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Abstract
Distance-based neural network clustering requires the intrinsic assumption that a particular neuron in the network rep-

resents a cluster centroid. However, not all these neurons can perfectly represent the training data; these neurons can only

represent part of the training samples. This paper proposes an effective training data splitting method (TDSM) to find

perfect representative neurons and improve the clustering results in a distance-based neutral network without changing the

original network’s internal algorithm or the training data quality. The method allows a network with N neurons to be

enlarged to a new network with m� N neurons. These neurons represent m subnetworks, and each subnetwork perfectly

represents a part of the training set, where the clustering qualification indicators (the purity, normalized mutual infor-

mation, and adjusted rand index measures) all equal 1. The results are statistically validated with a t test, and we

demonstrate that the TDSM performs better than the original clustering paradigm on some real datasets.

Keywords Distance-based neural network clustering � Self-organizing map � Iterative splitting training data �
Representative neurons

1 Introduction

As one of the most critical tasks of unsupervised learning,

clustering divides an entire dataset into several groups

based on the similarity of the data, and a measure of the

similarity between two patterns is essential to most clus-

tering procedures. It is common to use a distance measure

for continuous and categorical feature clustering (Chiu

et al. 2001). Several distance metrics, including Euclidean

(the most frequently used), correlation, direction cosine,

Minkowski (Mailagaha Kumbure and Luukka 2022) and

block distance (Miljković 2017; Rawat et al. 2011) metric,

can be used. In distance-based neural network (NN) clus-

tering, a cluster center is usually represented by a trained

neuron and can be called ‘‘center of a class’’ or an

agglomeration of the data point (Litinskii and Romanov

2006), and input data can be clustered according to its

nearest neuron. How to improve the clustering quality has

always been a hot topic. One weakness of distance-based

NN clustering is that the data grouped into the same neuron

or cluster do not belong to the same class; additionally, the

generated cluster number in a distance-based model is

sensitive to the NN’s neuron number. It is well known that

one of the most challenging problems in data clustering is

determining the number of clusters automatically. From the

view of representation learning, if network B can represent

the data samples better than network A, we say that B has a

‘‘better representation ability’’ than A. Neurons that can

adequately represent specific input patterns are occasion-

ally lacking, and this is a recurring problem in distance

neural network clustering; we call it the ‘‘lack of repre-

sentation ability problem.’’ Based on Thrun (2021), biased

clustering occurs due to the difference between given

cluster structures and the reproduced structures. For
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instance, the self-organizing map (SOM), commonly well

known as the Kohonen network (Kohonen 1982), is a

powerful unsupervised, competitive learning method for

the visualization and analysis of high-dimensional data. It

is a single-layer network, and the units are distributed

along m-dimensional grids (most applications use two-di-

mensional rectangular grids). As a hard clustering algo-

rithm (Jain et al. 1999), it allocates each input data point to

a single neuron. SOM can preserve the topological struc-

ture of data and group training data based on the distance

between data and neurons. In technical contexts, SOM is

utilized in the fashion of neighborhood preserving vector

quantizers and projects data from the input space to a

position in some output space (the map’s weight matrix).

However, the algorithm is derived from heuristic ideas

rather than statistical principles (Bishop et al. 1996),

leading to several significant limitations. First, the cluster

number is restricted by the number of neurons. Each neu-

ron represents a cluster centroid; frequently, not all data

belong to the same class, and there are always some data

that have class labels that are different than the labels of the

majority of the data in each cluster. SOM lacks extra

neurons to represent these data due to a predefined neuron

number. Second, due to the unclear clustering boundaries

of nodes in SOM, the clustering results are inconsistent

each time due to the influence of the initial value of neu-

rons and the data input order (Deng and Mei 2009). After

training, the trained weight matrix of neurons only repre-

sents part of the input samples; we call these data ‘‘repre-

sented data.’’ There will always be some part of the sample

data that is weakly represented by the node matrix; we

denote this part of data as ‘‘unrepresented data.’’ We can

manually adjust the number of neurons and train the model

again. However, because it is a new round of training, the

previous ‘‘unrepresented data’’ are changed to new ‘‘un-

represented data’’.

This paper presents a new method to solve the above

problem. Without modifying the traditional SOM algo-

rithm to solve the ‘‘lack of representation ability problem,’’

we aim to find new neurons that can adequately represent

‘‘unrepresented data.’’ Different from the typical definition,

where a neuron is just a vector in the data space, we

extended the concept of a neuron to be a representative

neuron as follows: each neuron unit Ni ¼ ðwi;MiÞ, has two
properties: First, it contains a synaptic weight vector w =

[ni0 ; ni1 ; . . .; nim�1
], which has the same dimensionality as an

input data ([i0; i1; . . .; im�1]) and represents the location of

the neuron in the data space. The second property is the

training data samples it can represent, called its members

M. Each w of a neuron unit, which is in an m-dimensional

space, will change during training based on the input

dataset. After training, a weight matrix W0 (the

combination of each neuron’s w) represents the entire

dataset (the combination of each neuron’s M) in an m-

dimensional data space. However, for traditional SOM,

W0’s representation ability is not perfect. We try to find the

solution by splitting training data with the help of external

validation and finding the ‘‘unrepresented data,’’ which will

be used for extra training with the SOM algorithm. We

obtain a new topology representation by combining the

newly generated weight matrices with the initial one. The

newly combined weight matrix has better clustering qual-

ity. In summary, our method’s main task is splitting the

training samples to discover ‘‘missing’’ neurons whose

members can be perfectly represented without modifying

the original network’s algorithmic structure and internal

operations, which is delineated in the latter part of the

paper.

The remainder of the paper is organized as follows:

Related studies on SOM are described in Sect. 2. Section 3

describes SOM, the proposed TDSM, and its algorithm.

Section 4 presents several main experiments based on real

datasets and validates the TDSM. Finally, we conclude the

paper in Sect. 5.

2 Related Studies

Because this research is based on SOM, this section first

describes the SOM algorithm. There are two core concepts

in SOM: competitive learning and adjusting the local

synaptic plasticity of the neurons in learning (Kohonen and

Honkela 2007). These two facets empower SOM to evolve

a robust self-organization map (Bauer and Villmann 1997).

When input data go through the network, the output of the

clustering function is an index of the trained weight matrix

(W0), which represents the index of the cluster it belongs

to; for example, if a function Fði;W0Þ takes a data point i as
input and the neuron representationW0 outputs the index of

the winner neuron in W0, the index is denoted by x

(x 2 ½0; n� 1�, where n is the total number of neurons).

When the function is applied to the whole dataset, it is

FðI;W0Þ, and the output is ½x0; x1; :::xi� (i is the number of

neurons minus 1, and I is the input dataset).

SOM defines the similarity based on the distance and

usually applies a complete learning algorithm, where

‘‘winner-takes-all’’ circuits play a central role in competi-

tive learning networks (Kaski and Kohonen 1994). The

network is initialized with a weight matrix Winitial in a

simple SOM algorithm. Suppose that the input data is an

m-dimensional vector; then, Winitial is an N � m matrix, and

N is the number of neurons. Each element’s initial value in

Winitial is randomized and drawn from a Gaussian distri-

bution. The winning neuron is the input data’s best match

unit (BMU), representing the neuron with the minimum
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distance from the input data. To show the basic principle,

SOM establishes a simple model: by utilizing the dis-

criminant function FðI;W0Þ to compare the distances

among the input data and each unit in the network with the

formula shown in Eq. 1:

dij ¼k Ii � Nj k2; ð1Þ

where dij is the Euclidean distance between input vector Ii
and one neuron vector Nj in a weight matrix W. SOM can

find the winning unit, whose position is replaced by the

input data so that BMU is the perfect representation of the

input data. Other non-winning neurons remain static or

move toward the winner neuron. Figure 1 (a) shows two

input data points and an initial SOM network. Figure 1 (b)

shows that after one comparison, the adjusted topology

represents the training data (blue and red points), and the

output is FðI1;WinitialÞ ¼ 0 and FðI2;WinitialÞ ¼ 8. In the

figure, I1 is represented by the red point and is assigned to

Cluster 0, and I2 is represented by the blue point and is

assigned to Cluster 8.

The second important part of SOM is its neighborhood

function, derived from the bionics concept of synaptic

plasticity (Kohonen and Honkela 2007). Like a chemical

effect, the winner neuron also impacts the nodes nearby,

which represent the neighborhood. Based on the descrip-

tion of El Atik et al. (2021), neighborhood systems are

used to approximate graphs as finite topological structures.

With the help of neighborhood function, neurons in SOM

can influence or organize other neurons within the same

network, giving the network better stability (Miljković

2017). There is a parameter called the BMU distance,

which denotes the range affected by the BMU. If the BMU

distance = 1, Fig. 1 (b) is similar to Fig. 1 (c); that is,

points 1 and 3 are winner 0’s neighbors, so they will also

move toward the input data, but they are not winners, and

cannot ‘‘take all’’; they can only move a certain distance

toward the input data. There are many different neighbor-

hood functions; the exponential decay formula derived

from sklearn-som 1.1.0 (Smith 2021) is defined like this:

Nðu; vÞ ¼ e�
duv
r2 ; ð2Þ

where v is the index of neuron node in the network, u is the

BMU node, duv is the distance between u and v, and r is an

optional parameter for the magnitude of change in each

weight; higher values mean more aggressive updates to the

weights.

Based on the winner-take-all concept and the local

neighborhood function, SOM updates Winitial in each

training iteration with the following formula:

Wiþ1 ¼ Wi þ Nðu; vÞ � l� ði�WiÞ: ð3Þ

In Eq. 3, i is the current iteration index, and N(u, v) is the

neighbor function, l means the learning rate which shows

the step size for updating the SOM weights, and i is an

input data vector. The learning rate and neighborhood

radius decrease with each iteration toward zero to guar-

antee convergence and stability (Lobo 2009). With a cer-

tain iteration, after training, Winitial is updated to W0. It is

worth noting that spatial locations of the neurons (W0) in

the SOM lattice are topologically related to the features of

the input space, which provide a good approximation to the

input samples (Miljković 2017). After training, the updated

weight matrix W0 represents the training samples and can

be used to predict cluster labels for the test data.

To the best of our knowledge, on the premise of not

changing the quality of the training data, e.g., noisy data-

set removal, subspace selection, and projected clustering

(Bassani and Araujo 2014; Bassani and Araújo 2012; Braga

and Bassani 2018), most researchers focus on improving

the neural network structure itself to obtain better cluster-

ing results. Nevertheless, they seldom start from a data

viewpoint and find a way to eliminate the ‘‘unrepresented

data’’ in each cluster. Specifically, there are two ways to

optimize the network structure: predefining a new structure

externally and adaptively adjusting the structure internally

during the training phase.

For the external method, as noted in Lampinen and Oja

(1992), multiple-layer SOM clusters match the desired

classes better than direct SOM clusters. Cascaded SOM

(Hua and Mo 2020) utilizes ensemble learning to obtain a

more robust network structure by training the same sam-

ples multiple times and obtaining multiple weight vector

matrices, which are used as the input for further layer SOM

training; then a final decision is generated by learning the

responses of different clusters.

For internal optimization, unlike the traditional SOM

algorithm, a modified SOFM (Ghosh et al. 2009) abandons

the competitive learning process to decide which neuron to

update. Instead, it calculates the dot product of input and

weight vectors of the output neuron; when the dot pro-

duction reaches a predefined threshold t, the neurons are

allowed to be adjusted based on the traditional SOM

neighbor function. As a result, different inputs are given to

Fig. 1 In the self-organization process of SOM, given input data, the

winner directly moves to the position of the input data, (a) is the

original map; (b) is the map after training, and the red and blue points

represent the training samples; and (c) is the map after using the

neighborhood function
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different output neurons, and weight updating is performed

based on the considered threshold. Rating-weighted SOM

(Park 2022) updates the formula for choosing the best

match unit in the network by adding a bias function of the

relevance scores generated from the training set. To

address online learning environments, a dynamic self-or-

ganizing map (DSOM) (Rougier and Boniface 2011) can

be used to remove the time dependency by replacing the

initial learning rate and neighbor function, which reflects

two main ideas: first, if a neuron is close enough to the

data, then it can represent the data, and other neurons do

not need to learn. Second, if no neuron is close enough to

the data, any neuron learns the data according to its own

distance. The growing hierarchical self-organizing map

(GHSOM) (Rauber et al. 2002) introduces the concept of

quantization error (QE), which represents the sum of the

distances between each cluster center and the data. It

assumes that a better-trained map has a lower QE value or

mean quantization error (MQE). To decrease the value of

MQE of the whole network, the GHSOM first finds a

neuron called an ‘‘error unit’’ with the maximum QE value.

Then, a row or a column of neurons is inserted between the

error unit and its most dissimilar neighbor neuron (the

neuron that is farthest from the error unit). GHSOM con-

tinues the above process until all the data are in one cluster

or the whole network MQE, and each neuron’s MQE is

below a threshold. Furthermore, an adaptive moving self-

organizing map (AMSOM) algorithm (Spanakis and Weiss

2016) creates a more flexible structure to dynamically alter

the topological position of the neurons by not just adding

neurons but removing redundant neurons or adding other

neurons; consequently, it can adjust the connections

between neurons to enhance the topological properties of

the network.

There are also some methods that combine different

SOM architectures; for example, a hybrid approach was

developed by fusing the concepts of SOM and GSOM for

solving the tweet-summarization task. SOM helps in

reducing the dataset size in terms of the number of tweets,

while, GSOM helps in generating the summary.

Although the data in the networks above become more

similar to their cluster centroid or the neuron topological

structures become more similar to the patterns, there is no

evidence to prove that the ‘‘unrepresented data’’ is suffi-

ciently reduced and misclassification still exists in the

clustered training data.

3 Proposed method

In brief, our method extends the concept of neurons in

SOM; that is, each neuron has a pair of properties: location

w (the internal property) and members M (the external

property), which denote the training data the neuron rep-

resents. A neuron’s extent (the external property) can be

changed or evolved if we apply it in a supervised envi-

ronment. After the change or evolution, each neuron will

have a perfect representation ability to its members. We

call such neurons perfect representative neurons.

We have to use validation measures to evaluate the

performance of the clustering algorithm. There are two

types of validation methods: internal and external valida-

tion (Sripada and Rao 2011). As external validation mea-

sures, the purity, normalized mutual information (NMI),

and adjusted rand index (ARI) measures are used exten-

sively to validate the accuracy of a clustering technique.

Better clustering models will have a higher score. In a

group of clustered data, if we can reduce the incorrectly

clustered data (‘‘unrepresented data’’), then we can obtain a

higher cluster validation score. SOM is an unsupervised

clustering method, and we use external validation to dis-

tinguish the ‘‘represented data’’ and ‘‘unrepresented data’’

in a generated cluster. Once we can find extra neurons

representing the ‘‘unrepresented data’’, the new combined

neuron map’s clustering quality will be improved

significantly.

3.1 TDSM

The proposed method is based on the theory that the weight

matrix W represents the data samples in n-dimensional

space (n is the number of neurons in the network). Let Iu
denote the ‘‘unrepresented data,’’ and Ir is the ‘‘represented

data’’ (correctly clustered data, where data with the same

class label are grouped based on the distance with cluster

centroids), I ¼ Iu [ Ir, where I is the training data. FðIr;WÞ
returns the predicted cluster labels Lp of Ir,

ðLp ¼ ½x1; x2; . . .; xj�, j denotes the sample number in Ir)

and the cluster quality or precision indicators (purity,

NMI,ARI) all equal 1. After eliminating the ‘‘unrepre-

sented data,’’ W0, which initially represents the whole data

samples but not perfectly, now perfectly represents the Ir in

the feature space. Property 1 (location w ) of each neuron in

W0 remains the same, but property 2 (the members in each

neuron) is changed. If we can find W1 that represents the

‘‘unrepresented data’’ Iu, then the conjunction of W0 and

W1 will theoretically perform better in representing I than

W0 does, as shown in Fig. 2. The new W 0 matrix is denoted

as (Equation: 4 ):

W 0 ¼
W0

W1

� �
: ð4Þ

A 3D illustration of the combination is shown in Fig. 3.

To obatin W1, we use the same neural network model to

train the ‘‘unrepresented data.’’ The generated weight
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matrix W is denoted by W1. Theoretically,

PðW1; Iu; LtuÞ�PðW0; Iu; LtuÞ, (Ltu is the ground-truth class

label for Iu); as W1 is generated by training Iu exclusively,

it should have better representation ability than W0 (W0 is

the perfect representation of Ir and the incorrect repre-

sentation of Iu). Furthermore, we can apply the same data

splitting rules on Iu to find Iu’s ‘‘represented data’’ and

‘‘unrepresented data.’’ In the extreme case, eventually,

there will be no ‘‘unrepresented data’’ in the final splitting

stage, e.g., Fig. 4, and the whole training data can be split

into a multiple-layer structure. Each layer is a part of the

training data, and the training data can be perfectly repre-

sented by an exclusive SOM network.

Ideally, after validating the test data, we should obtain

the following result: PðW 0; Itrain; LtrainÞ�PðW0; Itrain; LtrainÞ
and PðW 0; Itrain; LtrainÞ ¼ 1, (function P denotes the cluster

performance indicator (purity, NMI,ARI) score, Itrain
denotes the training data, and Ltrain is the ground-truth class

labels in training data); when the training data have suffi-

cient ability to represent the feature space, in test data

validation, we should also obtain

PðW 0; Itest; LtestÞ�PðW0; Itest; LtestÞ (Itest denotes the test

data, and Ltest is the ground-truth class labels in the test

data). Figure 5 illustrates the process of the proposed

method, and Fig. 6 is an example of the proposed

approach; the external validation operation is the operation

that finds ‘‘unrepresented data’’ with the help of a class

label in training data.

After each split, the number of neurons in the network

doubles. Consequently, the cluster number increases to

ðmþ 1Þ � N (m denotes the split time, and N denotes the

number of initial clusters). Namely, after splitting, the

original network is divided into mþ 1 subnetworks; Each

subnetwork has N neurons and can perfectly represent part

of the training samples; however, not all the neurons have

data to represent, and they are called ‘‘empty neurons’’ or

‘‘dead neurons’’ in Ghaseminezhad and Karami (2011).

Finally, for given test data, we need to determine which

sub-network should be used for its representation. To

achieve this goal, we find the test data’s nearest neighbor in

the training vectors and use the sub-network that the

nearest neighbor belonged to as the input weight matrix to

predict the test data’s cluster in SOM.

3.2 Algorithm

To find the ‘‘unrepresented data’’ in each iteration, one of

the most important processes is to obtain the mapping of

Fig. 2 Ideally, for the training data, BMU of Ir should come from W0

and BMU of Iu should come from W1; Ir uses FðIr;W0Þ to obtain the

cluster, and Iu uses FðIu;W1Þ

Fig. 3 Combination of W0 and

W1 in a 3D space. Screenshot

images are from (Tyler, 2006)

Fig. 4 (a) is a process of continuously splitting the ‘‘unrepresented

data’’ until there is no ‘‘unrepresented data,’’ e.g. Iuðn�1Þ ¼ Irn. In

Figure (b), I is the combination of all the ‘‘represented data’’ and W 0

is a combination of all the ‘‘represented data’’’s representation, which

is an ideal representation of I; the arrow denotes the ‘‘represented by’’

relationship, and the braces in Figure (a) denote the ‘‘split’’ operation
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predicted cluster labels and ground-truth class labels; the

operation is represented by MðLti ; LpiÞ, e.g., Algorithm 2.

In the above algorithm, li 2 ½0; n� 1�, where n denotes the

number of clusters that the subnetwork can generate, and li
begins at 0. As each W is trained independently, the

mapping of each W should be calculated separately, as

shown in Fig. 7. Algorithm 1 shows the whole process of

the TDSM. As long as the combined weight matrix W 0 is
generated, given a test data, the first step is to find its

nearest training data, which is a traditional nearest neigh-

bor problem (Andoni 2009). As one of the fastest algo-

rithms for the nearest neighbor query, the K-d tree (Chen

et al.2019)algorithm is applied to solve the above problem.

Finally, given a sample (itest) from test data, we detect its

nearest training data inearest and the W can represent inearest;

then, itest is predicted with the W.

The notations used in the algorithm are listed as follows:

(a) Lpi is the set of predicted cluster labels for

CurrentTrainData

(b) Lti is the set of ground-truth class labels for each

element in CurrentTrainData, Mapping(Wi) is the

class label and cluster label in Wi

(c) Gi is a predicted cluster (the data that a neuron can

represent)

(d) LtGi is the set of ground-truth class labels for each

element in Gi

(e) Iei is the unrepresented data for each split

(f) Iri is the represented data for each split

(g) i is the predicted cluster index in each W

Algorithm 1 TDSM
Input: training data, test data and initial

SOM parameters
Output: predicted class labels of all test data

1: NoErrorDataExit = False
2: Training data with SOM and obatining W0
3: W ′ = W0
4: CurrentTrainData = Training data
5: while NoErrorDataExit!= True do
6: Train CurrentTrainData with SOM and

obtain Wi and Lpi
(a)

7: Use M(Lti , Lpi) to obtain Iei and
Mapping(Wi) (b)

8: Allocate the split index Is to each data
sample in Iei

9: W ′ = Combine(W ′,Wi)
10: CurrentTrainData = Iei
11: end while
12: for each data It in test data do
13: Find the nearest neighbor in the training

data and obtain the neighbor’s split index m
14: Predict It with SOM using Wm and

Mapping(Wm)
15: end for

Algorithm 2 M(Lt, Lp)
Input: training data’s true class labels, pre-

dicted class labels
Output: a list of class labels to show the

mapping of Lt and Lp

1: Group each value li in Lp and obtain a Clus-
terGroup

2: for each group Gi in ClusterGroup do (c)
3: Get the ground-truth class label values

LtGi
in Gi

4: Obtain the most frequent value fti in LtGi

(d)
5: Obtain the data whose class label l �= fpi

in each Gi and save them in a set Iei (e)
6: Obtain the data whose cluster label l = fpi

in each Gi and save them in a set Iri (f)
7: Map fpi with i (g)
8: end for
9: return Mapping(Wi)

4 Experiment

To validate our theory, the competitor model we use is the

traditional SOM algorithm. The TDSM trains the training

data by the original SOM algorithm; we suppose that other

Fig. 5 Flow chart of the TDSM
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conditions or parameters, such as the initial neuron number

and domain knowledge utilization, are all the same. The

number of features that are used in the calculation remains

the same. Nine datasets obtained from the UCI machine

learning repository (Dua and Graff, 2017) are used in our

experiments, as described in Table 1. Data preprocessing

includes dropping useless or meaningless attributes, trans-

ferring features from string to float form, and choosing the

class label among the features. The last three columns in

Table 1 show the preprocessing for each dataset. For the

datasets that do not provide test data, we resample 30% of

the total training data as test data.

4.1 Clustering performance external validation

We evaluate the clustering results with three commonly

used evaluation metrics: purity, NMI, and ARI. Purity is

used extensively to test the accuracy of a clustering tech-

nique; see Eq. 5 (Jiang and Chung 2012). Better clustering

models will have higher purity scores.

PurityðW ;C;DÞ ¼ 1

N

X
k

max
j
ðnk \ cjÞ; ð5Þ

where D is the training data samples, N is the sum of the

samples in D, W ¼ N1;N2; . . .;Nm denotes the set of

clusters, C ¼ c1; c2; . . .; cj is the set of classes (obtained

from the ground-truth class labels in the training data), nk is

cluster k, and cj is class j.

Based on the equation above, if we can reduce the

incorrectly clustered data (unrepresented data) ð� in Clus-

ter1,h and x in Cluster2, and � and x in Cluster3 ), then we
can obtain a higher purity value. Nevertheless, one problem

is that when the number of clusters is large, it is easy to

obtain a high purity score; an extreme case is that purity is

one if each data point is assigned a cluster. Thus, purity

cannot be used to evaluate the clustering quality of two

algorithms if the number of clusters in each algorithm is

different (Forest et al. 2021). In the TDSM, the original

network with n clusters will be enlarged to an ðmþ 1Þ � n

cluster network after m splits. To use purity as an indicator,

Fig. 6 Example of the TDSM with one split. A, B, and C, denote the ground-truth class labels, and N denotes the cluster centroids

Fig. 7 When input data pass through different sub-networks, the

output should use diffident clustering mapping functions
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we compare the TDSM with another SOM that has ðmþ
1Þ � n neurons.

NMI is a variant of a common measure in information

theory called mutual information (MI), which means the

‘‘amount of information’’ one can extract from a random

variable regarding a second one, denoted by I(A, B) and its

formulation is in Eq. 7 (Amelio and Pizzuti 2015). NMI

depends on the mutual information I(A, B) and the entropy

of the ground-truth label set and the predicted clustered set;

see Eq. 6, (NMIðA;BÞ 2 ½0; 1�, 0 denotes no mutual infor-

mation and 1 denotes a perfect correlation). A higher NMI

score indicates better clustering results.

NMIðA;BÞ ¼ 2IðA;BÞ
ðHðAÞ þ HðBÞÞ ; ð6Þ

where I(A, B) is the mutual information of two jointly

random variables, A and B, (A is the ground-truth class

labels and B is the predicted labels), and H(A) and H(B) are

the entropy values of A and B, respectively, which can be

regarded as the probabilities that certain information exits;

see Eq. 8 (Kvålseth 2017).

IðA;BÞ ¼
X
k

X
j

PðAk \ BjÞ log
PðAk \ BjÞ
PðAkÞPðBjÞ

; ð7Þ

where PðAkÞ and PðBjÞ are the marginal distributions of Ak

and Bj, respectively, and PðAk \ BjÞ is the joint distribution
of Ak and Bj, where Ak 2 A and Bj 2 B.

HðAÞ ¼ �
X
k

PðAkÞ logPðAkÞ: ð8Þ

ARI is another standard clustering external validation

indicator. By calculating the number of sample pairs

assigned to the same or different clusters in the ground-

truth labels and predicted cluster labels, ARI can evaluate

the validity of the clustering algorithm. It ranges from �1.0

to 1.0. Random labels have an ARI close to 0.0. 1.0 stands

for a perfect match. According to Park and Jun (2009), ARI

is defined in Eq. 9:

ARI ¼ 2ðad � bcÞ
ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞÞ ; ð9Þ

where a is the number of pairs of objects that are placed in

the same class in A and in the same cluster in B, b is the

number of pairs in the same class in A but not in the same

cluster in B, c is the number of pairs in the same cluster in

A but not in the same class in B, and d is the number of

pairs in different classes in A and different clusters in B.

Different from purity, both NMI and ARI can be used to

validate the clustering performance among models with

varying numbers of clusters.

4.2 Elbow method

To validate the strengths of the TDSM compared to SOM,

we first need to determine the best neuron number K for

SOM. The elbow method in the K-means clustering algo-

rithm is used as a reference; inertia is the sum of the

squared distance of samples to their closest cluster center.

The inertia formula is shown in Eq. 10, and this number

should be as small as possible:

Inertia ¼
Xn
k¼1

X
xi2Sk

k xi � Ck k; ð10Þ

Table 1 Dataset description (Class label is not included in the Attribute no.) and data preprocessing

Dataset Classes

no.

Attribute

no.

Samples

no.

Classes

label

Dropped

attributes

Numberized attributes

IRIS 3 4 150 Species Id Species

User knowledge modeling 5 4 403 UNS NULL UNS

HCV data 5 12 615 Category ID Category,Sex

Absenteeism 28 20 740 Reason for

absence

NULL NULL

Mice protein expression 8 80 1080 class MouseID Genotype,Treatment class,Behavior

Estimation of obesity levels

based on eating habits and

physical condition

7 6 2111 NObeyesdad NULL CAEC,Gender,FAVC

family_history_with_overweight

SMOKE,CALC,MTRANS,

SCC,NObeyesdad

Anuran calls (MFCCs) 10 22 7197 Species Family,Genus

RecordID

NULL

Turkiye Student Evaluation 13 32 5820 class NULL NULL

Crowdsourced Mapping 6 28 10546 class NULL NULL
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where k is the number of clusters, k xi � Ck k is a Eucli-

dean norm between each data point xi and Ck (the centroid

of each cluster), and Sk denotes data in the kth cluster

(Worasutr et al. 2022).

However, similar to purity, there is an extreme example:

when K equals the number of samples, the inertia value is

0. Our goal is to cluster the data into the optimal number of

clusters, and the inertia value decreases as the number of

clusters increases, so we need to manually select K while

considering the trade-off between the inertia value and the

number of clusters. People usually use the elbow method

and choose the elbow point in the inertia graph.

The elbow method does not always yield the ‘‘obvious’’

K value. When the inertia line fluctuates dramatically, it is

difficult to find the elbow point. In this case, a smooth line

function with a parameter called ‘‘SmoothWeight’’ is used

to determine the elbow point; see Fig. 9. Equation 11

shows the formula for calculating the smooth value:

Sm ¼ D0 � Sw þ ð1� SwÞ � Di; ð11Þ

where Sm is the smoothed value, D0 is initialized as the first

data sample in the inertia plot, Sw is the ‘‘SmoothWeight,’’

and Di is newly given data sample in the plot. After each

iteration, D0 is replaced by Sm.

Furthermore, the inertia plot can sometimes be very

smooth and shows no distinct K value. As an alternative,

the silhouette coefficient (Aranganayagi and Thangavel

2007) is used to measure how similar an object is to its

cluster compared to other clusters. The mathematical

description of the silhouette coefficient is shown in Eq. 12

(Iqbal et al. 2021):

Si ¼
bi � ai

maxðbi; aiÞ
; ð12Þ

where Si is the silhouette score of data i, ai is the mean

distance of i to all other data points in the next-nearest

cluster data, and ai denotes the mean distance of i to all

other data points in the cluster i.

Si 2 ½�1; 1�, where a high value indicates that the data is

well matched to their own cluster and poorly matched to

neighboring clusters. Given a range of K values, we choose

a number that generates a higher silhouette score as the

optimal cluster number.

4.3 Overfitting problem

The objective of clustering is not to find the best partition

of the given sample but the actual partition in the under-

lying space (Bubeck and Von Luxburg 2007). A machine

learning model overfits the training data if the trained

model is more accurate on the training data; but less

accurate on the test data (Prieditis and Sapp 2013). In our

hypothesis, W 0 can perfectly represent given samples, as

presented in Fig. 11 and Fig. 12 with the purity, NMI, and

ARI scores all equal to 1 on the training data. This result

can be achieved on all the experimental datasets. We

cannot ignore the overfitting problem in our model. Com-

bined with Fig. 10, we can see that as the split number

increases, the ‘‘unrepresented data’’ proportion decreases to

zero; simultaneously, the purity score of the training data

inversely increases to 1, which means that the

Fig. 8 Majority class in three clusters: x : 3; � : 4;h : 3: The purity

value is ð3þ 4þ 3Þ=ð4þ 7þ 6Þ 	 0:588

Fig. 9 Inertia graphic with a smooth function

Fig. 10 The trend of the purity score and unrepresented data

percentage based on an increase in the training data split number;

the plot is generated from the Crowdsourced Mapping dataset with a

neuron number of 12
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representation ability with W 0 increases. Nonetheless, a

nontrivial outcome is that the purity score on test data

reaches its maxima when the split number is not at its peak.

In theory, with a decrease in the unrepresented data per-

centage, the quantity of data represented by the newly

generated weight matrix will be smaller, which explains

why the line gradually becomes horizontal at the end.

Additionally, the chance that these data are outliers or

noise increases as the spit number increases; for instance,

when splitting the training data 1 time, we can find the

majority of unrepresented data (the green line named ‘‘er-

ror data percentage’’ in Fig. 10). However, we can split the

training data more times until there are no unrepresented

data; apparently, with an increase in the split number, we

can only find a very small part of unrepresented data in

each split, and these data can be regarded as noise or

outliers, which affect the performance of the algorithm and

results in misplaced cluster centers (Askari 2021). From

this point of view, similar to the idea of ‘‘neighborhood

rough sets in outlier removal’’ (NeROR) method (Sew-

wandi et al. n.d.), which uses granule mining techniques

(Liu et al. 2012; Sewwandi et al. 2021) to identify 100%

pure clusters of data to detect outliers, the TDSM can also

be used to detect outliers. Consequently, we could resort to

properly reducing the split number to obtain a better result

on the test data and to prevent overfitting caused by

excessively splitting the training data.

4.4 Experimental results

We use the optimal cluster number K to train the model on

the experimental datasets and compare the external vali-

dation results with those of the TDSM algorithm. Table 3

shows that the TDSM outperforms SOM on the listed

datasets, where SOM uses the optimal cluster number.

However, the TDSM uses an excessively large split num-

ber, not the optimal one. Nonetheless, the clustering quality

Table 2 T test results for all datasets, with the assumption that test score W0\test score W0

Dataset Unstable repeateNum ScopeNum Scoretype T test P-value

IRIS 30 60 Purity 0.0003

NMI 0.0000

ARI 0.0000

User knowledge modeling 10 30 Purity 0.0002

NMI 0.0000

ARI 0.0000

HCV data 30 20 Purity 0.0034

NMI 0.0000

ARI 0.0000

Absenteeism 10 20 Purity 0.0008

NMI 0.0000

ARI 0.0000

Mice protein expression 10 20 Purity 0.0000

NMI 0.0000

ARI 0.0000

Estimation of obesity levels based on eating habits and physical condition 10 20 Purity 0.0000

NMI 0.0000

ARI 0.0000

Anuran calls (MFCCs) 30 20 Purity 0.0000

NMI 0.0000

ARI 0.0000

Turkiye student evaluation 10 30 Purity 0.0005

NMI 0.0000

ARI 0.0000

Crowdsourced mapping 1 30 Purity 0.0002

NMI 0.3136

ARI 0.0074

Bold value indicates P-value and significance level
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Fig. 11 The experimental results for each dataset (part 1); the purity graph have a lower density than the NMI and ARI graphics because we

compute the purity score with the same cluster number in SOM and the TDSM, and there are few data samples
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Fig. 12 The experimental results for each dataset (part 2)
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is improved in terms of NMI (7.70%�133.3%) and ARI

(9.62%�1011.11% ). The TDSM significantly increases

the clustering quality from that of the original SOM algo-

rithm and can be applied to most datasets.

A T test is used to check whether the TDSM clustering

quality is better than that of the original SOM algorithm.

To obtain sufficient samples for the T test, a parameter

called ‘‘ScopeNum’’ is applied as the upper limit of the

neurons used in each test. For instance, if ScopeNum is 30,

then the maximum number of neurons is the class_number

� 30 (the class_number denotes the class number in the

training data). The initial neuron number (minimum cluster

number) is the same as the chosen ground-truth class

number in each dataset. For some training sets, the test

result is not stable; to make it more durable, a parameter

called ‘‘Unstable RepeateNum’’ is added, and it represents

how many times the test should be repeated. The T test

result is shown in Table 2; apart from the NMI score on the

Crowdsourced Mapping dataset, whose P-value (describes

the probability of obtaining a sample statistic) is not less

than 5% (significance level), all other results demonstrate

that the TDSM outweighs SOM, the bold number shows

that the assumption of the T test is true and not likely to

happen strictly by chance.

5 Conclusion

This paper introduced a data-driven multiple-layer super-

vised clustering method called the training data splitting

method (TDSM), to reduce the data samples that cannot be

correctly clustered in each training step and to discover a

new network structure (composed of perfect representative

neurons) to represent those data. The critical point of the

proposed method is to distinguish ‘‘unrepresented data’’

(data that are grouped into error clusters with given neu-

rons) and ‘‘represented data’’ (data for which the current

trained network can perfectly represent the data) in the

training samples using external validation. When ‘‘unrep-

resented data’’ are removed from the clustered group data,

the rest of the data can be perfectly represented by the

initial neurons. By iteratively training the ‘‘unrepresented

data’’ using the same neural network model, for every

iteration, a weight matrix that represents part of the ‘‘un-

represented data’’ is generated until no ‘‘unrepresented

data’’ exists. The experimental results show that the pro-

posed model can significantly improve the clustering per-

formance of the original SOM network in terms of purity,

NMI, and ARI.

Moreover, future research could include exploring the

two limitations of this supervised clustering method: 1) the

training data must have a class label used for external

validation to find the ‘‘unrepresented data.’’, and 2) there is

room to optimize the algorithm’s efficiency.
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