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Abstract
This paper introduces an enhanced fuzzy k-nearest neighbor (FKNN) approach called the feature-weighted Minkowski

distance and local means-based fuzzy k-nearest neighbor (FWM-LMFKNN). This method improves classification accuracy

by incorporating feature weights, Minkowski distance, and class representative local mean vectors. The feature weighting

process is developed based on feature relevance and complementarity. We improve the distance calculations between

instances by utilizing feature information-based weighting and Minkowski distance, resulting in a more precise set of

nearest neighbors. Furthermore, the FWM-LMFKNN classifier considers the local structure of class subsets by using local

mean vectors instead of individual neighbors, which improves its classification performance. Empirical results using

twenty different real-world data sets demonstrate that the proposed method achieves statistically significantly higher

classification performance than traditional KNN, FKNN, and six other related state-of-the-art methods.
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1 Introduction

Fuzzy k-nearest neighbor (FKNN) (Keller et al. 1985), a

variation of the traditional k-nearest neighbor (KNN)

(Cover and Hart 1967) classifier, is considered a more

robust classifier than the traditional KNN (Derrac et al.

2015). In the traditional KNN classifier, each instance in

the data set is assigned a single class label based on the

majority class of its k nearest neighbors. By contrast, the

FKNN classifier assigns a degree of membership to each

instance in a specific class in the data set based the dis-

tances of its k nearest neighbors (Keller et al. 1985). These

membership degrees are used as weights in the classifica-

tion process, which makes the FKNN more robust to noise

at the class boundaries (Keller et al. 1985; Maillo et al.

2020). The FKNN classification is an active topic of recent

research and is being used in various applications (for

examples, see González et al. 2021; Kumar and Thakur

2021; Maillo et al. 2020). However, the classical FKNN

method has several limitations, such as sensitivity to the

choice of the membership function (Derrac et al. 2016),

number of nearest neighbors (k) (Derrac et al. 2015), and

difficulty in handling high-dimensional data (Maillo et al.

2020). To address these limitations, researchers, such as

Kassani et al. (2017) and Biswas et al. (2018), have pro-

posed several enhancements. Recently, Zeraatkar and

Afsari (2021) introduced two novel extensions of the

FKNN classifier by incorporating the concepts of interval-

valued fuzzy (IVF) sets, intuitionistic fuzzy (IF) sets, and

the resampling method known as SMOTE, with a focus on

addressing class imbalance classification problems. The

primary purpose of these new FKNN variants, SMOTE-

IVF and SMOTE-IVIF, was to enhance the classification

performance of instances in the minority class. Moreover,

González et al. (2021) proposed a novel fuzzy KNN

method, called MonFKNN, based on monotonic constraints

to enhance classification performance by addressing the

issue of class noise. Based on the concept of multiple

pseudo-metrics of fuzzy parameterized fuzzy soft matrices

(fpfs-matrices), Memis et al. (2022) introduced the fuzzy

parameterized fuzzy soft KNN (FPFS-kNN) classifier. This
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classifier takes into account the impact of model parame-

ters on classification. A distinctive feature of this method is

its use of five distance measures within the fpfs-matrices to

generate multiple k nearest neighbors. Additionally, Bian

et al. (2022) proposed a new FKNN approach, the fuzzy

KNN method with adaptive nearest neighbors (A-FKNN),

which focuses on determining a fixed k value for each test

data instance. The core idea of A-FKNN is to find the

optimal k value for each training instance during the

training phase and to build a decision tree, called the

A-FKNN tree. During the testing phase, A-FKNN identi-

fies the optimal k for each testing instance by searching

through the A-FKNN tree and then runs FKNN with the

optimal k for each testing instance. Regarding specific

application context, several enhancements for the FKNN

algorithm have also been proposed, for example, a boosted

particle swarm optimization with FKNN (bSRWPSO-

FKNN) classifier for predicting atopic dermatitis disease

(Li et al. 2023) and a Harris Hawks optimization and Sobol

sequence and stochastic fractal search based FKNN

(SSFSHHO-FKNN) model for diagnosis of Alzheimer’s

disease (Zhang et al. 2023).

Furthermore, Kumbure et al. (2019) particularly focused

on FKNN to address class imbalance problems. They

proposed a new variant of FKNN that employs class-rep-

resentative local means, which are locally representative of

their respective classes, to enhance classification accuracy.

This method was further improved in Kumbure et al.

(2020) by introducing a Bonferroni mean-based local mean

computation process that outperforms traditional FKNN

and other competitive classifiers. In the present study, we

focus on further improving the performance of the local

means-based FKNN method.

Our research aims to design and develop a local means-

based FKNN classifier that effectively addresses the noise

and uncertainty in the data, thereby yielding improved

performance. To achieve this goal, we employ a feature

weighting process based on fuzzy entropy (De Luca and

Termini 1971), similarity measures (Luukka 2011), and

feature selection concepts, such as relevance and comple-

mentarity (Ma and Ju 2022; Vergara and Estevez 2014; Yu

and Liu 2004), to assess feature importance. We also used

Minkowski distance to calculate distance between instan-

ces and employed class representative local mean vectors

from class subsets instead of individual nearest neighbors

to find class memberships.

In the context of feature selection, the theoretical con-

cepts of relevance and complementarity have been widely

employed as effective methods to identify optimal feature

subsets (Ma and Ju 2022). Feature relevance recognizes the

features that carry out valuable information regarding the

target variable (Vergara and Estevez 2014). By contrast,

feature complementarity highlights that combining two or

more features, even those that may be individually insuf-

ficient, can collectively provide meaningful information

about the class variable (Ma and Ju 2022; Vergara and

Estevez 2014). Thus, we focus on these theoretic feature

selection measures to generate weights for features across

the importance of each feature by estimating relevance and

complementarity information. This enables us to obtain

better weights for features, which can then be utilized, in

conjunction with distance calculation to identify more

suitable nearest neighbors for the new instance. Further-

more, entropy is used to measure the level of uncertainty in

the values of a feature (Luukka 2011; Vergara and Estevez

2014). This can be useful in cases where the data are

uncertain or noisy, as it can help identify features that are

more informative or relevant for classification. Therefore,

we specifically focus on fuzzy entropy and similarity-based

relevance and complementarity weighting methods to

improve the accuracy of the proposed classifier.

The Minkowski distance, a generalized distance mea-

sure, is characterized by a specific parameter (called order

parameter), making it more flexible and adaptable to var-

ious types of data distributions and feature spaces. There-

fore, by using the Minkowski distance with an appropriate

order parameter, can achieve better performance for near-

est neighbor search in such data sets, as it can handle

different types of data distributions more effectively.

Accordingly, the Minkowski distance is employed in

combination with fuzzy entropy and class prototypes to

develop and propose the feature-weighted Minkowski

distance-based local mean fuzzy k-nearest neighbor

(FWM-LMFKNN) method.

The flowchart in Fig. 1 outlines the steps of the proposed

FWM-LMFKNN method. The process consists of two

main phases. The first phase generates feature weights by

combining the effects of feature relevance and comple-

mentarity. The second phase performs the classification,

which includes the following steps: calculating the Min-

kowski distance between training instances (Xi) and the

query sample (y), finding the k nearest neighbors for each

class (j), calculating the class representative local mean

(Vj), determining the distance between local means and the

query sample, computing class memberships, and finally

classifying the query sample.

The main contributions of this paper can be summarized

as follows:

– Feature weights that are generated using a combined

effect of feature relevance and complementarity are

used to weight the distances between testing and

training instances in the learning process of the FKNN

algorithm.

– Minkowski distance is adopted for distance calculation

to identify the most reasonable nearest neighbors,

   73 Page 2 of 19 Granular Computing            (2024) 9:73 

123



thereby achieving better class representative local mean

vectors (i.e., class prototypes).

– The decision rule on classification is made by consid-

ering the membership values, which are calculated

using weighted Minkowski distances between the new

instance and class representative local mean vectors.

The effectiveness of the proposed FWM-LMFKNN clas-

sifier is examined using various real-life data sets in both

low- and high-dimensional spaces, covering binary- and

multi-class problems. In the empirical analysis, the pro-

posed method is compared with classical KNN (Cover and

Hart 1967) and FKNN (Keller et al. 1985) methods and six

more competitive methods, including LM-FKNN (Kum-

bure et al. 2019), LM-PNN (Gou et al. 2014), MLM-

KHNN (Pan et al. 2017), FPFS-kNN (Memis et al. 2022),

generalized mean distance-based KNN (GMD-KNN) (Gou

et al. 2019), and interval-valued k-nearest neighbor (IV-

KNN) (Derrac et al. 2015).

2 Preliminaries

This section briefly discusses the related KNN methods,

fuzzy entropy, similarity measure, (relevance- and com-

plementarity-based) feature weighting strategy, and the

Minkowski distance.

2.1 Related KNN methods

The KNN algorithm (Cover and Hart 1967) is simple and

effective, and it is based on the idea that an unseen data

instance can be classified by looking at its closest

‘‘neighbors‘‘ from the training data set. It starts by calcu-

lating the distance between the unknown instance and all

the instances in the training set. The distance can be

computed using various distance metrics, but the Euclidean

distance is the most commonly used (Derrac et al. 2015).

Once the distances are calculated, the k nearest neighbors

are selected based on their nearness to the unknown data

instance. Then, the class labels of the k nearest neighbors

are counted, and the class with the majority number of

votes is assigned to the unknown instance.

By contrast, the FKNN method (Keller et al. 1985) uses

fuzzy set theory (Zadeh 1965) to assign class membership

degrees to each data instance instead of crisp labels. The

basic idea of the FKNN is to assign a membership degree

to the unknown instance in each class based on the degree

of similarity to its k nearest neighbors and their member-

ships to each class. The membership degree of the

unknown instance (y) in each class (j) represented by its k

nearest neighbors is calculated as follows:

ujðyÞ ¼
Pk

i¼1 uijð1= y� xik k2=ðm�1ÞÞ
Pk

i¼1ð1= y� xik k2=ðm�1ÞÞ
ð1Þ

where xi is the ith neighboring instance in the training set,

and uij is the membership degree of ith neighboring

instance in the jth class. m[ 1 is the fuzzy strength

parameter. There are two approaches to calculating uij: the

crisp membership method and fuzzy membership

method—detailed information about these methods can be

found in Keller et al. (1985).

As previously noted, the KNN and FKNN methods are

both affected by the value of parameter k (Yang and Sinaga

2021), and are particularly susceptible to the effects of

outliers. To deal with these issues, particularly to the KNN

classifier, the idea of class representative local mean (LM)

vectors was first introduced by Mitania and Hamamotob

(2006). The resulting LM-KNN classifier (Mitania and

Hamamotob 2006) computes a local mean vector of nearest

neighbors from each class. The unknown instance is then

assigned to the class represented by the local mean vector

that is closest to it. The effectiveness of this method has led

to the development of several variants that aim to improve

performance by addressing not only the impact of outliers

Fig. 1 Flowchart of the proposed method
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but also the sensitivity to the neighborhood size k. The

local mean-based pseudo k-nearest neighbor (LM-PNN)

(Gou et al. 2014) and multi-local means-based k-harmonic

nearest neighbor (MLM-KHNN) (Pan et al. 2017) classi-

fiers are examples of variants that have demonstrated

improved classification performance. Based on the concept

of class prototypes, recent enhancements to the classical

FKNN method have been proposed, such as the multi-local

power means fuzzy k-nearest neighbor (MLPM-FKNN)

(Kumbure et al. 2019) and Bonferroni mean-based fuzzy k-

nearest neighbor (BM-FKNN) (Kumbure et al. 2020)

methods. These methods have been successful in achieving

appropriate local class prototypes by incorporating various

mean operators, such as generalized and Bonferroni means.

In this paper, our objective is to enhance the perfor-

mance of the local means-based FKNN method by incor-

porating the Minkowski distance measure, class prototypes,

and a feature weighting scheme.

2.2 Minkowski distance

Minkowski distance is a generalization of the Euclidean

distance and Manhattan distance. It is a measure of the

distance between two points in a metric space, which is

defined by a norm. The Minkowski distance between two

instances xi and xr in d-feature space is defined as:

dmink disðxi; xrÞ ¼
Xd

l¼1

jxli � xlrj
p

 !1=p

for p� 1 ð2Þ

where the parameter p is called the order of the Minkowski

distance. By using different values for p, we can define

several different distances; for example, when p ¼ 2, the

Minkowski distance is equivalent to the Euclidean dis-

tance, which is the most commonly used distance measure

for continuous features. Further, we can obtain the Man-

hattan distance by setting p ¼ 1 and harmonic distance

with p ¼ �1 as examples. Due to this special property of

Minkowski distance, it has been used in many applications,

such as Bergamasco and Nunes (2019) and Gueorguieva

et al. (2017). Additionally, the weighted Minkowski dis-

tances can be defined with feature weights wl for l ¼
1; . . .; d according to:

dwmink disðxi; xrÞ ¼
Xd

l¼1

wljxli � xlrj
p

 !1=p

for p� 1 ð3Þ

2.3 Fuzzy entropy

Entropy (H) is a concept used in information theory to

measure the uncertainty or randomness of a system or

feature (Vergara and Estevez 2014). Entropy, usually

discussed in a probability space (De Luca and Termini

1971), measures the amount of information required to

describe the outcome of a random feature. The higher the

entropy, the more uncertain or unpredictable the feature is.

Fuzzy entropy, first defined by De Luca and Termini

(1971), is an expanded version of classical entropy in the

fuzzy sets theory. It is a measure that quantifies the degree

of fuzziness of a fuzzy set (Al-sharhan et al. 2001). It is

defined based on the concept of Shannon entropy (Shannon

1948), which is a measure of randomness in a probability

distribution. However, fuzzy entropy differs from Shannon

entropy, as it deals with vagueness and ambiguity uncer-

tainties rather than probabilistic concepts (Al-sharhan et al.

2001). According to De Luca and Termini (1971) and

Luukka (2011), the fuzzy entropy (h) can be defined for a

given fuzzy set A defined over a universe U as:

hðAÞ ¼ �
Xn

i¼1

ðlAðxiÞlog lA þ ð1 � lAðxiÞÞlogð1 � lAðxiÞÞÞ

ð4Þ

where, lAðxiÞ represents the membership degree of an

element xi in the set A. The fuzzy entropy has been used to

find feature importance concerning the target variable in

the feature selection process (Luukka 2011; Lohrmann

et al. 2018). It has also been applied for classification

problems, especially to improve the KNN performance; for

example, see Morente-Molinera et al. (2017).

2.4 Similarity measure

In feature selection, a similarity measure quantifies the

degree of closeness or correlation between two features. It

helps assess how similar or related two features are to each

other. Łukasiewicz similarity (Łukasiewics 1970) is a

specific similarity measure based on the Łukasiewicz t-

norm, which is a triangular norm used in fuzzy set theory

(Zadeh 1965). For our study, the Łukasiewicz similarity is

utilized together with fuzzy entropy to find feature rele-

vance, and it can defined according to Luukka et al. (2001)

as follows:

Shx; yi ¼ ð1 � jxp � ypjÞ1=p ð5Þ

where x; y 2 ½0; 1�1 and x; y 2 Rd. This is chosen because it

satisfies monotonicity, symmetricity, and transitivity

properties (Luukka et al. 2001).

1 Note that since similarity degree s 2 ½0; 1�, it can be used with fuzzy

entropy measures even though it is initially defined for fuzzy sets.
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2.5 Mutual information

Mutual information is a well-known method for measuring

the amount of information one random feature provides

compared to another feature (Vergara and Estevez 2014).

This notion has been dominant and valuable in the context

of feature selection, where mutual information is measured

for each feature concerning the target variable. Features

with higher mutual information are considered more rele-

vant, as they contribute more information to predicting or

classifying the target variable. In Meyer et al. (2008) and

Vergara and Estevez (2014), for given X and Y two random

features, mutual information (I) is defined as follows:

IðX; YÞ ¼
HðXÞ � HðXnYÞ
HðYÞ � HðYnXÞ
HðXÞ þ HðYÞ � HðX; YÞ

8
><

>:
ð6Þ

where H(X) and H(Y) represent the entropy of features X

and Y, respectively. H(X, Y) denotes the joint entropy of X

and Y, while HðXnYÞ indicates the conditional entropy of X

given Y. HðYnXÞ is the conditional entropy of Y given

X. I(X; Y) measures the degree of correlation between

features X and Y or the amount of information X covers

about Y.

2.6 Feature relevance and complementarity

This subsection briefly discusses the concepts of relevance

and complementarity in the context of feature selection.

Before briefly describing these concepts, we first introduce

some basic notations and terminologies in Table 1.

The sets mentioned in Table 1 are related as follows:

X ¼ fi [ A [ :ffi;Ag, ; ¼ fi \ A \ :ffi;Ag.

2.6.1 Relevance

A feature is considered relevant if individually or together

with other features it provides information about class

variable C. There are many definitions of ‘‘relevance’’ in

the literature, but roughly, they can be divided into prob-

abilistic framework (Kohavi and John 1997) and mutual

information framework (Meyer et al. 2008). The

probabilistic framework defines three levels of relevance:

strongly relevant, weakly relevant, and irrelevant features.

Strongly relevant features give unique information about

C and cannot be replaced by other features. Weakly rele-

vant features also provide information about C, but other

features can replace them without losing information about

C. Irrelevant features do not give information on C, and

they can be removed without losing any vital information.

Similarly, a mutual information framework is defined into

these three categories as given in Eq. (6).

2.6.2 Complementarity

The notion of complementarity (also called information

synergy) signifies that the working of two features together

could carry more information than the sum of their indi-

vidual values to the target variable (Singha and Shenoy

2018). It is used to measure the degree of interaction

between an individual feature fi and feature subset A given

C (Vergara and Estevez 2014). This can be again mea-

sured, for example, by using mutual information

[Iðfi;AjCÞ]. One way to understand the complementarity

effect is the following: when information that A has about

C is greater when it interacts with feature fi compared to

when it does not interact, then complementarity informa-

tion is present.

Feature selection is a critical step in preparing data for

machine learning models. Most feature selection approa-

ches are usually based on notions of relevance, redun-

dancy, and complementarity (Sun et al. 2017; Singha and

Shenoy 2018). Redundancy occurs when multiple features

provide the same or similar information about the class

variable (Singha and Shenoy 2018). Redundant features are

often highly correlated with each other and do not offer

new or additional information to the model. Therefore, in a

typical feature selection task. redundant features are iden-

tified and removed. However, to create the feature

weighting criterion in the proposed method, we focus

solely on relevance and complementarity concepts and do

not consider the redundancy measure. This is because this

approach avoids the calculation of pairwise correlations

and interdependencies between features, reducing compu-

tational time. Especially in cases where the number of

features is very large, redundancy checks can be more

computationally expensive. Moreover, in some sense,

complementarity is closely related to redundancy (Sun

et al. 2017), and it is also known that complementarity

approach is efficient that redundancy approach (Singha and

Shenoy 2018). For these reasons, relevance and comple-

mentarity are considered in our study to have an efficient

and effective feature weighting strategy. In general, rele-

vant and complementary features maximize the mutual

information with the class variable, ensuring that the

Table 1 Basic notations and their meaning

Notation Meaning

A Current cubset of selected features

fi Feature to be added or deleted from the subset A

:fi All features in X except fi, :fi ¼ Xnfi
ffi;Ag Subset consisting from feature fi and subset A
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feature informativeness is observed reasonably well (Sin-

gha and Shenoy 2018).

3 The proposed FWM-LMFKNN classifier

This section introduces the feature-weighted Minkowski

distance-based local mean fuzzy k-nearest neighbor

(FWM-LMFKNN) method, which is based on the concepts

of feature weighting, Minkowski distance, and class rep-

resentative local mean vectors. The feature weighting

employs fuzzy entropy and similarity measures, incorpo-

rating relevance and complementarity notions. We begin

by defining the calculation of feature relevance and com-

plementarity and, subsequently, the weighting strategy for

the new classifier.

3.1 Feature weighting based on relevance
and complementarity

The calculation of relevance is based on fuzzy entropy and

similarity measures. Suppose a training data set fXi 2
Rd;xigni¼1 consisting n number of instances in d-dimen-

sional feature space [i.e., Xi ¼ ðx1
i ; x

2
i ; . . .; x

d
i Þ] and t dif-

ferent classes [i.e., x 2 ðC ¼ ðc1; c2; . . .; ctÞ)]. Given these,

relevance of features to class variable is calculated using

the following steps:

(1) Normalize feature data into unit interval, that is,

Xi ! ½0; 1�d

(2) Obtain ideal vectors2 vj 2 Rd for each class j from

the training set data using arithmetic mean.

vj ¼
1

nj

Xnj

i¼1

Xi

 !

; j ¼ 1; . . .; t ð7Þ

where nj denotes the number of instances belonging

to class j, that is, the mean calculation is restricted to

only those samples that belong to class j. Xi is an

instance belonging to jth class.

(3) Compute similarity measure S from each training

instance Xi ¼ ðx1
i ; x

2
i ; . . .; x

d
i Þ to corresponding ideal

vector vj ¼ ðv1
j ; v

2
j ; . . .; v

d
j Þ as follows:

Shxi; vji ¼
1

d

Xd

l¼1

ð1 � jðxliÞ
p � ðvljÞ

pj
�1=p ð8Þ

for xi; vj 2 ½0; 1�d. For the sake of simplicity, we use

p ¼ 1 in the proposed method. Notice that the matrix

½S�n�d�t needs to be reshaped by reducing the

dimensions as n� t and d.

(4) Compute relevance (denoted by f REL) by measuring

fuzzy entropy (h) for each feature l 2 ½1; d� using the

similarity values (Shxi; vji) from the previous step

and Eq. (4) as:

f REL ¼ hðlÞ ¼ �
Xn

i¼1

ðSllog Sl þ ð1 � SlÞlogð1 � SlÞÞ

ð9Þ

where Sl is the similarity for feature l of a sample Xi

with ideal vector vj of class j is summed over all

samples (i ¼ 1; . . .; n) and classes (j ¼ 1; . . .; t).

The calculation of complementarity (f COMP) is performed

for l ¼ 1; . . .; d using following steps:

(1) Compute intersection between lth feature and all the

other features by using algebraic product, that is,

xli \ xl
0

i ¼ xlix
l
0

i
ð10Þ

where l
0 ¼ 1; . . .; d and this way, the intersection

matrix T1 is formed.

(2) Add class variable C to the intersection matrix as

T2 ¼ fT1;Cg.

(3) Compute correlation3 between features, CorrðT2Þ.
(4) Subtract identity matrix I from the correlation matrix

and take absolute values from it, that is,

T3 ¼ jCorrðT2Þ � Ij.
(5) Find the maximum correlation, Hc ¼ maxðT3Þ
(6) Compute complementarity value (f COMP) using the

negation of correlation, such as f COMP ¼ 1 � Hc, and

collect the complementarity information in the

matrix.

In the proposed method, we generate feature weights

focusing on an aggregate effect of relevance and comple-

mentarity in the learning process. Both relevance and

complementarity have positive influence on feature

weights, in fact, their combined effect could offer a best

trade-off considering model’s performance and flexibility

with small data sets (Singha and Shenoy 2018). Moreover,

combining relevance with complementarity may identify

individually relevant features to the class variable and

provide unique information when considered simultane-

ously. This strategy can weigh features by considering

different characteristics of the class distribution and fea-

tures. This ensures the identification of more suit-

able nearest neighbors to the query instance based on

distance, ultimately enhancing the classification perfor-

mance of the method.

2 The ideal vectors represent the mean vectors of each class subset in

the training set. 3 For correlation, Kendall (1938) rank correlation is used.
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3.2 The FWM-LMFKNN algorithm

Based on the fundamental concepts of the previously dis-

cussed classifiers, the feature weighting strategy, Min-

kowski distance, and local means, we propose an extension

of the FKNN method: the FWM-LMFKNN classifier.

The proposed classification method utilizes a two-phase

approach: it calculates weights for each feature, and then it

employs nearest neighbor classification to an unknown

instance. In the first phase, a strategy incorporating the

concepts based on relevance and complementarity is uti-

lized to calculate the feature weights. The second phase

involves finding sets of k nearest neighbors for an unknown

instance (y) from each class based on the feature-weighted

Minkowski distances between y and each training instance,

followed by calculating local mean vectors for each set of k

nearest neighbors. Next, the Minkowski distance between y

and each local mean vector is calculated (feature weights

are also applied), and fuzzy memberships for each class

concerning y are computed. Finally, y is classified into the

class with the highest membership degree. A formal defi-

nition of the proposed FWM-LMFKNN algorithm can be

defined as follows. Suppose that we have a training data set

fxi;xigni¼1 that is composed of n number of instances in d-

dimensional feature space [i.e., xi ¼ ðx1
i ; x

2
i ; . . .; x

d
i Þ] and t

different classes [i.e., x 2 ðc ¼ ðc1; c2; . . .; ctÞ)]. In the

FWM-LMFKNN method, the class label x� for a given

unknown instance [y ¼ ðy1; y2; . . .; ydÞ] is achieved as

described below.

Phase 1:

Calculate of relevance and complementarity measures

using the notions presented in Sect. 3.1 and consider a

combined effect of those measures by summing them (i.e.,

f REL þ f COMP). It is well-known that higher entropy values

correspond to lower similarity and increased uncertainty in

the corresponding feature, while lower entropy values

indicate greater similarity and increased importance. This

is reflected in the relevance value, which is based on fuzzy

entropy and similarity. Therefore, the complementary

values of relevance are employed as feature weights (w).

This principle holds for complementarity as well.

Accordingly, for a given feature l, the weight (wl) can be

defined as:

wl ¼ 1 � ðf REL þ f COMPÞ
Pd

l¼1ðf REL þ f COMPÞ
ð11Þ

Phase 2:

(1) Compute the Minkowski distance, dmink disðy; xjÞ
between y and each training instance xi according to:

dmink disðy; xiÞ ¼
Xd

l¼1

wljyl � xlij
p

 !1=p

: ð12Þ

As shown in this computation, a feature weight wl,

which is computed in the previous phase, is allocated

to distance, which allows instances that are closer to

y to be given a higher weight (lower distance), while

instances that are farther away are given a lower

weight (higher distance). This can help to mitigate

the effects of noise and outliers in the training data.

(2) Find the set of k nearest neighbors, fxnnij g
k
i¼1 of

y from each class j based on the ordered distances

computed in the previous step. Here, nn stands for

‘‘nearest neighbor.’’

(3) Compute a local mean vector (z) using the set of k

nearest neighbors in each class j according to:

zj ¼
1

k

Xk

i¼1

xnnij ð13Þ

(4) Compute the Minkowski distances between y and

each local mean vector as:

dmink disðy; zjÞ ¼
Xd

l¼1

wljyl � zljj
p

 !1=p

ð14Þ

(5) Compute fuzzy membership (uj) to class j concern-

ing y using the distances dmink disðy; zjÞ for j ¼
1; 2; . . .; t according to:

ujðyÞ ¼
Pt

j¼1 ujjð1=dmink disðy; zjÞ2=ðc�1ÞÞ
Pt

j¼1ð1=dmink disðy; zjÞÞ2=ðc�1ÞÞ
ð15Þ

where ujj is 1 for the known class and 0 is for the

other classes. Notice that here ujj has twice j, and it is

because number of classes and the number of local

mean vectors are the same.

(6) Return the class x� of y, which has the highest

membership degree [i.e., x� ¼ arg maxxi
uiðyÞ].

By incorporating a combination of relevance and comple-

mentarity into the feature weighting process, the FWM-

LMFKNN method can effectively handle uncertainty and

vagueness in the data, leading to more reasonable decision

boundaries. Using the Minkowski distance metric also

allows for more flexible and powerful distance computa-

tions, further improving the classifier’s performance. The

steps of the proposed method discussed under Phase 1 and

Phase 2 are summarized as Algorithm 1 and Algorithm 2.
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Algorithm 1 FWM-LMFKNN (Phase 1:Feature weights generation)

Input: training data {Xi ∈ R
d, ωi}n

i=1, Xi = (x1
i , x

2
i , .., x

d
i ), ω ∈ (c1, c2, .., ct)

Output: feature weight, wl

Start
1 data normalization: Xi → [0, 1]d

for j ← 1 to t do

2 obtain ideal vectors, vj =
(

1
nj

∑nj

i=1 Xi

)
∈ R

d

for i ← 1 to n do
3 compute similarity measure, S〈xi, vj〉 = 1

d

∑d
l=1 1 − |(xl

i)
p − (vl

j)
p|)1/p

4 end
5 end
6 for l ← 1 to d do
7 (i) compute feature relevance by using fuzzy entropy,

fREL = h(l) = −
n∑

i=1

(Sllog Sl + (1 − Sl)log(1 − Sl))

(ii) compute feature intersection, xl
i ∩ xl

′

i = xl
ix

l
′

i and generate intersction
matrix T1
(iii) add class variable C to the matrix T1 as T2 = {T1, C}
(iv) compute correlation between features, corr(T2)
(v) compute T3 = |Corr(T2) − I|
(vi) find the maximum correlation, Hc = max(T3)
(vii) compute complementarity value, fCOMP = 1 − Hc

(viii) compute feature weights,

wl = 1 − (fREL + fCOMP )∑d
l=1(fREL + fCOMP )

8 end
9 return wl
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Algorithm 2 FWM-LMFKNN (Phase 2: Classification)

Input: training data {Xi ∈ R
d, ωi}n

i=1, unknown instance y = (y1, y2, .., yd),
k, and p

Output: class label ω∗ for y
Start

1 for i ← 1 to n do
2 compute dmink dis(y, xi) =

∑d
l=1 wl|yl − xl

i|p
)1/p

3 end
4 for j ← 1 to t do
5 (i) find a set of k nearest neighbors {xnn

ij }k
i=1 of y

(ii) compute a local mean vector zj = 1
k

∑k
i=1 xnn

ij

(iii) compute the Minkowski distances between y and zj as,
dmink dis(y, zj) =

∑d
l=1 wl|yl − zl

j |p
)1/p

(iv) compute fuzzy membership (uj) concerning y as,

uj(y) =

∑t
j=1 ujj(1/dmink dis(y, zj)2/(γ−1))∑t

j=1(1/dmink dis(y, zj))2/(γ−1))

6 end
7 return ω∗ such that ω∗ = arg maxωi ui(y)

To demonstrate the impact of using Minkowski distance

in the proposed method, a simple experiment was con-

ducted, as indicated by Karimi and Torabi (2022), by

selecting the Vehicle data set from UCI repository (Dheeru

and Taniskidou 2017). Three data instances, labeled x1; x2,

and x3, were selected from the data set. The Minkowski

distances between x1 and x2 and between x2 and x3 were

then calculated for varying values of p, as depicted in

Fig. 2. The results, as shown in the figure, indicate that

when p is less than 4, x3 is closer to x2 than x1. Conversely,

when p is greater than 4, x1 is closer to x2 than x3.

Accordingly, when x2 is used as a test instance with x1 and

x3 serving as training instances, the performance of FWM-

LMFKNN classifier can be highly dependent on the value

of the parameter p. This clearly indicates that using the

Minkowski distance rather than the Euclidean distance in

the proposed method allows it to find nearest neighbors in a

more flexible way.

Furthermore, incorporating class representative local

mean vectors in the FWM-LMFKNN enhances the classi-

fier’s robustness and effectively addresses challenges

arising from data distribution, including class imbalance,

feature noise, and the impact of outliers. Previous studies in

Kumbure et al. (2019, 2020) have comprehensively

examined and demonstrated the significance of utilizing

class prototypes in the FKNN classifier. This strategy

contributes to the classifier’s ability to handle complex data

sets, providing a more reliable and accurate classification

results.

3.3 Computational complexity analysis

In this subsection, we briefly discuss the computational

complexities of the proposed FWM-LMFKNN method. Let

us consider n, which indicates the number of training

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

M
in

ko
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sk
i d
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e

p = 4

Fig. 2 Minkowski distance between x1 and x2, and x2 and x3 with

respect to different values of p
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instances characterized by c classes in d-dimensional fea-

ture space, and query sample y (the sample to be classified).

The KNN (Cover and Hart 1967) classifier consists of a

calculation of the distances from y to all training instances

to find k nearest neighbors and then observes the majority

class among them. Therefore, according to Guo et al.

(2014, 2019), the computational complexity of the KNN

method is Oðnd þ nk þ kÞ. The FKNN (Keller et al. 1985)

algorithm extends the KNN method by adding an addi-

tional step for computing the membership of y considering

each class based on the distances between y and k nearest

neighbors. Therefore, its computational complexity is

Oðnd þ nk þ ck þ cÞ. Compared to the FKNN, the LM-

FKNN consists of an additional step of the local mean

computation using the set of k nearest neighbors from each

class, thus it requires the computation of

Oðnd þ nk þ cdk þ cd þ cÞ. According to Duarte et al.

(2019), the computational complexity of the Minkowski

distance between two points of dimension d is O(d). But

when we have n data instances, it requires O(nd). Then the

computational complexity of the LM-FKNN method

combined with the Minkowski distance is

Oð2nd þ nk þ cdk þ cd þ cÞ. The computation of feature

relevance includes the calculation of ideal vectors from

each class, the similarity measure, and fuzzy entropy.

Therefore, it requires a computational complexity of

O(3ncd). The calculation of the feature complementarity

contains the steps of forming an intersection matrix,

computation of the correlation, and complementarity val-

ues. Therefore, its computational complexity is

Oðnd2 þ nþ nÞ � Oðnd2Þ. The proposed FWM-LMFKNN

combined those steps; therefore, its computational com-

plexity is Oð2nd þ nk þ cdk þ cd þ cþ 3ncd þ nd2Þ, and

when the constant terms are ignored and n[ [ k; c; d, it is

� Oðnd þ ncd þ nk þ nd2Þ.
Based on the above analysis, it is evident that the FWM-

LMFKNN method requires more computation time, par-

ticularly compared to the classical KNN, FKNN, and LM-

FKNN methods. The primary reason for this is the addi-

tional computation involved in generating feature weights

using relevance and complementarity, as well as the use of

the Minkowski distance measure.

4 Experiment

To evaluate the performance of the proposed classifier, a

series of experiments were conducted using real-world data

sets and comparing the results to well-established baseline

models. The following sub-sections describe the data sets

used, the models compared, the evaluation metrics, and the

experimental procedure.

4.1 Data sets

We used 20 real-world data sets to evaluate the perfor-

mance of the proposed approach. These data sets are freely

available at the UCI (Dheeru and Taniskidou 2017) and

KEEL (Alcala-Fdez et al. 2011) machine learning reposi-

tories. Table 2 provides a summary of the main charac-

teristics of the data sets, including the number of instances,

features, classes, and corresponding data repository. The

data sets ranged in size from 106 to 5500 instances and

encompass binary and multi-class problems.

4.2 Testing methodology

This study employed a thirty-fold holdout validation pro-

cedure across all experiments with the data. In each run,

utilizing the stratified random sampling technique, the data

set was randomly divided into training and testing sets,

while 30% of instances were allocated to the test set. The

average classification accuracies with a 95% level of con-

fidence of 30 splits of each data set were reported as the

final results. This experimental setup was adopted based on

the indications by Gou et al. (2014, 2019) and Pan et al.

(2017). As classification accuracy alone may not be suffi-

cient in evaluating the performance of a classifier, addi-

tional measures such as sensitivity and specificity are often

Table 2 The used data sets from UCI and KEEL repositories

Data set # instances # features # classes Database

Appendicitis 106 7 2 KEEL

Blood 748 4 2 UCI

Bupa 345 6 2 KEEL

Ionosphere 351 34 2 UCI

Horse 368 27 2 UCI

Mammography 962 5 2 UCI

Vehicle 846 18 2 KEEL

Saheart 462 9 2 KEEL

Sonar 208 60 2 UCI

Spambase 4597 57 2 KEEL

Retinopathy 1151 19 2 UCI

WDBC 569 30 2 UCI

Balance 625 4 3 UCI

Car 1728 6 4 KEEL

Dermatology 366 34 6 UCI

Cleveland 297 13 5 KEEL

Segment 2310 18 7 KEEL

Tae 151 5 3 KEEL

Texture 5500 40 11 KEEL

Thyroid 215 5 3 UCI
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necessary to provide a more comprehensive evaluation

(Kumbure et al. 2019, 2020). For this reason, in addition to

the accuracy, we calculated sensitivity and specificity

values in our analysis, as they are commonly used mea-

sures in this context.

To provide a comprehensive comparison, several well-

established models were chosen as baselines for the pro-

posed classifier. The models included classical KNN

(Cover and Hart 1967), FKNN (Keller et al. 1985), and six

other competitive classifiers: MLM-KHNN (Pan et al.

2017), LM-PNN (Gou et al. 2014), LM-FKNN (Kumbure

et al. 2019), FPFS-kNN (Memis et al. 2022), GMD-KNN

(Gou et al. 2019) and IV-KNN (Derrac et al. 2015). The

number of nearest neighbors (k) and the Minkowski dis-

tance parameter (p) were systematically varied during the

validation process to optimize the performance of the

Table 4 The sensitivity (%) results of each classifier with optimal k and p values in all tested data sets

Data FWM-

LMFKNN

FPFS-kNN

(Memis

et al. 2022)

GMD-KNN

(Gou et al.

2019)

LM-FKNN

(Kumbure

et al. 2019)

FKNN

(Keller

et al.

1985)

KNN

(Cover and

Hart 1967)

MLM-

KHNN (Pan

et al. 2017)

LM-PNN

(Gou et al.

2014)

IV-KNN

(Derrac

et al. 2015)

Appendicitis 69.19 (4,

3)

66.50 (14) 70.19 (15) 68.93 (8) 65.12 (20) 71.84 (5) 65.96 (19) 69.63 (12) 66.23 (15)

Blood 56.69 (19,

2)

54.28 (19) 47.66 (20) 56.99 (19) 50.57 (19) 54.34 (20) 46.51 (20) 47.47 (20) 39.01 (18)

Bupa 60.41 (10,

2)

58.25 (6) 57.99 (20) 60.06 (9) 59.88 (20) 57.72 (20) 57.65 (10) 57.38 (20) 60.15 (20)

Ionosphere 88.79 (5,

1)

85.94 (1) 86.50 (20) 87.72 (15) 83.36 (1) 83.36 (1) 88.02 (20) 86.18 (20) 82.97 (1)

Horse 86.45 (20,

1.5)

86.29 (6) 86.47 (20) 85.67 (18) 87.27 (17) 87.27 (13) 86.78 (14) 86.83 (20) 87.66 (14)

Mammogram 76.38 (20,

1)

82.11 (20) 66.20 (4) 72.62 (20) 78.33 (18) 77.51 (20) 69.55 (20) 65.93 (5) 76.61 (16)

Vehicle 96.10 (5,

1)

94.71 (2) 95.48 (18) 95.49 (7) 95.06 (4) 94.80 (3) 95.52 (13) 95.43 (18) 94.80 (5)

Saheart 52.96 (19,

3.5)

57.75 (19) 44.90 (20) 51.83 (20) 48.84 (20) 56.02 (15) 48.78 (20) 43.86 (20) 46.57 (20)

Sonar 90.92 (2,

1.5)

88.67 (1) 91.50 (6) 90.10 (2) 89.72 (1) 84.60 (2) 90.89 (4) 91.38 (3) 89.72 (1)

Spambase 90.20 (19,

1)

91.48 (7) 91.22 (20) 91.83 (16) 90.80 (14) 90.43 (5) 91.75 (20) 91.18 (20) 90.70 (13)

Retinopathy 65.33 (18,

1)

62.15 (15) 58.06 (20) 60.18 (20) 60.40 (20) 60.86 (19) 58.75 (20) 57.99 (20) 59.79 (20)

WDBC 94.34 (11,

1.5)

93.39 (7) 94.24 (20) 94.22 (18) 95.22 (11) 94.85 (5) 94.20 (20) 93.88 (18) 95.19 (4)

Balance 71.70 (11,

2)

64.83 (11) 64.79 (20) 70.87 (13) 64.90 (19) 65.05 (18) 75.80 (20) 64.86 (20) 64.43 (19)

Car 59.50 (7,

1.5)

70.04 (16) 69.87 (7) 40.11 (20) 52.55 (9) 52.55 (9) 25.65 (1) 70.22 (8) 25.00 (1)

Dermatology 97.59 (8,

1)

92.68 (3) 97.23 (20) 97.22 (9) 96.92 (4) 96.53 (4) 97.26 (14) 97.15 (13) 96.71 (3)

Cleveland 30.38 (20,

1)

28.27 (19) 31.93 (8) 30.21 (20) 30.25 (11) 27.65 (13) 28.96 (19) 31.58 (8) 30.15 (15)

Segment 96.42 (2,

1.5)

95.03 (1) 96.34 (5) 96.16 (1) 96.16 (1) 96.16 (1) 96.37 (5) 96.40 (8) 96.16 (1)

Tae 71.45 (20,

1.5)

69.74 (6) 71.46 (7) 70.71 (1) 72.03 (17) 70.71 (1) 71.31 (2) 72.30 (10) 70.92 (2)

Texture 96.46 (4,

2.5)

95.57 (2) 96.36 (7) 96.35 (4) 95.62 (1) 95.62 (1) 96.53 (6) 96.39 (7) 95.62 (1)

Thyroid 91.46 (12,

1)

89.96 (8) 90.93 (19) 91.43 (8) 89.58 (7) 86.62 (7) 91.33 (20) 91.07 (20) 89.23 (6)
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proposed method and baseline models (i.e., grid search was

performed). Specifically, the range of k was set from 1 to

20, and the set of p values considered were f1; 1:5; . . .; 4g
for all the data sets. In fuzzy KNN-based methods, the

fuzzy strength parameter (m) was fixed at a value of 2 for

all FKNN classifiers throughout the experiments, as sug-

gested by Derrac et al. (2015). Lastly, statistical tests,

including Friedman and Bonferrni-Dunn tests, were

applied to evaluate the statistical significance of the per-

formance improvement of the proposed method compared

to benchmark methods.

5 Results

This section presents the experimental results of the pro-

posed method’s performance against selected real-world

data sets compared to the related baseline models. Optimal

parameter values are also presented and discussed. Finally,

a statistical analysis demonstrates that the proposed method

achieved statistically significantly higher performance than

the benchmark methods.

5.1 Evaluation of the proposed method

Table 3 presents a comprehensive comparison of the

classification accuracy results and corresponding standard

deviations of the proposed FWM-LMFKNN classifier and

seven other baseline models, across 20 data sets. Note that

the highest classification performance among the compet-

ing methods is highlighted in bold for each data set.

The table results show that the proposed FWM-

LMFKNN method outperformed all other classifiers in

terms of accuracy in 15 data sets (achieving the highest

average accuracy of 82:50%). The table also shows the

second-best performance in four data sets (Balance and

Texture). Additionally, the proposed method had the low-

est average standard deviation (of 2:57%) among all the

classifiers, indicating that its performance was more con-

sistent across the different data sets. This suggests that the

proposed method was not only more accurate but also more

robust than the other classifiers evaluated. In addition,

corresponding sensitivity and specificity values (see

Table 4 and Table 5) were reasonable and supported

indications given by accuracy results. Besides, the perfor-

mance of the LM-FKNN classifier appeared to be the

second best (gaining average accuracy of 81:24%),

Table 5 The specificity (%) results of each classifier in all tested data sets

Data FWM-

LMFKNN

FPFS-kNN

(Memis

et al. 2022)

GMD-KNN

(Gou et al.

2019)

LM-FKNN

(Kumbure

et al. 2019)

FKNN

(Keller

et al.

1985)

KNN

(Cover and

Hart 1967)

MLM-

KHNN (Pan

et al. 2017)

LM-PNN

(Gou et al.

2014)

IV-KNN

(Derrac

et al. 2015)

Appendicitis 91.25 90.11 90.68 91.21 88.32 90.27 88.50 90.27 89.12

Blood 81.71 79.95 81.06 81.59 80.77 81.28 81.03 80.91 80.78

Bupa 63.06 62.02 63.37 63.03 62.65 63.08 64.02 63.53 62.50

Ionosphere 96.70 95.06 96.70 95.72 94.47 94.47 96.27 96.71 94.40

Horse 89.87 84.61 83.03 89.03 86.95 86.41 84.45 82.88 86.86

Mammogram 80.10 76.19 80.65 80.37 78.73 78.46 82.37 81.01 78.81

Vehicle 89.67 85.61 88.53 89.70 86.60 85.90 89.43 88.38 86.65

Saheart 72.14 71.19 68.89 70.99 68.62 70.23 70.75 68.53 68.19

Sonar 85.49 80.52 83.64 82.34 82.05 88.36 83.58 83.69 82.05

Spambase 91.66 87.31 88.47 87.00 88.45 87.06 87.81 88.26 88.31

Retinopathy 66.32 71.95 70.67 70.90 68.84 67.86 71.37 70.45 69.68

WDBC 97.20 96.97 96.93 97.10 96.42 96.38 97.10 96.83 96.22

Balance 94.77 93.49 93.65 94.63 93.57 93.27 95.37 93.69 93.18

Car 85.00 88.73 88.34 82.16 83.07 83.07 75.09 88.51 75.00

Dermatology 99.57 98.63 99.51 99.51 99.41 99.38 99.52 99.49 99.37

Cleveland 86.80 85.46 87.42 86.85 87.31 86.80 86.94 87.42 87.29

Segment 99.40 99.17 99.39 99.36 99.36 99.36 99.39 99.40 99.36

Tae 66.71 68.57 69.30 72.06 70.68 72.06 68.12 68.54 69.13

Texture 99.65 99.56 99.64 99.63 99.56 99.56 99.65 99.64 99.56

Thyroid 95.54 94.87 95.20 95.32 94.49 93.11 95.35 95.28 94.34
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indicating the effectiveness of using class representative

local means in the FKNN classifier, as indicated by related

classifiers presented by Kumbure et al. (2019, 2020).

Considering the optimal parameter values (see Table 4),

the proposed method achieved the highest performance

with a 1–3.5 range for the Minkowski distance parameter

across all data sets. Among them, the Manhattan distance

(p ¼ 1) appeared to have worked reasonably well in most

cases, which is in line with the previous study by Kumbure

and Luukka (2022). Regarding the parameter k, classifi-

cation performance significantly improved with higher

k values in the proposed method as well as the local means-

based KNN methods. This finding aligns with previous

research (Gou et al. 2014; Pan et al. 2017), demonstrating

that multi-local mean vectors with nearest neighbors

represented each class more accurately. This outcome is

expected, as more data instances make local mean vectors

more representative.

To further illustrate the performance of the proposed

method in comparison to the baseline models, the accuracy

results of all classifiers with varying values of parameter

k on four selected cases, Appendicitis, Bupa, Cleveland,

and Retinopathy data sets are presented in Fig. 3. As

clearly shown in these sample cases, the proposed method

generally outperformed the benchmark methods across a

range of k values, particularly at high values of k.

Furthermore, the classification performances of each

method are depicted in box plots in Fig. 4, where each box

represents the distribution of accuracy values over 30 runs

during the validation on the Cleveland, Ionosphere,
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Fig. 3 The accuracy of each method with respect to parameter k in the Appendicitis (a), Bupa (b), Cleveland (c), and Retinopathy (d)) data sets
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Spambase, and Vehicle data sets. A box plot analysis was

conducted for the selected cases to understand the vari-

ability of each method’s performance across the cross-

validation. As shown in the box plots, the proposed FWM-

LMFKNN method had the highest median accuracy among

all the classifiers, with a minimal interquartile range (IQR)

across all cases considered, indicating that the accuracy

values are relatively consistent across all runs.

5.2 Statistical analysis for benchmark
comparison

To evaluate the significance of this improvement, we per-

formed the Friedman test (Friedman 1937) and subse-

quently conducted the Bonferroni-Dunn test (Dunn 1961),

following the methodology presented by Demšar (2006). In

the Friedman test, classifiers were ranked individually for

each data set—the top-performing classifier received a rank
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Fig. 4 Box-plot distributions of accuracy by each classifier in the Cleveland (a), Ionosphere (b), Spambase (c), and Vehicle (d) data sets
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of 1, followed by the second-best with a rank of 2, and so

forth, as detailed in Table 6. Subsequently, we calculated

the Friedman statistic using the following formula:

v2 ¼ 12N

cnðcn þ 1Þ
X

j¼1

R2
j �

cnðcn þ 1Þ2

4

" #

ð16Þ

In the formula, Rj ¼ 1
n

P
i¼1 r

j
i , where rji represents the rank

of the jth classifier on the ith data set, and there are cn

classifiers and N data sets. In line with this, we computed

v2 ¼ 42:9 based on the averaged ranks presented in Table 6

(here, cn ¼ 9 and N ¼ 20), resulting in a corresponding p-

value of 9:17 � 10�7. This result offers sufficient evidence

to reject the null hypothesis that all classifiers perform

equally. In other words, this result supports the conclusion

that the chosen classifiers exhibited statistically significant

differences in mean accuracies at a significance level of

Table 6 Ranking of each classifier according to its performance on each data set for the Friedman test

Data set FWM-

LMFKNN

FPFS-kNN

(Memis

et al. 2022)

GMD-KNN

(Gou et al.

2019)

LM-FKNN

(Kumbure

et al. 2019)

FKNN

(Keller

et al.

1985)

KNN

(Cover and

Hart 1967)

MLM-

KHNN (Pan

et al. 2017)

LM-PNN

(Gou et al.

2014)

IV-KNN

(Derrac

et al. 2015)

Appendicitis 1 6 4 2.5 8 2.5 9 5 7

Blood 1 4 6 2 5 3 8 7 9

Bupa 1 9 5 2 4 8 3 7 6

Ionosphere 1 6 4 3 7.5 7.5 2 5 9

Horse 1 7 9 5 3 4 6 8 2

Mammogram 1 5 9 7 2 4 6 8 3

Vehicle 1 9 4 2 6 8 3 5 7

Saheart 3 1 8 4 5 2 6 9 7

Sonar 1 9 2 6 7.5 4.5 4.5 3 7.5

Spambase 1 7 3 5 6 9 2 4 8

Retinopathy 1 2 8 6 4 3 7 9 5

WDBC 1 9 5 2 4 7 3 8 6

Balance 2 6 7 3 4 8 1 5 9

Car 4 1 3 5 6.5 6.5 9 2 8

Dermatology 1 9 4 3 6 7 2 5 8

Cleveland 1 6 7 4 3 5 9 8 2

Segment 1 9 4 6.5 6.5 6.5 3 2 6.5

Tae 7 6 1 9 3 8 5 2 4

Texture 2 9 4 5 7 7 1 3 7

Thyroid 1 2 4 6 7.5 9 5 3 7.5

Rj 1.65 6.10 5.05 4.40 5.27 5.97 4.72 5.40 6.42

R2
j

2.72 37.21 25.50 19.36 27.82 35.70 22.32 29.16 41.28

Rj and R2
j indicate the average rank of classifier j and square of the average rank, respectively

Table 7 The results of the Bonferroni-Dunn test on the mean accuracy of the FWM-LMFKNN classifier against six baseline models

FWM-

LMFKNN

FPFS-kNN

(Memis et al.

2022)

GMD-KNN

(Gou et al.

2019)

LM-FKNN

(Kumbure et al.

2019)

FKNN

(Keller

et al. 1985)

KNN (Cover

and Hart

1967)

MLM-KHNN

(Pan et al.

2017)

LM-PNN

(Gou et al.

2014)

IV-KNN

(Derrac et al.

2015)

Average rank

difference

4.45 3.40 2.75 3.62 4.32 3.07 3.75 4.77

CD value 2.401 2.401 2.401 2.401 2.401 2.401 2.401 2.401

Statistical

significance

Yes Yes Yes Yes Yes Yes Yes Yes
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0.05. Since the null hypothesis was rejected, a post-hoc test

can be applied now.

Accordingly, we conducted the Bonferroni-Dunn test to

compare the performance of the proposed FWM-MLFKNN

classifier with each other method, as indicated by Demšar

(2006). In this test, the performances of two classifiers are

considered significantly different if the corresponding

average rank difference is greater than or equal to the

critical difference (CD), which is defined as:

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnðcn þ 1Þ

6N

r

ð17Þ

where qa represents the critical value from the two-tailed

Bonferroni-Dunn test. After we applied the test to our

analysis, we observed CD ¼ 2:401 (q0:05 ¼ 2:72, cn ¼ 9,

and N ¼ 20). By comparing this statistic with the differ-

ence in average rank between the FWM-LMFKNN method

and each baseline method, we found that the proposed

method demonstrated statistically significantly higher per-

formance in terms of mean accuracy compared to all other

methods. Table 7 presents the test results, where ‘‘Yes’’

denotes a significant difference between the mean accuracy

of the proposed FWM-LMFKNN method and each

benchmark classifier.

5.3 Ablation studies

In machine learning research, an ablation study is used to

determine the significance of various components or

aspects of a model and to evaluate their impact on overall

performance (Meyes et al. 2019; Kwon and Lee 2024).

Accordingly, we conducted ablation studies on the main

components of our proposed method—namely feature

weights (based on relevance and complementarity) and

Minkowski distance—to demonstrate their effectiveness on

classification performance. For the ablation studies, the

performance of the original method, ML-FKNN (Kumbure

et al. 2019), was compared with its variants: one using

feature weights based on the feature relevance and com-

plementarity and another utilizing a Minkowski distance

metric-based similarity calculation. These methods were

also compared with the proposed method (FWM-

LMFKNN), which combines both feature weighting and

the Minkowski distance. Models’ performances were

compared using the experimental setup described in Sect.

4. The best average accuracy values (along with their

standard deviations) across all data sets are presented in

Table 8.

The results in Table 8 indicate that LM-FKNN with

feature weights slightly improved performance compared

Table 8 The accuracy (%) results of each case with corresponding standard deviations (in brackets) in all tested data sets in the ablation study

Data LM-FKNN (original

method)

LM-FKNN ? Feature

weighting

LM-FKNN ? Minkowski

distance

Proposed FWM-

LMFKNN

Appendicitis 89.17 (3.91) 89.27 (3.99) 89.17 (4.32) 89.27 (3.64)

Blood 76.90 (2.07) 76.98 (2.11) 76.90 (2.07) 76.98 (2.11)

Bupa 60.13 (5.24) 60.13 (5.12) 60.78 (4.59) 60.81 (4.95)

Ionosphere 89.94 (2.90) 89.97 (2.90) 90.03 (3.15) 90.06 (2.98)

Horse 85.84 (2.79) 85.84 (2.57) 86.25 (2.31) 86.25 (2.18)

Mammogram 73.17 (5.97) 75.45 (5.24) 78.46 (3.89) 78.88 (3.27)

Vehicle 93.90 (1.77) 93.87 (1.77) 94.90 (1.19) 94.87 (1.19)

Saheart 65.85 (4.06) 65.85 (3.76) 66.50 (3.34) 66.62 (3.01)

Sonar 86.08 (4.07) 86.02 (4.05) 87.31 (4.67) 87.31 (4.67)

Spambase 95.50 (2.81) 95.53 (2.54) 95.56 (2.31) 95.53 (2.29)

Retinopathy 61.48 (4.72) 61.17 (5.16) 65.07 (3.49) 64.98 (3.24)

WDBC 94.59 (2.20) 94.59 (2.20) 94.65 (2.05) 94.68 (2.03)

Balance 91.12 (1.21) 91.34 (1.23) 91.12 (1.21) 91.34 (1.23)

Car 71.70 (1.62) 72.38 (1.41) 72.80 (1.38) 72.95 (1.47)

Dermatology 97.60 (0.92) 97.60 (1.04) 97.90 (0.90) 97.97 (1.12)

Cleveland 56.86 (3.21) 57.01 (3.28) 58.56 (3.17) 58.67 (3.41)

Segment 95.97 (0.92) 95.92 (0.89) 96.25 (0.66) 96.26 (0.63)

Tae 55.00 (6.49) 55.00 (6.36) 56.45 (6.14) 56.59 (6.24)

Texture 96.22 (1.20) 96.21 (1.22) 96.26 (1.15) 96.26 (1.15)

Thyroid 93.75 (7.45) 93.70 (7.45) 94.06 (6.36) 94.06 (6.92)

Average 81.54 (3.21) 81.69 (2.91) 82.45 (2.88) 82.52 (2.88)

The highest accuracy values are given in bold
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to the original method, with an increase in average accu-

racy from 81.54 to 81.69%. By contrast, LM-FKNN with

Minkowski distance considerably improved performance,

with an increase from 81.54 to 82.45%. This improvement

may be due to the parameterized Minkowski distance

allowing the classifier to adopt the most suitable distance

metric for the data, thus achieving a more accurate set of

nearest neighbors. However, the proposed FWM-

LMFKNN method, which combines both feature weighting

and the Minkowski distance measure, achieved the best

overall results, with the highest average accuracy of

82.52%. Although the overall performance difference

between the proposed method and LM-FKNN with Min-

kowski distance was not large, FWM-LMFKNN performed

the best on many data sets, highlighting the positive impact

of feature weighting. The standard deviation results of the

proposed method were also low and reasonable, further

supporting its robustness.

6 Conclusion

In this paper, we proposed a new fuzzy k-nearest neighbor

method called FWM-LMFKNN based on feature weight-

ing, Minkowski distance, and class representative local

mean vectors. To determine the optimal feature weights in

the proposed approach, we explicitly developed a feature

weighting scheme considering a combined effect of rele-

vance and complementarity. The proposed method was

evaluated using a variety of real-world data sets, and the

results show that it outperformed the baseline models in

terms of used evaluation metrics. The use of feature

weights and Minkowski distance allows for a more accu-

rate calculation of the distances between new instance and

training instances based on their nearness, which improves

the accuracy of the proposed FWM-LMFKNN method.

The ablation study conducted demonstrated the effective-

ness of these aspects of the FMW-LMFKNN. Additionally,

the proposed method takes into account the local structure

of class subsets by using local mean vectors, further

improving the performance of the classification. The results

of this study demonstrate that the proposed method is a

powerful tool for classification tasks and can be applied to

a wide range of data sets.

Future work includes further testing of various data sets,

evaluating the reliability of the proposed method, and

investigating the possibility of incorporating other mean

operators, such as generalized mean, in the local mean and

ideal vector computation.
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