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Abstract
This paper proposes a multi-attribute group decision-making methodology that takes advantage of a new weighted geo-

metric mean aggregation operator on intuitionistic fuzzy numbers (IFNs). To this purpose, first, we define the intuitionistic

fuzzy direct weighted geometric operator on IFNs, then we prove that it is a representable intuitionistic aggregation

operator, and afterwards, we compare it with other aggregation operators motivated by the geometric mean. We use two

proxies for the quantitative comparison of performances, namely the average of the Euclidean distances to the IFNs and the

sum of squared error inspired by the k-means clustering algorithm.

Keywords Intuitionistic fuzzy set � Aggregation operator � Geometric mean � Weighted geometric mean

1 Introduction

The aim of this article is to prove that the intuitionistic

fuzzy numbers or values can be aggregated with the direct

application of weighted geometric means. Our motivation

is to show that this very simple method has never been

established before; however, it gives a valid procedure for

the aggregation of intuitionistic fuzzy numbers that gen-

erates a new multi-attribute group decision-making proce-

dure in this popular framework.

Following the introduction of fuzzy sets (Zadeh 1965)

and its multiple applications (Bellman and Zadeh 1970;

Chen and Phuong 2017; Chen and Wang 2009), Atanassov

(1986) first proposed to use a restricted class of ‘‘ortho-

pairs’’ (i.e., pairs of numbers from the unit interval) as a

way to assess belongingness to a set. The core principle

that justifies this position is that non-membership is often

evaluated separately from membership. Thus, the new

model considered a pair of values in the unit interval, that

assess the possible membership/non-membership of an

element to the ‘‘orthopair fuzzy set’’. Atanassov’s exten-

sion was called ‘‘intuitionistic fuzzy set’’ (IFS). Because

belongingness is split between membership and non-

membership (with some hesitancy allowed), this model

assumes that for each orthopair, the sum of both values is

less than or equal to 1.

Probably, the most successful generalization of intu-

itionistic fuzzy sets that still resorts to pairs of evaluations

consists of q-rung orthopair fuzzy sets (Khan et al. 2021;

Senapati et al. 2023; Yager 2017). Their semantics have

been explored recently by Alcantud (2023). They are

bound by a less restrictive condition: the sum of the q� th

power of the membership and non-membership values

must not exceed 1. In this general framework, intuitionistic

fuzzy sets become 1-rung orthopair fuzzy sets, and 2-rung

orthopair fuzzy sets coincide with intuitionistic fuzzy sets of

second type (Atanassov (1989), reprinted in Atanassov

(2016), see also Atanassov et al. (2013)). This model

gained traction under the name Pythagorean fuzzy set-

s (Yager 2014).

When the use of more than one evaluation was accepted

and justified by applications, other types of extensions of

fuzzy sets introduced an evaluation for the indeterminacy

of the belongingness. This idea produced picture fuzzy

sets (Cuong 2014), spherical fuzzy sets (Kutlu Gündoğdu

and Kahraman 2019), and even more general mod-

els (Akram and Martino 2023; Akram et al. 2023), but we

shall not refer to them in this paper.
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Our research is motivated by the importance of aggre-

gation in the framework of multi-attribute group decision-

making (MAGDM). An intuitionistic fuzzy set associates

an intuitionistic fuzzy number or value (IFN or IFV,

respectively) with each element of a universal set of

alternatives. Aggregation of IFSs is typically performed

elementwise. This means that for each element, the IFN

corresponding to its evaluation by an aggregate IFS is the

result of the aggregation of all individual IFNs associated

with the element. Therefore, aggregation of intuitionistic

fuzzy sets reduces to aggregation of intuitionistic fuzzy

numbers. And for this reason, aggregation operators on

crisp numbers have been a source of inspiration for

aggregators in the intuitionistic fuzzy field. The problems

of intertemporal aggregation of intuitionistic fuzzy infor-

mation (Alcantud et al. 2020), ranking IFNs (Ali et al.

2019; Feng et al. 2020; Liu et al. 2018), and information

quantification (Ali et al. 2022), have also received con-

siderable attention.

In relation with this idea, we note that already Xu and

Yager (2006) discussed the aggregation of IFNs. They

initiated a methodology that generates aggregation opera-

tors through operational laws that preserve the structure of

IFNs. Another source of inspiration takes advantage of

special aggregation operators on crisp numbers. Both

approaches are not independent, and they are often com-

bined in a single formula. Let us describe these two

methodologies.

In relation with the first line of inspection, Xu and Yager

(2006) introduced the intuitionistic fuzzy (respectively,

ordered) weighted geometric operators and the intuition-

istic fuzzy hybrid geometric operator. The intuitionistic

fuzzy (respectively, ordered) weighted averaging operators

and intuitionistic fuzzy hybrid aggregation operator

appeared in Xu (2007). Afterwards Wei (2010) defined

induced geometric aggregation operators and Garg (2017)

used novel aggregation operators from improvements of

the operational laws. Beliakov et al. (2011) suggested to

resort to additive generators of the t-norm and t-conorm in

the operational laws for IFNs. With the help of transfor-

mation techniques between intuitionistic fuzzy numbers

and triangular fuzzy numbers, Chen and Chang (2016)

produced renewed expressions for the operators in Xu and

Yager (2006). These authors criticized and improved upon

He et al. (2014).

Many examples exist that testify to the value of the

second line of investigation. Intuitionistic fuzzy Bonferroni

means and intuitionistic fuzzy power aggregation operators

were the subjects of Xu and Yager (2011) and Xu (2011).

In Wang and Liu (2011), the intuitionistic fuzzy Einstein

(ordered) weighted geometric operators were introduced.

The geometric Heronian mean inspired Yu (2013) to define

the IFGHM (intuitionistic fuzzy weighted geometric)

aggregation operator. Under the inspiration of the Heronian

mean, Liu and Chen (2017) defined the IFAHA (intu-

itionistic fuzzy Archimedean Heronian aggregation, whose

explicit formula is given in their Theorem 1) and IFWAHA

(intuitionistic fuzzy weight Archimedean Heronian aggre-

gation, whose explicit formula is given in their Theorem 5)

aggregation operators. They were used to define an

MAGDM methodology Liu and Chen (2017) (Sect. 4).

Also, Kumar and Chen (2022) defined the AIFWHM (ad-

vanced intuitionistic fuzzy weighted Heronian mean)

aggregation operators in their Eq. 8. They criticized the

proposal in Liu and Chen (2017) with the argument that it

does not always discriminate among alternatives Kumar

and Chen (2022) (Sect. 4). In passing, we note that Beli-

akov et al. (2011); Chen and Chang (2016); He et al.

(2014); Kumar and Chen (2022) use a variety of opera-

tional laws on IFNs.

In consideration of cases with correlated information,

Xu (2010) used the Choquet integral to define intuitionistic

fuzzy correlated averaging (respectively, geometric)

aggregation operators from a fuzzy measure. Special cases

included the intuitionistic fuzzy weighted averaging/geo-

metric operators and the intuitionistic fuzzy weighted

ordered weighted averaging/geometric operators. Relat-

edly, Xu and Xia (2011) developed induced generalized

intuitionistic fuzzy Choquet ordered averaging.

Evidence of the impact of the research about aggregators

of IFSs on decision-making can be found in articles such as

Deng et al. (2022); Huang et al. (2023); Liu et al. (2020);

Chen and Randyanto (2013); Wang et al. (2022), and their

references. Other applications include the investigation of

centroid transformation of IFVs (Feng et al. 2019). Also,

the advancement of this field has a positive impact on other

branches including the aggregation of complex intuition-

istic fuzzy sets (Akram et al. 2021), a model that extends

IFSs, or the measurement of similarities (Chen and Chen

2001).

Many aggregation operators for IFNs have resorted to

the weighted geometric mean. However, it is surprising

that neither of these methodologies operates on the ortho-

pairs in the most direct and natural manner, to wit, by

taking the weighted geometric means of both membership

and non-membership degrees. To fill this unexpected gap

in the literature, in this paper, we define the intuitionistic

fuzzy direct weighted geometric operator on IFNs. Then

we prove that our new formula produces a well-defined

aggregation operator on IFNs, and we compare its perfor-

mance with existing aggregators with the help of two

proxies (the average of the Euclidean distances to the IFNs,

and the sum of squared error or SSE inspired by the k-

means clustering algorithm, v. Celebi et al. (2013)). Our

mathematical proof allows us to show that the intuitionistic

fuzzy direct weighted geometric operator is in fact a
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representable intuitionistic aggregation operator on IFNs.

This class of aggregator has been studied by Kolesárová

and Mesiar (2020). An application to group decision-

making with an illustrative example supplements and

motivates these achievements.

This paper is organized as follows. Sect. 2 recalls

known concepts and facts about intuitionistic fuzzy sets

and aggregation operators. Section 3 summarizes relevant

antecedents on aggregation of intuitionistic fuzzy sets.

General comments are made in Sect. 3.1. Operational laws

for IFNs are described in Sects. 3.2, and 3.3 recalls how

their implementation with weighted geometric averages

leads to several aggregation operators on IFNs. Section 4

contains our contribution to the aggregation of IFNs and a

comparison with existing aggregation operators. Multi-at-

tribute group decision-making is the subject of Sect. 5.

Section 6 concludes this article.

2 Preliminary concepts and results

This section revises some definitions and results. Sec-

tion 2.1 recalls basic concepts, and Sect. 2.2 gives a brief

overview of aggregation operators.

For convenience, we shall write the unit interval [0, 1]

as I .

Henceforth, X denotes a set of alternatives.

2.1 Review of concepts

The next standard notions will be used in this paper.

Definition 1 (Yager 2017) A q-rung orthopair fuzzy set A

over X is A ¼ fhx; ðlAðxÞ; mAðxÞÞij x 2 Xg: The mappings

lA; mA : X ! I , respectively, encode the degrees of mem-

bership and non-membership of x 2 X to A, with

ðlAðxÞÞq þ ðmAðxÞÞq � 1 for all x 2 X.

Definition 1 produces an Atanassov’s intuitionistic fuzzy

set (Atanassov 1986) when q ¼ 1, and a Pythagorean fuzzy

set when q ¼ 2. Recently, Alcantud (2023) has generalized

Definition 1 to complemental fuzzy sets, and he has pro-

vided a common semantic interpretation to all these

models.

Focusing on Atanassov’s intuitionistic fuzzy sets, the

interpretation of hx; ðlAðxÞ; mAðxÞÞi is that for each x 2 X,

the degree of membership of x in A (the IFS) lies in the

closed interval ½lAðxÞ; 1� mAðxÞ�.
An orthopair is ðl; mÞ, where 0� l; m� 1. And it is an

intuitionistic fuzzy number (IFN) or intuitionistic fuzzy

value (IFV), when 0� lþ m� 1 (Xu and Yager 2006). The

set of all IFNs will be denoted by A.

Some IFNs can be compared with the help of the binary

relation < on IFNs defined as follows: for each pair

ðl1; m1Þ, ðl2; m2Þ of IFNs, ðl1; m1Þ<ðl2; m2Þ if and only if

l1 > l2 and m2 > m1 (Atanassov 1986). The bottom and

top elements of < are 0 ¼ ð0; 1Þ and 1 ¼ ð1; 0Þ,
respectively.

This binary comparison is incomplete: for example, I1 ¼
ð0:3; 0:5Þ and I2 ¼ ð0:4; 0:6Þ cannot be compared by <. A

more discriminating tool was built with the help of the

score of an IFN I ¼ ðl; mÞ, defined as SðIÞ ¼ l� m in Chen

and Tan (1994). IFNs with higher scores are preferred over

IFNs with smaller scores. Because SðI1Þ ¼ SðI2Þ ¼ �0:2,

this rule declares that I1 and I2 are equally good. Clearly,

ties will appear on a regular basis. To act as a tie-breaking

rule for situations like this, the accuracy of I, defined as

HðIÞ ¼ lþ m in Hong and Choi (2000), is commonly

employed since Xu and Yager (2006) proposed its uti-

lization. In a comparison of IFNs with the same score, the

IFN with higher accuracy is preferred. In our example,

HðI1Þ ¼ 0:8\HðI2Þ ¼ 1, hence I2 is preferred over I1. The

next definition summarizes this comparison law:

Definition 2 Xu and Yager (2006) [Definition 1] Suppose

I1 ¼ ðl1; m1Þ and I2 ¼ ðl2; m2Þ are different IFNs. Then

– If SðI1Þ[ SðI2Þ, then we declare I1 [ I2.

– If SðI2Þ[ SðI1Þ, then we declare I2 [ I1.

– If SðI1Þ ¼ SðI2Þ, then when HðI1Þ[HðI2Þ we declare

I1 [ I2, and when HðI2Þ[HðI1Þ we declare I2 [ I1.

Recall that Xu (2007), Definition 3.1, explained that

SðI1Þ ¼ SðI2Þ and HðI1Þ ¼ HðI2Þ only happen simultane-

ously when I1 ¼ I2. Also, Xu (2007), Theorem 3.1, proved

that the comparative rule in Definition 2 is finer than the

binary relation <: I1<I2 implies I1 [ I2 when I1; I2 are

different IFNs.

2.2 Aggregation operators

The concept of an aggregation operator is well known:

Definition 3 (Beliakov et al. 2007) A mapping A : I �
. . .n � I ! I is called an aggregation operator when it

satisfies:

– Boundary condition: Að0; . . .n ; 0Þ ¼ 0, Að1; . . .n ; 1Þ ¼ 1.

– Monotonicity: Aða1; . . .; anÞ > Aðb1; . . .; bnÞ if ai; bi 2
I (i ¼ 1; . . .; n) and ða1; . . .; anÞ > ðb1; . . .; bnÞ.

We shall be especially concerned with two aggregation

operators associated with x ¼ ðx1; . . .;xnÞ, a weighting

vector. By this we mean x1 þ . . .þ xn ¼ 1 and xj 2 I for

each j ¼ 1; . . .; n (v., Def. 2.5 of Beliakov et al. (2007)).

When ða1; . . .; anÞ 2 I � . . .n � I :
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1. Its weighted arithmetic mean is (v., Def. 2.6 of Beli-

akov et al. (2007))

Mxða1; . . .; anÞ ¼
Xn

j¼1

xjaj: ð1Þ

2. Its weighted geometric mean is (v., Def. 2.8 of Beli-

akov et al. (2007))

Gxða1; . . .; anÞ ¼
Yn

j¼1

a
xj

j : ð2Þ

Importantly, Beliakov et al. (2007), Eq. (2.4), states the

geometric–arithmetic inequality Gxða1; . . .; anÞ 6 Mxða1;
. . .; anÞ.

3 Aggregation of IFSs: antecedents

This section contains some relevant antecedents that will

serve us to formulate our main question. A brief intro-

duction to the aggregation problem that we shall investi-

gate is in Sect. 3.1. Then in Sect. 3.2, we recall some

operations on IFNs. Section 3.3 defines known (families

of) geometric aggregation operators.

3.1 Aggregation of intuitionistic fuzzy numbers

The aggregation of intuitionistic fuzzy sets is performed

elementwise. Hence, it relies on aggregation of IFNs,

which are the characteristics that define each element in X:

Definition 4 Beliakov et al. (2011) [Definition 5] An

aggregation operator on n IFNs is a mapping f : A� . . .n �
A ! A that is monotonic with respect to < and satisfies

f ð0; . . .n ; 0Þ ¼ 0, f ð1; . . .n ; 1Þ ¼ 1.

The following guiding principles have helped to

aggregate IFNs (Liu and Chen 2017). The founding Xu and

Yager (2006) suggested to use operations on IFNs to

replace the standard arithmetic operations between num-

bers, and several articles followed this trend. Sections 3.2

and 3.3, respectively, deal with both technicalities. Sec-

tion 3.3 focuses on references relating to the implementa-

tion with weighted geometric averages, our research arena.

And as mentioned in the Introduction, a different principle

builds on special aggregation operators on crisp numbers.

We do not need to be explicit about these other cases in our

article.

3.2 Algebraic operations on intuitionistic fuzzy
numbers

Some aggregation operators were designed with the help of

various operations on IFNs or IFVs. Originally, one had the

next expressions:

Definition 5 (Atanassov 1994) Let I1 ¼ ðl1; m1Þ, I2 ¼
ðl2; m2Þ be IFNs and k[ 0. Then:

I1 � I2 ¼ ðl1 þ l2 � l1 � l2; m1 � m2Þ;
I1 � I2 ¼ ðl1 � l2; m1 þ m2 � m1 � m2Þ;
kI1 ¼ ð1� ð1� l1Þk; mk1Þ;
Ik1 ¼ ðlk1; 1� ð1� m1ÞkÞ:

However, He et al. (2014) suggested the following

alternative expressions for multiplication of IFNs and

power operation on IFNs:

I1 � I2 ¼ðð1� m1Þð1� m2Þ � ð1� ðl1 þ m1ÞÞð1� ðl2 þ m2ÞÞ;
1� ð1� m1Þð1� m2ÞÞ;

Ik1 ¼ðð1� m1Þk � ð1� l1 � m1Þk; 1� ð1� m1ÞkÞ:

Some drawbacks found in the application of these opera-

tions motivated Chen and Chang (2016) to redefine them as

follows:

I1 � I2 ¼ ðl1 þ l2 � l1 � l2; m1ð1� l2 � m2Þ þ m2ð1� l1ÞÞ;
Ik1 ¼ ð1� ð1� l1Þk; ð1� l1Þk � ð1� l1 � m1ÞkÞ:

Now, let us see how these operations produce aggregation

operators on IFNs.

3.3 Some geometric aggregation operators
on intuitionistic fuzzy numbers

In this section, we let x ¼ ðx1; . . .;xnÞ be a weight vector.
To avoid a lengthy discussion, we keep our presentation

focused on geometric-type aggregators, and skip the details

concerning, e.g., arithmetic-type aggregation of intuition-

istic fuzzy numbers.

Definition 6 (Xu and Cai 2013; Xu and Yager 2006) The

intuitionistic fuzzy weighted geometric operator on n

intuitionistic fuzzy numbers associated with x can be

computed as follows: when fI1 ¼ ðl1; m1Þ; . . .; In ¼
ðln; mnÞg are IFNs,

IFWGxðI1; . . .; InÞ ¼
�Yn

j¼1

lxj

j ; 1�
Yn

j¼1

ð1� mjÞxj

�
: ð3Þ

This aggregation operator was defined in Xu and Yager

(2006), Definition 2, and Xu and Cai (2013), Definition
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1.3.2, with the help of the operations on IFNs that we have

recalled in Definition 5. Specifically, it was defined as

IFWGxðI1; . . .; InÞ ¼ x1I1 � . . .� xnIn where � refers to

the first formula from Definition 5. It was characterized in

Xu and Yager (2006), Theorem 2, and Xu and Cai

(2013), Theorem 1.3.2, through the formula (3). In Xu

et al. (2023), Definition 3.1, this operator is called IFWG

operator with respect to �.

The spirit of the OWA operator suggested the next

variation Xu and Yager (2006)[Definition 3] which is also

an aggregation operator on IFNs: in the conditions of

Definition 6,

IFOWGxðI1; . . .; InÞ ¼
�Yn

j¼1

lxj

rðjÞ; 1�
Yn

j¼1

ð1� mrðjÞÞxj

�

ð4Þ

with ðrð1Þ; . . .; rðnÞÞ being a permutation of ð1; 2; . . .; nÞ
such that Ii�1 > Ii by the comparative rule in Definition 2,

for each i ¼ 2; . . .; n. This operator was extended in Wei

(2010), Definition 9, by the induced IFOWG (I-IFOWG)

aggregation operator with the help of an order inducing

variable.

The utilization of alternative expressions for the opera-

tions on IFNs (cf., Sect. 3.2) prompted the next proposal:

Definition 7 (Chen and Chang 2016, Definition 4.1) The

intuitionistic fuzzy weighted geometric averaging

(IFWGA) aggregation operator on n intuitionistic fuzzy

numbers associated with x can be computed as follows:

when fI1 ¼ ðl1; m1Þ; . . .; In ¼ ðln; mnÞg are IFNs,

IFWGAx ðI1; . . .; InÞ ¼
�
1�

Yn

j¼1

ð1� ljÞxj;

Yn

j¼1

ð1� ljÞxj �
Yn

j¼1

ð1� lj � vjÞxj
� ð5Þ

The intuitionistic fuzzy ordered weighted geometric

averaging (IFOWGA) aggregation operator (Chen and

Chang 2016, Definition 4.2) is a variation of IFWGA that

replicates the change introduced by IFOWGx with respect

to IFWGx.

The next operator was defined in Yu (2013), Definition

6, with the help of the operations in Definition 5. Then Yu

(2013), Theorem 2, proves the lengthy formula provided in

Definition 8:

Definition 8 (Yu 2013) The intuitionistic fuzzy geometric

weighted Heronian mean aggregation operator on n intu-

itionistic fuzzy numbers associated with x and p > 0, q >

0 that do not vanish simultaneously, can be computed as

follows: when fI1 ¼ ðl1; m1Þ; . . .; In ¼ ðln; mnÞg are IFNs,

IFGWHMp;q
x ðI1; . . .; InÞ

¼ 1� 1�
Yn

j¼1
i¼1

1� 1� lxi
ið Þp 1� lxj

j

� �q� � 2
nðnþ1Þ

0

B@

1

CA

1
pþq

;

0

BB@

1�
Yn

j¼1
i¼1

ð1� ð1� ð1� miÞxiÞpð1� ð1� mjÞxjÞqÞ
2

nðnþ1Þ

0

B@

1

CA

1
pþq

1

CCA:

Remark 1 Xu (2007) defined the IFWAx (for intuitionistic

fuzzy weighted averaging) operator. In our analysis of

geometric-inspired aggregators, it is timely to explain that

in Xu et al. (2023), this operator is called IFWG operator

with respect to �. Its formula in the conditions of Defini-

tion 6 is

IFWAxðI1; . . .; InÞ ¼ 1�
Yn

j¼1

ð1� ljÞxj ;
Yn

j¼1

mxj

j

 !

¼ x1I1 � . . .� xnIn:

ð6Þ

To conclude this section, we note that Xu et al. (2023)

have performed an updated investigation of relationships

among intuitionistic fuzzy weighted geometric operators.

Once the analysis of geometric-type aggregators on

intuitionistic fuzzy numbers has been completed, we are

ready to present our contribution.

4 The intuitionistic fuzzy direct weighted
geometric aggregation operator

Section 3 has prepared the ground for the main concepts in

this article. There we have witnessed the development of

increasingly complicated expressions for geometric-mean-

inspired aggregation operators for IFNs. Here, we produce

aggregation operators that, despite their simplicity, are

novel in this literature. We state them directly with the help

of the weighted geometric mean, so henceforth in this

section x ¼ ðx1; . . .;xnÞ denotes a weight vector (cf.,

Sect. 3.3).

Definition 9 The intuitionistic fuzzy direct weighted

geometric operator on n intuitionistic fuzzy numbers

associated with x is defined as follows: for each collection

of IFNs fI1 ¼ ðl1; m1Þ; . . .; In ¼ ðln; mnÞg,

IFDGxðI1; . . .; InÞ ¼
�Yn

j¼1

lxj

j ;
Yn

j¼1

mxj

j

�
: ð7Þ

When x ¼ ð1n ; . . .; 1nÞ, we obtain the intuitionistic fuzzy

direct geometric operator
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IFDGðI1; . . .; InÞ ¼
�Yn

j¼1

l
1
n
j ;
Yn

j¼1

m
1
n
j

�
: ð8Þ

IFDGx inherits the idempotency and boundedness

properties of the weighted geometric means. But it is not

monotonic with respect to [, the comparative rule in

Definition 2:

Example 1 Consider x ¼ ð0:3; 0:7Þ, I1 ¼ ð0:9; 0:1Þ,
I2 ¼ ð0:5; 0:5Þ, I3 ¼ ð0:3; 0:2Þ. Although I3 [ I2, IFDGx

ðI1; I3Þ[ IFDGxðI1; I2Þ is false because SðIFDGxðI1; I3ÞÞ
¼ Sð0:417; 0:162Þ ¼ 0:255\0:287 ¼ SðIFDGxðI1; I2ÞÞ ¼
Sð0:596; 0:309Þ.

Our next section proves that (7) and (8) produce

aggregation operators. Section 4.2 gives supplementary

discussion.

4.1 Main result

We are ready to state and prove our main result in this

paper:

Theorem 1 IFDGx is an aggregation operator on IFNs.

Proof To prove that IFDGx satisfies Definition 4, consider

fI1 ¼ ðl1; m1Þ; . . .; In ¼ ðln; mnÞg, a collection of IFNs.

First we need to prove that
Qn

j¼1 l
xj

j ;
Qn

j¼1 m
xj

j

� �
is an IFN,

which boils down to
Qn

j¼1 l
xj

j þ
Qn

j¼1 m
xj

j 6 1.

By definition of IFN, it must be the case that mj 6 1� lj
for each j ¼ 1; . . .; n. Therefore, the proof will be ended if

we show
Qn

j¼1 l
xj

j þ
Qn

j¼1ð1� ljÞxj
6 1.

By the geometric–arithmetic inequality (cf., Sect. 2.2):

Yn

j¼1

lxj

j þ
Yn

j¼1

ð1� ljÞxj
6

Xn

j¼1

xjlj þ
Xn

j¼1

xjð1� ljÞ ¼ 1:

This completes the proof that IFDGx : A� . . .n � A ! A.
Idempotency guarantees f ð0; . . .n ; 0Þ ¼ 0,

f ð1; . . .n ; 1Þ ¼ 1.

Monotonicity with respect to < is routine: when Ii ¼
ðli; miÞ<ð�li; �miÞ ¼ �Ii for i ¼ 1; . . .; n, one immediately gets

IFDGxðI1; . . .; InÞ<IFDGxð�I1; . . .; �InÞ. h

The application of Theorem 1 to x ¼ ð1n ; . . .; 1nÞ guar-

antees that IFDG is an aggregation operator.

4.2 Discussion

Compared to Theorem 1, Definition 6 bypasses the diffi-

culty of the proof that IFWGx is an aggregation operator

by resorting to expressions defined from operational laws

of IFNs. Then, the gist of the argument proving Xu and

Yager (2006), Theorem 2, and Xu and Cai (2013), Theo-

rem 1.3.2, becomes pretty simple and accessible. By con-

trast, the operator defined in Definition 9 also produces

IFNs through a novel simpler formula; however, the

demonstration that it is an aggregation operator is much

harder without the utilization of the geometric–arithmetic

inequality.

The next property establishes a remarkable comparison:

Proposition 1 In the conditions of Definitions 6 and 9:

IFDGxðI1; . . .; InÞ<IFWGxðI1; . . .; InÞ. In particular,

SðIFDGxðI1; . . .; InÞÞ > SðIFWGxðI1; . . .; InÞÞ.

Proof The first claim reduces toQn
j¼1 m

xj

j 6 1�
Qn

j¼1ð1� mjÞxj , or equivalently,
Qn

j¼1 m
xj

j þ
Qn

j¼1ð1� mjÞxj
6 1. The proof of Theorem 1

justifies this non-trivial inequality. The second claim is

now immediate (cf., Sect. 2.1). h

Finally in this section, to ensure that Definition 9 pro-

duces a distinct aggregation operator for IFNs, the next

example compares it with the most prominent intuitionistic

fuzzy geometric operators found in the existing literature.

Example 2 For illustration, let us examine the results of

the aggregation of the IFNs used in Example 1 of Xu and

Yager (2006) by the focal intuitionistic fuzzy geometric

operators whose expressions are given in section 3.3 (we

avoid the IFGWHMp;q
x class of operators, which depend

upon extra parameters and would require a very lengthy

analysis). Hence, we consider I1 ¼ ð0:1; 0:7Þ,
I2 ¼ ð0:4; 0:3Þ, I3 ¼ ð0:6; 0:1Þ, and I4 ¼ ð0:2; 0:5Þ and the

vector of weights x ¼ ð0:2; 0:3; 0:1; 0:4Þ.
Figure 1 shows both I1; I2; I3, and I4, and their aggre-

gation by IFDGx, IFWGx, IFOWGx, and IFWGAx.

To compare the relative performance of these aggrega-

tion methodologies, we shall use two proxies. First, we

employ the average of the Euclidean distances to the four

IFNs. Second, we use the Sum of Squared Error (SSE) by

inspiration of the k-means clustering algorithm (Celebi

et al. 2013). Table 1 summarizes both the results of the

aggregation by the four operators considered in this

example, plus their respective average distances and SSEs.

We observe that in this example IFDGx outperforms

IFWGx and IFOWGx in both dimensions, although it is

much simpler.
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Finally in this section, we explain that IFDGx is an

example of representable intuitionistic aggregation func-

tion Kolesárová and Mesiar (2020) [Section 3]. To intro-

duce this concept, recall that the dual of the aggregation

operator A : I � . . .n � I ! I is Ad : I � . . .n � I ! I

defined as Adða1; . . .; anÞ ¼ 1�Að1� a1; . . .; 1� anÞ for

each ai 2 I (i ¼ 1; . . .; n). Kolesárová and Mesiar argue

that when B is another aggregation operator such that

Ad
> B, the next expression defines an aggregation oper-

ator on IFNs: for each collection of IFNs

fI1 ¼ ðl1; m1Þ; . . .; In ¼ ðln; mnÞg,

ðA;BÞðI1; . . .; InÞ ¼
�
Aðl1; . . .lnÞ; Bðm1; . . .mnÞ

�
: ð9Þ

If we apply this expression to the case A ¼ B ¼ Gx given

by Eq. (2), then we obtain IFDGx ¼ ðA;BÞ. The crucial

inequality Gd
x > Gx that is required by the definition of

representable intuitionistic aggregation function is pre-

cisely what we demonstrate in the proof of Theorem 1.

In conclusion, although IFDGx is a representable intu-

itionistic aggregation function, the fact that it is a new

example of this class of aggregators necessitates a non-

trivial mathematical proof that we produce in Theorem 1.

5 An application to multi-attribute group
decision-making

This section produces an application of the intuitionistic

fuzzy direct weighted geometric operator to group deci-

sion-making with the help of the comparison law in Defi-

nition 2. To this purpose, we adapt the methodology

described in either Section 6 of Kumar and Chen (2022) or

Section V of Liu and Chen (2017) by replacing their

respective aggregation operators by an intuitionistic fuzzy

direct weighted geometric operator in the corresponding

steps of their algorithms.

We state this procedure below as Algorithm 1. The input

is a list of IFSs. They are submitted by a group of agents.

Two elective components are two vectors of weights x and

w. They, respectively, capture the importance of the attri-

butes that characterize the IFSs and the expertise of the

agents. Then, the first step transforms attributes of cost type

into benefit type (this standard procedure is called ‘‘nor-

malization’’). Step 2 uses IFDGw to produce an aggregate

IFS from the multi-agent information. At this point, for

each alternative and characteristic we have one IFV. Step 3

uses IFDGx to associate one IFV with each alternative.

Finally, Step 4 computes the figures that are needed to

apply the comparison law given in Definition 2 to the

alternatives.

Fig. 1 A graphical comparison of the aggregate IFNs (circular dots)

associated with the IFNs (squared dots) in Example 2: red dot—result

obtained from the new IFDGx in Equation 7—, black dot—result

with IFWGx in Equation (3)—blue dot—result with IFOWGx in

Equation 4—and green dot—result with IFWGAx in Equation 5

Table 1 Results by four

aggregation operators, average

distances to the points, and

SSEs, in Example 2

IFDGx IFWGx IFOWGx IFWGAx

(0.2392, 0.3906) (0.2392, 0.4704) (0.2325, 0.4929) (0.4704, 0.253)

0.271571 0.299047 0.310341 0.263037

0.366032 0.481251 0.527727 0.342101

Table 2 Ratings given by expert 1 in Example 3

C1 C2 C3 C4

O1 (0.5, 0.4) (0.5, 0.3) (0.2, 0.6) (0.4, 0.4)

O2 (0.7, 0.3) (0.7, 0.3) (0.6, 0.2) (0.6, 0.2)

O3 (0.5, 0.4) (0.6, 0.4) (0.6, 0.2) (0.5, 0.3)

O4 (0.8, 0.2) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2)

O5 (0.4, 0.3) (0.4, 0.2) (0.4, 0.5) (0.4, 0.6)
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The next example gives both an illustrative application

of Algorithm 1 and a comparative analysis with respect to

two existing methodologies.

Example 3 For illustration, let us reconsider the example

that was studied in both Example 6.1 of Kumar and Chen

(2022) and Section V of Liu and Chen (2017) in the light of

Algorithm 1.

The goal of this problem is to produce a ranking of five

options O1; . . .;O5. To calculate it, three experts evaluate

the alternatives in relation with four characteristics

C1; . . .;C4. The values assigned to the opinions of the

agents are measured by the vector of weights

w ¼ ð0:35; 0:4; 0:25Þ. And the relative values of the

characteristics are measured by x ¼ ð0:1; 0:2; 0:3; 0:4Þ.
The three experts submit their assessments by Tables 2-

4, respectively.

Let us apply Algorithm 1. Example 6.1 of Kumar and

Chen (2022) and Section V of Liu and Chen (2017)

explained that all characteristics are positive. Therefore, we

do not need to do anything at Step 1.

At Step 2, the aggregate values across agents use the

vector of weights w ¼ ð0:35; 0:4; 0:25Þ to produce the IFS

defined by Table 5 with the help of IFDGw. For example,

the cell corresponding to the evaluation of O1 under C1 is

calculated as follows:

IFDGw

�
ð0:5; 0:4Þ; ð0:4; 0:5Þ; ð0:4; 0:2Þ

�

¼ ð0:50:350:40:40:40:25; 0:50:350:40:40:40:25; 0:40:350:50:40:20:25Þ
¼ ð0:432492; 0:367762Þ:

Now, Step 3 aggregates the IFVs across characteristics

using the vector of weights x ¼ ð0:1; 0:2; 0:3; 0:4Þ with the

help of IFDGx. For example, the cell corresponding to the

evaluation of O1 is calculated as follows:

IFDGx
�
ð0:432492; 0:367762Þ; ð0:537827; 0:230495Þ;
ð0:36282; 0:429Þ; ð0:462436; 0:299797Þ

�

¼ð0:4324920:10:5378270:20:362820:30:4624360:4;
0:3677620:10:2304950:20:4290:30:2997970:4Þ

¼ð0:440204; 0:323264Þ:

Then, Step 4 computes all the scores of the aggregate

IFVs. Table 6 shows both aggregate values and their

scores.

We conclude O2 [O4 [O5 [O1 [O3. This ranking

coincides with the recommendations given by both Kumar

and Chen (2022), Sect. 6, and Liu and Chen (2017), Sec-

tion V, to this problem. This coincidence confirms that the

methodology designed with our fundamental aggregation

operator is consistent with existing approaches.

6 Concluding remarks

Many aggregation operators on IFNs have been defined

since the pioneering articles by Xu and Yager (2006) and

Xu (2007). Influential papers on the topic include Beliakov

et al. (2011); Kolesárová and Mesiar (2020); Wei (2010);

Xu and Yager (2011); Xu (2011); Wang and Liu (2011);

Xu (2010); Xu et al. (2023), and Xu et al. (2023).

However, the intuitionistic fuzzy direct weighted geo-

metric operator on IFNs defined in (7) remained unex-

plored. We have proven that it is an aggregation operator

on IFNs and also that it as a new example of the class of

Table 3 Ratings given by expert 2 in Example 3

C1 C2 C3 C4

O1 (0.4, 0.5) (0.6, 0.2) (0.5, 0.4) (0.5, 0.3)

O2 (0.5, 0.4) (0.6, 0.2) (0.6, 0.3) (0.7, 0.3)

O3 (0.4, 0.5) (0.3, 0.5) (0.4, 0.4) (0.2, 0.6)

O4 (0.5, 0.4) (0.7, 0.2) (0.4, 0.4) (0.6, 0.2)

O5 (0.6, 0.3) (0.7, 0.2) (0.4, 0.2) (0.7, 0.2)

Table 4 Ratings given by expert 3 in Example 3

C1 C2 C3 C4

O1 (0.4, 0.2) (0.5, 0.2) (0.5, 0.3) (0.5, 0.2)

O2 (0.5, 0.3) (0.5, 0.3) (0.6, 0.2) (0.7, 0.2)

O3 (0.4, 0.4) (0.3, 0.4) (0.4, 0.3) (0.3, 0.3)

O4 (0.5, 0.3) (0.5, 0.3) (0.3, 0.5) (0.5, 0.2)

O5 (0.6, 0.2) (0.6, 0.4) (0.4, 0.4) (0.6, 0.3)
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representable intuitionistic fuzzy aggregators studied by

Kolesárová and Mesiar (2020).

Finally, we have confirmed that the utilization of the

intuitionistic fuzzy direct weighted geometric operator

produces reliable results in multi-attribute group decision-

making.
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