-empty bricks (%) Memory (MB) FPS

256 [8] 81.6 5.0 9.4 307.8
Dragon Plain 512 [8] 326.2 2.6 70.0 134.5

1024 [16] 1303.2 2.6 277.0 87.3

256 [8] 81.6 5.0 9.4 47.6
Dragon Ray tracing 512 [8] 326.2 2.6 70.0 39.6

1024 [16] 1303.2 2.6 277.0 33.0

256 [8] 560.0 18.8 16.7 45.2
House Ray tracing 512 [8] 2319.3 12.2 100.0 38.8

1024 [16] 9444.9 12.2 401.0 31.1

256 [8] 139.2 6.9 10.2 37.3
Bunny Ray tracing 512 [8] 557.3 3.6 73.5 26.4

1024 [16] 2233.8 3.6 291.0 20.8

Fig. 7 Ray-casted sphere rotated around the y-axis and x-axis
for 360◦ at different bounding volume resolutions and brick sizes
(denoted in brackets).

6.1 Voxelization

As mentioned before, the voxelization of static
scenes has to be done only once in the beginning.
If we consider, however, dynamic scenes, the
per-voxel linked lists have to be recomputed all

the time. Table 2 shows the combined results
of voxelization and rendering for our three test
scenes when voxelization is performed every frame.
This demonstrates that our approach is capable of
voxelizing and rendering a scene at interactive frame
rates except in the cases which combine high volume
resolutions with global effects.

While the approach performs well for the dragon,
even for large sizes, the performance for the house
and bunny scenes drops dramatically. This is due to

Table 2 Voxelization combined with rendering for different volume
resolutions and brick sizes. Measurements given in FPS

Resolution 256 512 1024
Brick size 4 8 16 4 8 16 4 8 16
Dragon 132.1 157.1 159.1 62.1 76.5 81.1 21.4 28.4 31.0
House 29.4 29.6 29.5 6.1 6.2 6.3 1.4 1.4 1.4
Bunny 20.5 21.0 20.7 4.8 4.9 4.9 1.2 1.2 1.2



52 D. Kauker, M. Falk, G. Reina, et al.

the high depth complexity of the scenes, particularly
in the xz-plane, and the related costs for voxelization
caused by axis-aligned floors and walls. In all cases,
similar frame rates were obtained for brick sizes of
8 and 16. Although this seems contradictory to our
findings in Fig. 7 at first, the explanation is rather
straightforward. The rendering process does not
have too big an impact on the overall performance of
one frame and the benefits of using the optimal brick
size for rendering are canceled out by the additional
costs of voxelization.

6.2 Sparse volumes

To illustrate the applicability of our approach in
combination with volume rendering, we chose two
large-scale CT datasets of animals and two large
datasets from the field of geostatistics. In Fig. 8,
the volume rendering results are shown for these
datasets. The datasets are not inherently sparse
by themselves, but they all contain large regions
which are not of particular interest. For the CT
scans of the animals (Figs. 8(b) and 8(c)) this
applies to the air surrounding the specimen. Other
volume densities representing, e.g., tissue and bone
structures are conserved and separated by applying
a simple transfer function. The resolution of the
animal datasets is 10243 at 8 bits per data point.

The geostatistics data comprises a volume

dataset which represents scattered measuring
points interpreted into a volume dataset through a
geostatistical method called Kriging [32]. It is in
a data-sparse format through low-rank Kronecker
representations [33]. A domain size of 10243 and
double precision were used in the simulation for
computing the Kronecker volumes. We converted
the data to 32 bit floating point values before
voxelization and uploading into GPU memory to
match our data structures. Despite the conversion
no significant loss in the dynamic range could be
detected when compared with the original results.
Although the entire domain of the dataset actually
contains data, domain experts are only interested
in the data outside the 95 % confidence interval
of the standard deviation N (µ = 0, σ2 = 1). This
turns the volume datasets into sparsely occupied
volumes. Figure 8(a) shows the data outside the
confidence interval thereby illustrating the sparsity
of the data itself. The depiction in Fig. 1 (top left),
in contrast, shows the rendering of one Kronecker
dataset with low opacities, generating a fluffy
surface.

The generation of the per-voxel linked list is
carried out on the GPU for all volume datasets as
described in Section 3.1. The computation is non-
interactive but takes only 2.6 s for a 10243 volume
dataset. Table 3 shows the results of the volume

Fig. 8 Datasets used in the evaluation of sparse volume rendering and their respective transfer functions.

Table 3 Results for the volume datasets regarding memory usage and rendering performance. The columns denote the resolution of the
bounding volume with brick size in brackets, percentage of non-empty voxels, percentage of non-empty bricks, total amount of memory, number
of voxels stored per byte, and the frame rate

Volume Resolution Non-empty Non-empty Memory Voxel FPS
voxels (%) bricks (%) (MB) per byte

Kronecker 512 [8] 34.7 39.7 738.0 16.6 11.6
1024 [8] 34.6 37.1 5874.3 16.6 1.9

Kingfisher 1024 [8] 0.5 2.3 107.6 19.6 35.4
[16] 3.5 97.9 17.8 21.0

Mouse 1024 [8] 1.7 6.2 322.3 18.2 15.9
[16] 7.5 302.8 17.1 8.4



VoxLink—Combining sparse volumetric data and geometry for efficient rendering 53

benchmarks. The interesting parts in the Kronecker
dataset still occupy a large part, 34%, of the volume,
resulting in a comparatively large memory footprint.
The volume occupancies for the CT scans are in a
range of 0.5% to 1.8%, excluding air surrounding
the specimen (60% to 80%) and some of the internal
tissue while keeping the main features visible. Our
approach delivers interactive frame rates for most of
the test cases. Naturally, higher numbers of voxels
result in lower average frame rates. This also directly
impacts the memory footprint but still delivers low
memory footprints compared to the original dataset.

6.3 Global effects rendering

In Table 1, rendering performance is shown for scenes
with global effects enabled. Since the inclusion of
refraction and reflection requires an additional ray
buffer, the frame rate for the dragon scene drops to a
mere 15% and 35% for bounding volume resolutions
of 256 and 1024, respectively. At higher volume
resolutions the actual costs of ray traversal outweigh
the impact of the ray buffer.

With shadow rays enabled, the performance drops
to about a third due to the increase in the number
of rays as well as storing the shadow rays in the
additional ray buffer. We also tested different upper
limits n of ray steps per rendering iteration without
noticing a significant difference in performance
between 256, 512, and 1024 steps.

6.4 Distinction of existing systems

As stated in the related work in Section 2,
other systems with similar capabilities have been
presented before. Table 4 compares recent work
in this area to VoxLink. In contrast to the other
systems, VoxLink natively supports volumes and
surface representations. Each system uses a different
memory scheme to store the depth images or
voxels. Here, we use the ppLL concept and extend

it to voxels in a double layered scheme for fast
empty space clipping. The octree and directed
acyclic graphs used in GigaVoxels [13] and voxel
DAGs [14] could be a subject for future work to
incorporate in our scheme for further speed up.
In contrast to the rasterization-based mechanism
of VoxLink, GigaVoxels uses a direct voxelization
scheme and voxel DAGs is built from sparse voxel
octrees, created from depth peeling. Apart from
VDI [28] which uses proxy geometry for rendering, all
schemes use some sort of ray casting or ray tracing.
The methods based on the orthogonal fragment
buffer [29, 30] also create the OFBs by rasterization
and can display them via ray tracing, but can render
mesh-based models only.

6.5 Limitations

In its current state, our implementation has several
shortcomings which are partly due to the inherent
nature of voxels and partly due to unoptimized code.
For voxelization, the biggest performance issue is
the slow speed for updates in every frame for some
scenes (see Table 2). This, however, could partly
be overcome by inserting the fragments immediately
into distinct bricks instead of the global buffer. Thus,
only fragments in the individual bricks have to be
sorted which should improve overall performance. In
principle, our approach could be easily extended to
handle explicit triangle meshes instead of voxelized
geometry by referencing the triangle vertices per
voxel but this would result in a larger memory
footprint.

Another limitation is that reflection, refraction,
and shadow generation for geometry relies on the
voxel representation. Thus, VoxLink cannot keep
up with other ray-tracing programs, e.g., NVIDIA
OptiX, either in terms of computation time or in
terms of image quality.

Table 4 Comparison of our VoxLink approach and similar works in terms of renderable data, storage, and rendering technique

Approach Volumes Meshes Data storage Rendering technique

VoxLink (ours) Yes Yes Two layers of voxel lists Ray tracing
LDI [26] — Yes Layered depth images Ray tracing
VDI [28] Yes — Volumetric depth images Proxy geometry
GigaVoxels [13] — Yes Octree Ray casting
Voxel DAGs [14] — Yes Directed acyclic graphs Ray tracing
Sample-based coloring [29] — Yes Orthogonal fragment buffer Ray casting
Hybrid surface rendering [30] — Yes Grid and indirection buffers Rasterization / ray tracing hybrid



54 D. Kauker, M. Falk, G. Reina, et al.

7 Future work

For future research, we want to optimize ray traversal
further by employing adaptive space subdivision
methods like Octrees, BSP trees, or kd-trees instead
of uniform bricks. This might also lead to a reduced
memory footprint, thus making the approach more
suitable for even larger volumes. Additionally, the
implementation of proper level-of-detail mechanisms
could improve the performance for large proxy
geometries. By achieving a higher performance
in the rendering phase, the number of secondary
rays can be increased and, thus, enable effects like
caustics, sub-surface scattering, or diffuse mirroring.
The memory footprint could be reduced further by
using a tighter bounding box scheme which is aligned
and fitted to the sparse data, eliminating empty
space within the bricks.

In their work, Kauker et al. [7] used per-pixel
linked lists for distributed and remote rendering.
As our approach uses similar data structures, it
might be possible to also extend it to make use of
multiple distributed rendering engines. As in their
approach where they compared different instances
of a molecule, our approach could be used for a
comparison of different volumes.

8 Conclusions

In this paper, we presented VoxLink, an approach
to use per-voxel linked lists for rendering sparse
volume data as well as voxelization and rendering
of geometry, including reflection and refraction, at
interactive frame rates. Our method adapts the
ppLL approach and extends it to store the entire
scene in three dimensions.

Experimental results show that VoxLink reduces
the memory footprint of sparse volume data while
still providing interactive performance. VoxLink, to
our knowledge, is the only approach that can handle
arbitrary representations using voxelization.

Acknowledgements

The environment maps used are the work of
Emil Persson and are licensed under the Creative
Commons Attribution 3.0 Unported License.
This work is partially funded by Deutsche
Forschungsgemeinschaft (DFG) as part of SFB
716 project D.3, the Excellence Center at Linköping

and Lund in Information Technology (ELLIIT), and
the Swedish e-Science Research Centre (SeRC).

References

[1] Yang, J. C.; Hensley, J.; Grün, H.; Thibieroz, N. Real-
time concurrent linked list construction on the GPU.
Computer Graphics Forum Vol. 29, No. 4, 1297–1304,
2010.

[2] Falk, M.; Krone, M.; Ertl, T. Atomistic visualization
of mesoscopic whole-cell simulations using ray-casted
instancing. Computer Graphics Forum Vol. 32, No. 8,
195–206, 2013.

[3] Everitt, C. Interactive order-independent
transparency. Technical Report. NVIDIA Corporation,
2001

[4] Carpenter, L. The A-buffer, an antialiased hidden
surface method. In: Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive
Techniques, 103–108, 1984.

[5] Lindholm, S.; Falk, M.; Sundén, E.; Bock, A.;
Ynnerman, A.; Ropinski, T. Hybrid data visualization
based on depth complexity histogram analysis.
Computer Graphics Forum Vol. 34, No. 1, 74–85, 2014.

[6] Kauker, D.; Krone, M.; Panagiotidis, A.; Reina, G.;
Ertl, T. Rendering molecular surfaces using order-
independent transparency. In: Proceedings of the 13th
Eurographics Symposium on Parallel Graphics and
Visualization, 33–40, 2013.

[7] Kauker, D.; Krone, M.; Panagiotidis, A.; Reina,
G.; Ertl, T. Evaluation of per-pixel linked lists
for distributed rendering and comparative analysis.
Computing and Visualization in Science Vol. 15, No.
3, 111–121, 2012.

[8] Kaufman, A.; Shimony, E. 3D scan-conversion
algorithms for voxel-based graphics. In: Proceedings
of the 1986 Workshop on Interactive 3D Graphics, 45–
75, 1987.

[9] Yagel, R.; Cohen, D.; Kaufman, A. Discrete ray
tracing. IEEE Computer Graphics and Applications
Vol. 12, No. 5, 19–28, 1992.

[10] Karabassi, E.-A.; Papaioannou, G.; Theoharis, T.
A fast depth-buffer-based voxelization algorithm.
Journal of Graphics Tools Vol. 4, No. 4, 5–10, 1999.

[11] Liao, D.; Fang, S. Fast CSG voxelization by frame
buffer pixel mapping. In: Proceedings of IEEE
Symposium on Volume Visualization, 43–48, 2000.

[12] Eisemann, E.; Décoret, X. Single-pass GPU solid
voxelization for real-time applications. In: Proceedings
of Graphics Interface, 73–80, 2008.

[13] Crassin, C. GigaVoxels: A voxel-based rendering
pipeline for efficient exploration of large and detailed
scenes. Ph.D. Thesis. Universite de Grenoble, 2011.

[14] Kämpe, V.; Sintorn, E.; Assarsson, U. High resolution
sparse voxel DAGs. ACM Transactions on Graphics
Vol. 32, No. 4, Article No. 101, 2013.



VoxLink—Combining sparse volumetric data and geometry for efficient rendering 55

[15] Drebin, R. A.; Carpenter, L.; Hanrahan, P. Volume
rendering. In: Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive
Techniques, 65–74, 1988.

[16] Levoy, M. Display of surfaces from volume data. IEEE
Computer Graphics and Applications Vol. 8, No. 3, 29–
37, 1988.

[17] Sabella, P. A rendering algorithm for visualizing 3D
scalar fields. In: Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive
Techniques, 51–58, 1988.

[18] Stegmaier, S.; Strengert, M.; Klein, T.; Ertl, T. A
simple and flexible volume rendering framework for
graphics-hardware-based raycasting. In: Proceedings
of the 4th Eurographics/IEEE VGTC Conference on
Volume Graphics, 187–195, 2005.

[19] Museth, K. VDB: High-resolution sparse volumes with
dynamic topology. ACM Transactions on Graphics
Vol. 32, No. 3, Article No. 27, 2013.

[20] Teitzel, C.; Hopf, M.; Grosso, R.; Ertl, T.
Volume visualization on sparse grids. Computing and
Visualization in Science Vol. 2, No. 1, 47–59, 1999.

[21] Kähler, R.; Simon, M.; Hege, H.-C. Interactive volume
rendering of large sparse datasets using adaptive
mesh refinement hierarchies. IEEE Transactions on
Visualization and Computer Graphics Vol. 9, No. 3,
341–351, 2003.

[22] Gobbetti, E.; Marton, F.; Guitián, J. A. I. A single-
pass GPU ray casting framework for interactive out-
of-core rendering of massive volumetric datasets. The
Visual Computer Vol. 24, No. 7, 797–806, 2008.

[23] Rodŕıguez, M. B.; Gobbetti, E.; Guitián, J. A.
I.; Makhinya, M.; Marton, F.; Pajarola, R.; Suter, S.
K. State-of-the-art in compressed GPU-based direct
volume rendering. Computer Graphics Forum Vol. 33,
No. 6, 77–100, 2014.

[24] Beyer, J.; Hadwiger, M.; Pfister, H. A survey
of GPU-based large-scale volume visualization.
In: Proceedings of Eurographics Conference on
Visualization, 2014. Available at http://vcg.seas.
harvard.edu/files/pfister/files/paper107 camera ready.
pdf?m=1397512314.

[25] Koza, Z.; Matyka, M.; Szkoda, S.; Miroslaw,
L. Compressed multirow storage format for sparse
matrices on graphics processing units. SIAM Journal
on Scientific Computing Vol. 36, No. 2, C219–C239,
2014.

[26] Nießner, M.; Schäfer, H.; Stamminger, M. Fast indirect
illumination using layered depth images. The Visual
Computer Vol. 26, No. 6, 679–686, 2010.

[27] Shade, J.; Gortler, S.; He, L.-w.; Szeliski, R. Layered
depth images. In: Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive
Techniques, 231–242, 1998.

[28] Frey, S.; Sadlo, F.; Ertl, T. Explorable volumetric
depth images from raycasting. In: Proceedings of the
26th Conference on Graphics, Patterns and Images,
123–130, 2013.

[29] Bürger, K.; Krüger, J.; Westermann, R. Sample-based
surface coloring. IEEE Transactions on Visualization
and Computer Graphics Vol. 16, No. 5, 763–776, 2010.

[30] Reichl, F.; Chajdas, M. G.; Bürger, K.; Westermann,
R. Hybrid sample-based surface rendering. In:
Proceedings of Vision, Modelling and Visualization,
47–54, 2012.

[31] Reina, G. Visualization of uncorrelated point
data. Ph.D. Thesis. Visualization Research Center,
University of Stuttgart, 2008.

[32] Kitanidis, P. K. Introduction to Geostatistics:
Applications in Hydrogeology. Cambridge University
Press, 1997.

[33] Nowak, W.; Litvinenko, A. Kriging and spatial design
accelerated by orders of magnitude: Combining low-
rank covariance approximations with FFT-techniques.
Mathematical Geosciences Vol. 45, No. 4, 411–435,
2013.

Daniel Kauker received his Ph.D.
degree (Dr. rer. nat.) from the University
of Stuttgart in 2015. His research
interests are distributed computation
and visualization, generic rendering
approaches, and GPU-based methods.

Martin Falk is a postdoctoral
researcher in the Immersive
Visualization Group at Linköping
University. He received his Ph.D. degree
(Dr. rer. nat.) from the University of
Stuttgart in 2013. His research interests
are volume rendering, visualizations
in the context of systems biology,

large spatio-temporal data, glyph-based rendering, and
GPU-based simulations.

Guido Reina is a postdoctoral
researcher at the Visualization Research
Center of the University of Stuttgart
(VISUS). He received his Ph.D. degree
in computer science (Dr. rer. nat.) in
2008 from the University of Stuttgart,
Germany. His research interests include
large displays, particle-based rendering,

and GPU-based methods in general.

Anders Ynnerman received his Ph.D.
degree in physics from Gothenburg
University in 1992. Since 1999 he has
held a chair in scientific visualization at
Linköping University and is the director
of the Norrköping Visualization Center–
C. He is a member of the Swedish Royal
Academy of Engineering Sciences and a



56 D. Kauker, M. Falk, G. Reina, et al.

board member of the Foundation for Strategic Research.
He currently chairs the Eurographics Association and is
an associate editor of IEEE TVCG. His research interests
include large-scale datasets in visualization and computer
graphics, direct volume rendering including data reduction
and volumetric lighting techniques, besides immersive
visualization techniques.

Thomas Ertl is a full professor of
computer science at the University of
Stuttgart, Germany, and the head of the
Visualization and Interactive Systems
Institute (VIS) and the Visualization
Research Center (VISUS). He received
his M.S. degree in computer science from
the University of Colorado at Boulder

and Ph.D. degree in theoretical astrophysics from the
University of Tübingen. His research interests include
visualization, computer graphics, and human computer

interaction. He has served on and chaired numerous
committees and boards in the field.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


