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Abstract 2016 is the 60 anniversary of the birth of artifi-

cial intelligence (AI). In the past 60 years, many AI theo-

retical models have been proposed and great achievements

have been accomplished. Most intelligent computing

models are inspired by various human/ natural/social

intelligence mechanisms. Three main schools of artificial

intelligence are formed, that is, symbolism, connectionism

and behaviorism. Artificial intelligence is intelligence

exhibited by machines. It is applied when a machine

mimics cognitive functions that humans associate with

other human minds. Achievements of cognitive science

could give much inspiration to AI. Cognitive computing is

one of the core fields of artificial intelligence. It aims to

develop a coherent, unified, universal mechanism inspired

by human mind’s capabilities. It is one of the most critical

tasks for artificial intelligence researchers to develop

advanced cognitive computing models. Cognitive com-

puting is the third and most transformational phase in

computing’s evolution, after the two distinct eras of com-

puting—the tabulating era and the programming era.

Inspired by human’s granularity thinking, problem solving

mechanism and the cognition law of ‘‘global precedence’’,

a new powerful cognitive computing model, data-driven

granular cognitive computing (DGCC), is proposed in this

paper. It takes data as a special kind of knowledge

expressed in the lowest granularity level of a multiple

granularity space. It integrates two contradictory mecha-

nisms, namely, the human’s cognition mechanism of

‘‘global precedence’’ which is a cognition process of ‘‘from

coarser to finer’’ and the information processing mecha-

nism of machine learning systems which is ‘‘from finer to

coarser’’, in a multiple granularity space. It is also based on

the idea of data-driven. The research issues of DGCC to be

further addressed are discussed. Based on DGCC, deep

learning is neither classified into symbolism, nor connec-

tionism. It is taken as a combination of symbolism and

connectionism, and named hierarchical structuralism in this

paper. The HD3 characteristics (hierarchical, distributed,

data-driven, and dynamical) of the hierarchical structural-

ism are analyzed. DGCC provides a granular cognitive

computing framework for efficient knowledge discovery

from big data.

Keywords Granular cognitive computing � Cognitive
computing � Granular computing � Data-driven �
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1 Introduction

The field of artificial intelligence (AI) research was born at

a conference in Dartmouth College in 1956 (Crevier 1993).

The attendees, included McCarthy, Newell, Minsky,

Samuel and Simon, who became the founders and early

leaders of AI research. In the past 60 years, many artificial

researchers have tried to develop intelligent computing

models with inspiration of various human/natural/social

intelligence mechanisms. Three main schools of artificial

intelligence are formed; namely, symbolism,

The paper is an extension based on the keynote talk ‘‘Data-driven
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connectionism and behaviorism. Many milestone AI

achievements have been accomplished.

In the middle 1950s, AI researchers began to explore the

possibility that human intelligence could be reduced to

symbol manipulation. It is called the symbolism of AI.

Newell and Simon introduced the physical symbol system

hypothesis in 1976 (Simon 1996; Newell and Simon 1976).

Human cognition is taken as a kind of symbolic processing,

and the processes of human thinking could be computed by

symbol (Simon 1996; Newell and Simon 1976). Logic

programming science and tools like Prolog and LISP are its

typical representative results. Feigenbaum introduced

expert systems, which is a form of AI program that simu-

lates the knowledge and analytical skills of human experts

(Jackson 1998; Leondes 2001). It is the first truly suc-

cessful form of AI software. It has many successful

applications in various fields. More and more expert sys-

tems are being developed until now.

The connectionism of AI was established by McClelland

and Rumelhart in the 1980s (Rumelhart and McClelland

1986). The emergence of the connectionist paradigm lar-

gely resulted from various dissatisfactions with the sym-

bolism of AI. It is a set of approaches in the fields of

artificial intelligence, cognitive psychology, cognitive sci-

ence, neuroscience, and philosophy of mind, which models

the mental or behavioral phenomena as the emergent pro-

cesses of interconnected networks of simple units. It relies

on the bionics to simulate human intelligence (brain) and

considers the intelligence as the result of interconnected

neurons’ competition and collaboration. Artificial neural

network is its most common form (Haykin 1994). There are

many typical artificial neural network models, such as,

back-propagation neural network (Rumelhart et al. 1986),

Hopfield neural network (Hopfield 1982), Kohonen self-

organizing maps (Kohonen 1982), Boltzmann machine

(Ackley et al. 1985), radial basis function network

(Broomhead and Lowe 1988). Artificial neural networks

have been applied successfully in a lot of real life areas,

such as system identification and control, quantum chem-

istry, game-playing and decision making, pattern recogni-

tion, sequence recognition, medical diagnosis, financial

applications, data mining, visualization, etc.

The behaviorism of AI considers that intelligence

depends on the perception and behavior. Intelligent

behavior can be manifested through interaction between

real-world and surrounding environment (Skinner 2011).

‘‘Perception-action’’ model was proposed. In the behav-

iorism of AI, intelligence may not require knowledge,

knowledge representation or knowledge reasoning. It

studies and simulates the intelligent behaviors in auto-

control processes, such as self-optimizing, self-adaption,

self-learning and self-organization. In 1988, Brooks

invented the Hexapod Walking Robot, which was

composed of 150 sensors and 23 actuators (Brooks 1991).

It is a very successful example of behaviorism in that

period. The idea of ‘‘Perception-action’’ has often been

applied in auto-control systems.

In the recent 20 years, with the rapid development of

high-performance computing, internet, internet-of-things,

cloud computing and big data, AI has more and more great

achievements on solving some specific problems. Deep

Blue became the first computer chess-playing system to

beat a reigning world chess champion, Garry Kasparov on

11 May 1997. In February 2011, IBM’s question answering

system, Watson, defeated two greatest Jeopardy champi-

ons, Rutter and Jennings. In March 2016, AlphaGo

defeated Sedol Lee, becoming the first computer Go-

playing system to beat a professional Go player. In 2017,

the new version of AlphaGo defeated over 60 professional

Go players. Several kinds of unmanned intelligent vehicles

are running on road successfully nowadays.

The development of artificial intelligence has been

accompanied with the development of computer science in

the past 60 years. Kelly introduced the following three

phases in computing’s evolution as shown in Fig. 1 (Kel-

ly III 2015). It would also be very important for artificial

intelligence to move into the cognitive era. Cognition

inspired artificial intelligence technologies will be devel-

oped quickly.

Through studying the basic ideas and typical models of

cognitive computing (Kelly III 2015) and granular com-

puting (Yao et al. 2013), with the inspiration of a typical

human cognition model, a novel powerful cognitive com-

puting model, data-driven granular cognitive computing

(DGCC), is proposed based on the idea of data-driven. It

takes data as a special kind of knowledge expressed in the

lowest granularity level of a multiple granularity space. Its

triangular structure is shown in Fig. 2. It integrates the

traditional data-driven bottom-up information computing

mechanism of machine learning/data mining systems and

an important top-down human cognition law of ‘‘global

precedence’’ (Han and Chen 1996; Chen et al. 2003). The

triangular structure of DGCC will be further analyzed in

the Sect. 4 of this paper.

Deep learning (Hinton and Salakhutdinov 2006; Hinton

et al. 2006; LeCun et al. 2015), an advanced statistical

machine learning model, access to large amounts of data

and faster computers has enabled great advances in

machine learning and perception in recent 10 years. Based

on the idea of DGCC, the intelligence learning mechanism

of deep learning is studied and taken as a new artificial

Fig. 1 Three phases in computing’s evolution (Kelly III 2015)

344 Granul. Comput. (2017) 2:343–355

123



intelligence mechanism called hierarchical structuralism in

this paper.It is also like the idea of hierarchical problem

solving in granular computing (Yao 2011).

Data-driven granular cognitive computing provides a

granular cognitive computing framework for efficient

knowledge discovery from big data. The idea of DGCC has

already been applied to solve some real life problems

successfully, such as clustering, image processing, time

series forecasting, et al (Deng et al. 2016; Yu et al. 2016;

Liu et al. 2013; Xu et al. 2016, 2017). In this paper, the key

features of DGCC and theoretical issues to be studied for

implementing a DGCC are discussed.

2 Cognitive computing: brain/mind inspired
computing

Cognitive science is the interdisciplinary scientific study of

the mind and cognitive processes. It examines (Thagard

2014)

• what cognition is

• what it does

• how it works

Cognitive science includes research on intelligence and

behavior, especially focusing on how information is rep-

resented, processed, and transformed within nervous sys-

tems (human or other animal) and machines (e.g.,

computers).

As the cognitive science hexagon shown in Fig. 3

(Miller 2003), researchers in various fields, such as cog-

nitive psychology, philosophy of mind, cognitive linguis-

tics, cognitive anthropology, and artificial intelligence,

have had a lot of studies about cognitive science. It is one

of the fundamental sciences for cognitive computing.

Cognitive computing aims to develop a coherent, unified,

universal mechanism inspired by the mind’s capabilities

(Modha et al. 2011). It is a new type of mind inspired

computing with the goal of more accurate models of how

the human brain/mind senses, reasons, and responds to

stimulus. Cognitive systems should be adaptive, interac-

tive, iterative, stateful, and contextual.

Cognitive computing is based on the scientific disci-

plines of artificial intelligence and signal processing.

Artificial intelligence researchers have developed many

intelligent computing models and machine learning models

to address complex real-world problems inspired by some

specific intelligence observation of brain/mind law, bio-

logical law, natural law, and social law. They are close to

human’s way of reasoning, use non-exact and non-com-

plete knowledge, and could produce control actions in an

adaptive way. Fuzzy logic enables a computer to under-

stand natural language and reason in a similar way to

human being (Zadeh 1996). Artificial neural networks learn

experiential data by operating like the biological/human

brain (Rumelhart et al. 1988; Hopfield 1982; Kohonen

1982; Ackley et al. 1985; Broomhead and Lowe 1988).

Evolutionary computing is based on the process of natural

selection and natural evolution (De Jong 2006). The

inspiration of swarm intelligence comes from nature,

especially biological systems (Beni and Wang 1993).

Artificial immune systems are inspired by theoretical

immunology and observed immune functions, principles

and models (De Castro and Timmis 2002). Granular

computing mimics a way of thinking that relies on the

human ability to perceive the real world under various

levels of granularity to abstract and consider only those

things that serve a specific interest and to switch among

different granularities (Yao et al. 2013; Zhang and Zhang

2014). There are also some researchers trying to set up a

unified theory of human cognition. They are seeking to

implement a unified computational theory of the mind,

while not just using different cognitive processes to con-

struct independent cognitive computing systems. It is

described by Allen Newell as a single set of mechanisms

for all of cognitive behavior (Newell and Simon 1976).

Granulation Cognition

Data

Compution

Fig. 2 Triangular structure of DGCC

Philosophy

Psychology

Artificial
Intelligence

Neuroscience

Anthropology

Linguistics

Fig. 3 Cognitive science hexagon (Miller 2003)
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Cognitive computing offers fundamental differences in

how intelligent systems are built and interact with humans.

Cognitive-based systems, such as IBM Watson, are able to

build knowledge and learn, understand natural language,

and reason and interact more naturally with human beings

than traditional systems (Bellisimo 2015).

In the future, more intelligent cognitive computing

systems will be developed inspired by some new cognition

laws discovered.

3 Granular computing: human granular thinking
and problem solving

Humans often have strong abilities of processing non-

numeric information clumps (granules) rather than indi-

vidual numeric values. Granules are composed of objects

that are drawn together by indiscernibility, similarity, and/

or functionality among the objects (Zadeh 1997). The

original idea of information granulation could be dated

back to the nineties of the last century (Zadeh 1997).

Information granulation is inherent in human thinking and

reasoning processes. It could permeate almost all human

endeavors. Granulation—an operation to construct or

decompose granules—is one of the key issues of granular

computing. The label of Granular Computing (GrC) was

suggested by Lin in late 1990s. Granular computing has

emerged as one of the fastest growing intelligent com-

puting paradigms in the domain of cognitive intelligence

and artificial intelligence (Yao et al. 2013). It is often

loosely regarded as an umbrella term to cover theories,

methodologies, techniques, and tools that make use of

granules in complex problem solving (Zadeh 1997, 2007;

Pedrycz 2001, 2006; Lin 2003; Yao 2004, 2005; Bargiela

and Pedrycz 2008). Granular computing could be adopted

into a structured combination of algorithmic and non-al-

gorithmic information processing that mimics humans by

intelligent synthesis of knowledge from information.

Bargiela and Pedrycz consider granular computing as a

conceptual and algorithmic platform for analyzing and

designing human-centric intelligent systems (Bargiela and

Pedrycz 2008).

Zadeh considers granular computing as a basis for

computing with words which computes with information

described in natural language (Zadeh 1996). Fuzzy sets and

fuzzy logics could provide a granular representation of

uncertain information about a variable of interest.

Skowron uses rough approximations to model syntax,

semantics, and operations of information granules (Jan-

kowski and Skowron 2007). The two granulation struc-

tures, partition with an equivalence relation and cover with

a reflexive binary relation, could be generated from rough

set points of view. More importantly, multilevel

granulation structures could be induced by hierarchies of

the universe and neighborhood systems.

Zhang and Zhang propose a quotient space theory for

problem solving inspired by the human thinking ability of

perceiving the real world under various levels of granu-

larity to abstract and consider only those things that serve a

specific interest and switching among different granulari-

ties. A problem space is represented as a triplet of the

universe, its structure, and attributes. A problem space with

different granularity sizes can be represented by a set of

quotient spaces (Zhang and Zhang 2014).

Formal concept analysis could be adopted to automati-

cally derive ontology from a set of objects (Wille 1982).

The granular structure of concept lattices in formal concept

analysis is useful for knowledge reduction. A granular

reduction of a formal context is a minimal attribute set

preserving the object granules of the concept lattice

obtained from the full attribute set. Based on a reduction of

a formal decision context, knowledge in the sense of

granular IF–THEN rules hidden in the decision context can

be generated (Yao et al. 2013; Chou et al. 2009).

As shown in Fig. 4 (Yao 2016b), Yao views granular

computing as a complementary and dependent triangle,

which integrates three important perspectives, namely,

philosophy of structured thinking, methodology of

structured problem solving, and mechanism of structured

information processing (Yao 2016b). He proposed a tri-

secting-and-acting model to explain three way decisions

(3WD), a class of effective ways and heuristics com-

monly used in human problem solving and information

processing, in terms of two basic tasks. One task is to

divide a universal set into three pair-wise disjoint regions

called a trisection or a tri-partition of the universal set.

The other task is to act upon objects in one or more

regions by developing appropriate strategies (Yao

2016a).

Wang proposes a bidirectional cognitive computing

model (BCC) between concept’s extension and intension

based on a qualitative and quantitative mapping model for

expressing and processing of uncertain concepts developed

by Li (Liu et al. 2013; Wang and Xu 2012; Wang et al.

Fig. 4 The granular computing triangle (Yao 2016b)
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2014; Li et al. 1995). It uses three parameters, namely

expected value, entropy and hyper entropy, to describe the

intension of a concept, while a set of samples to describe its

corresponding extension. Forward transformation algo-

rithm implements the transformation from the intension of

a concept to its extension, while backward transformation

algorithm vice versa. A multiple granularity concept gen-

eration model was developed for generating hierarchical

concept trees as shown in Fig. 5 (Liu et al. 2013).

Xu and Wang study the problem of adaptive multiple

granular hierarchical clustering. Rodriguez and Laio

develop an effective clustering approach based on fast

searching and finding of density peaks (Rodriguez and Laio

2014). Xu and Wang further improve it and develop an

adaptive hierarchical clustering approach to generate a

hierarchical tree as shown in Fig. 6 (Xu et al. 2016, 2017).

The original data could be clustered into 2, 4 or 5 clusters

in a hierarchical structure.

There are also some similar granular computing models

developed to simulate and implement human granular

thinking and problem solving, such as, interactive granular

computing (Skowron et al. 2016; Wilke and Portmann

2016), granular neural network (Song and Wang 2016),

granular clustering (Peters and Weber 2016; Yu et al.

2016; Xu et al. 2016), etc.

4 Data-driven granular cognitive computing:
integration of mind-driven and data-driven
computing

In classical intelligent information systems, original data

are collected from environment at first usually, useful

information is extracted through analyzing the input data

then, and it is used to solve some problem at last. There is a

common characteristic of traditional machine learning,

data mining and knowledge discovery models. That is,

knowledge is always transformed (extracted) from data. It

is a unidirectional transformation from finer granularity to

coarser granularity as shown in Fig. 7.

There is a human cognition law called ‘‘global prece-

dence’’ developed by Chen, a cognitive scientist, in 1980s

(Han and Chen 1996; Chen et al. 2003; Chen 1982). As

shown in Fig. 8a (Han and Chen 1996; Navon 1977), there

are four large characters (the global level) made out of two

small characters (the local level). People always recognize

the large characters in the global level at first and then the

small characters in the local level. It is easy to draw and

recognize a people, as shown in Fig. 8b, through his/her

caricature, which has just a few lines, without analyzing

detailed pixels. It is also easy for a people to recognize his/

Fig. 5 A concept tree generated at different granularity levels (Liu

et al. 2013)

Fig. 6 Multiple granularity clustering based on density peaks (Xu et al. 2016)
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her old friend in a far distance at glance through its outline

without detailed information. It shows the cognition law of

the information processing in human visual perception. It is

a cognition process from coarser granularity to finer

granularity.

It is obvious that there is contradiction between the

unidirectional transformation mechanism ‘‘from finer

granularity to coarser granularity’’ of traditional intelligent

information systems with the global precedence law of

human cognition. It would be a great challenge to integrate

them into a machine learning model. Here, we propose a

new model, DGCC, for this purpose. The Triangular

structure of DGCC is shown in Fig. 2. In this triangular

structure, computation emphasizes the data science which

includes all efficient computing models and methods for

processing big data; cognition emphasizes the smart

understanding of big data and the intelligent interaction

between users and information systems; granulation

emphasizes the multiple granularity thinking and modeling

for dealing with big data. Computation, cognition and

granulation are implemented in a data-driven way. Wang

developed a general multiple granularity structure for

DGCC as shown in Fig. 9 (Wang et al. 2016).

Data-driven granular cognitive computing has the fol-

lowing key features.

• In DGCC, data are considered to be knowledge in the

lowest granularity level, and knowledge is considered

to be the abstraction of data in different granularity

layers.

• There could be relationship both between nodes

(concepts) in a same granularity layer, and between

nodes (concepts) in different layers.

• Nodes in different granularity layers could take action

jointly and simultaneously in a parallel way, while not

just sequentially.

There are many theoretical issues to be studied for imple-

menting a DGCC model.

1. Multiple granularity representation of data, informa-

tion and knowledge.

Traditionally, the relationship of data, information and

knowledge is shown in Fig. 9. In this understanding,

data are in the bottom layer, information in the middle

layers, while knowledge in the high layers. In DGCC,

data are considered to be the knowledge represented in

the lowest granularity layer. In another way, data could

be viewed as the extension of concepts (knowledge in

a higher granularity layer), a concept could be viewed

Fig. 7 Unidirectional transformation from finer granularity to coarser

granularity

Fig. 8 Human cognition: from coarser granularity levels to finer

levels

Fig. 9 A general multiple granularity structure for DGCC (Wang

et al. 2016)

348 Granul. Comput. (2017) 2:343–355

123



as the intension (abstraction) of some data. The idea of

considering data as a format for encoding knowledge

was introduced in our early work about domain-

oriented data-driven data mining (3DM), which is

shown in Fig. 10 (Wang and Wang 2009). Data,

information and knowledge will be encoded in a

hierarchical multiple granularity space together. It

would be more complex than any traditional data

space, information space or knowledge space. A

general multiple granularity structure shown in Fig. 9

needs to be set up for expressing data, information, and

knowledge.

2. Integration of the human cognition of ‘‘from coarser to

finer’’ and the information processing of ‘‘from finer to

coarser’’.

There have already been some studies about bottom-up

and top-down processing in psychology and cognitive

science (Lindsay and Norman 1977). Yao studied three

top-down approaches, bottom-up approaches, and

middle-out approaches (Yao 2016b). In DGCC, two

kinds of transformation operators, namely, upward

operators and downward operators are needed to

simulate and implement such human intelligence

mechanisms. An upward operator transforms the data/

information/knowledge in a low granularity layer to a

high granularity layer, while a downward operator

transforms the data/ information/knowledge in a high

granularity layer to a low granularity layer. It could be

viewed as an extension of the backward transformation

and forward transformation algorithms of the qualita-

tive and quantitative mapping model (Liu et al. 2013;

Wang and Xu 2012; Wang et al. 2014; Li et al. 1995).

Downward operators mimic the human cognition of

‘‘from coarser to finer’’, while upward operators mimic

the information processing of ‘‘from finer to coarser’’.

3. Transformation of the uncertainty of big data in a

multiple granularity space.

Generally speaking, concepts (information and knowl-

edge) in a higher granularity layer would be more

uncertain than the ones in a lower granularity layer. A

concept in a higher granularity layer would be the

abstraction of some objects (data or concepts in a

lower granularity layer). Exceptionally, some concepts

in a lower granularity layer could also be more

uncertain than the ones in a higher granularity layer,

since they are partial description of some aspects of an

object. Thus, the transformation of the uncertainty of

big data among a multiple granularity space will be

very complex.

4. Multiple granularity joint computing model and prob-

lem solving mechanism.

Data, information and knowledge are encoded in a

multiple granularity space together. They could be

used in problem solving simultaneously in a parallel

way. As shown in Fig. 11, decisions in a manufactur-

ing industry group are being made at several different

layers simultaneously every day. Decisions in different

layers might be either dependent or independent.

Mechanisms for joint computing and decision making

in a multiple granularity space is required.

5. Dynamical evolution mechanism in a multiple granu-

larity knowledge space.

In real life applications, most systems are dynamical

ones. The data, information and knowledge of an

intelligent information system would also be dynam-

ical, while not statical. Figure 12 shows the dynamical

evolution process of a multiple granularity knowledge

space. Some dynamical evolution mechanisms need to

be developed to deal with the dynamical data, infor-

mation and knowledge in a multiple granularity

knowledge space.

6. Effective progressive variable granularity computing

method.

The information and knowledge in different granular-

ity layers are abstract representations of objects.

Usually, coarser answers could be generated in a

higher granularity layer with less time cost, while finer

Fig. 10 Knowledge transformation framework of 3DM (Wang and

Wang 2009)

Fig. 11 Joint decision making in a multiple granularity space
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answers in a lower granularity layer with more time

cost. Thus, effective progressive variable granularity

computing method should be developed. Some kinds

of coarser answers are generated in a higher granularity

layer at first, and more detailed answers will be

available in lower granularity layers later.

7. Calculation goes ahead of perception.

In some real life application systems, not all input

information (data) is available simultaneously in the

beginning. It would be better to make a draft decision

according to the partial inputs available currently,

while not to wait for all inputs. In some problem

solving tasks, we do not need all inputs. In this case, to

take efficient actions, an answer (decision) in a lower

granularity layer will be generated based on partial and

local inputs at first, and then an improved answer

(decision) could be generated in a higher granularity

layer after more inputs are available. In some special

cases, it is impossible to have all inputs. There are only

a few limited inputs available. A decision (answer)

could only be generated according to the limited inputs

in a lower granularity layer.

8. Distributed multiple granularity machine learning

method.

Since data, information and knowledge are encoded in

a multiple granularity space together, a parallel and

distributed learning process would be possible. It is not

needed to learn layer by layer.

9. Multiple granularity mechanism of associative mem-

ory with forgetting.

Up to now, the information storage mechanism of

computers is a mechanical one. Information (data,

knowledge) could be either stored in a memory system

or not. It will be unavailable after being removed.

However, it is not such a case in human brain. Human

brain can forget an object and recall it later in some

degree, even in a degree of 100%. There is an

association mechanism in human brain. The bidirec-

tional cognitive computing model in (Liu et al. 2013)

might be used to implement such an association

mechanism of human brain in a multiple granularity

space. Upward operators could simulate a forgetting

process through transforming information in a lower

granularity layer to some abstracted information in a

higher granularity layer, while downward operators

could simulate an associating (recalling) process

through transforming information in a higher granu-

larity layer to some detailed information in a lower

granularity layer. Figure 13 shows the idea of

associative memory with forgetting.

5 Hierarchical structuralism: a new mechanism
for artificial intelligence

Deep learning opened a revolution of artificial intelli-

gence. Various deep learning architectures (Bengio 2009;

Schmidhuber 2015), like convolutional deep neural net-

works (LeCun et al. 1989), deep belief networks (Hinton

et al. 2006) and recurrent neural networks (Goller and

Kuchler 1996) have been applied to a lot of fields such as

image recognition, speech recognition, natural language

processing and bioinformatics where they have produced

state-of-the-art results on various tasks (Goller and

Kuchler 1996; Deng et al. 2013; Deng and Yu 2014;

Cireşan et al. 2013; Mesnil et al. 2015; Krizhevsky et al.

2012; Chicco et al. 2014). It becomes one of the main

streams that push the development of artificial intelli-

gence in the whole world.

Deep Learning architecture built from artificial neural

networks (ANN) could date back to the Neocognitron in

1980 (Fukushima 1980). The biggest challenge of artificial

neural network study is how to train a network with mul-

tiple layers. In 1989, LeCun applied the standard back

propagation algorithm to a deep neural network with the

purpose of recognizing handwritten ZIP codes (LeCun

et al. 1989). In 1995, Hinton trained a network containing

six fully connected layers and several hundred hidden units

using the wake–sleep algorithm (Hinton et al. 1995).

However, the time cost to train these networks was too

high, making it impractical for general use.

Dynamic data source

Initial granular structure
The evolution Result of 

granular structure

Dynamical evolution 
mechanism 

Fig. 12 Dynamical evolution process of a multiple granularity

knowledge space

Local
Information 1

Local
Information 2

forget & abstract associative & memory

Fig. 13 Associative memory with forgetting
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Most artificial neural network researchers usually used

networks with only three layers in real applications before

deep learning was developed since it is very difficult and

time consuming to train a traditional artificial neural net-

work with multiple layers. The inner structure of a tradi-

tional artificial neural network is considered as a black box.

The logical structure or knowledge structure of an artificial

neural network in unknown even it has been trained to deal

with a problem very well. There is no observable, under-

standable structure or feature in a trained network. The

more hidden layers an artificial neural network has, the

more difficult and time cost to train it.

In 2006, Hinton and Salakhutdinov effectively pre-

trained a many-layered feed forward neural network one

layer at a time, treated each layer in turn as an unsupervised

restricted Boltzmann machine, and then fine-tuned it using

supervised back propagation (Hinton 2007). The linking

structure relation between adjacent layers is considered in

the training process. It solved the problem of training an

artificial neural network with multiple layers (even over

200 layers). It is viewed as the resurgence of artificial

neural networks. It has become part of many state-of-the-

art systems in various disciplines in recent years, particu-

larly automatic image recognition and speech recognition.

Deep learning could also be taken as a branch of

machine learning based on a set of algorithms that attempt

to model high-level abstractions in data using a deep graph

with multiple processing layers of linear or non-linear

transformations (Goodfellow et al. 2016). It makes better

representations and creates models to learn these repre-

sentations from large-scale unlabeled data. For example,

the architecture of a convolutional neural network (CNN)

in Fig. 14 also shows the layered abstraction structure from

the input of data and the output of cognition.

Deep learning has the following key characteristics

(Deng and Yu 2014).

• Uses a cascade of many layers of nonlinear processing

units for feature extraction and transformation. Each

successive layer uses the output from the previous layer

as input.

• Is based on the (unsupervised) learning of multiple

levels of features or representations of the data. Higher

level features are derived from lower level features to

form a hierarchical representation.

• Is part of the broader machine learning field of learning

representations of data.

• Learns multiple levels of representations that corre-

spond to different levels of abstraction; the levels form

a hierarchy of concepts.

In fact, there were some artificial neural network

researchers who had also implemented such ideas in their

many-layered neural networks in 1990s, before Geoffrey

Hinton developed deep learning.

Wang developed a neuro-fuzzy network (FCN) for the

bucket motion control with 9 layers in 1995 (Wang 1992;

Wang and Kim 1995). As shown in Fig. 15, it is a struc-

tured network composed of 3 structured sub networks,

namely, pattern recognition network, fuzzy reasoning net-

work and control synthesis network.

Jang developed an adaptive-network-based fuzzy infer-

ence system (ANFIS) in 1993 (Jang 1993), which is a

neural network with five layers to implement a Takagi–

Sugeno–Kang (TSK) fuzzy inference system. As shown in

Fig. 16, in an ANFIS, each neuron in the 1st layer calcu-

lates a fuzzy membership, each neuron in the 2nd layer

multiplies its incoming signals, each neuron in the 3rd

layer calculates a normalized firing strength, each neuron

in the 4th layer is the multiplication of the output of layer 3

and a parameterized inputs (pi þ qi þ ri), the single node in

the last layer computes the summation of all incoming

signals. Neuro-fuzzy systems are a typical example of

granular neural networks (Song and Wang 2016). Perhaps

ANFIS is the best known neuro-fuzzy system (Song and

Wang 2016). Many neuro-fuzzy systems have been pro-

posed now (Pedrycz and Aliev 2009; Lee and Lee 1974;

Zhang and Kandel 1998; Frayman and Wang 1998; Jang

Fig. 14 Architecture of a CNN (Krizhevsky et al. 2012)
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1993; Malekzadeh-A and Akbarzadeh-T 2004; Chen et al.

2011).

Wang developed a triple-valued or multiple-valued logic

neural network model (TMLNN) in 1996 (Wang 1996;

Wang and Shi 1996, 1998). As shown in Fig. 17, each

neuron of this network is a triple-valued or multiple-valued

logic neuron. A logic structure is constructed in a TMLNN.

A TMLNN with 5 layers could implement any logic

function.

It is easy to train an FCN, ANFIS and TMLNN with a

low time cost. They have very clear logical structures.

Although FCN, ANFIS and TMLNN were developed and

applied in some fields in 1990s, about 10 years earlier than

deep learning developed in 2000s, they did not have gen-

eral use. In 1990s, both the computing power of a computer

system and the training data were very limited. It was

impossible to use them to solve large scale complex real

life problems such as image recognition and speech

recognition at that time.

From the above discussion, it could be found that FCN,

ANFIS and TMLNN have the same theoretical idea with

deep learning. They all exploit the idea of hierarchical

explanatory factors where higher layer, more abstract

concepts are learned from the lower layer ones. It is a kind

of multi-granularity knowledge/information representation

structure discussed in Sect. 4. In these multi-level artificial

neural network models, the inner structure of a network is

no longer a black box. Neurons in each layer have distinct

logic meaning. The linking weights between neurons cor-

respond to their logic relationship. Thus, this kind of arti-

ficial neural networks could be considered as an

implementation way of symbolism systems. They could be

considered as some kind of logic reasoning networks of

symbolism systems. We can call them hierarchical struc-

turalism. It is also a special case of DGCC. It has the

following HD3 characteristics.

• Hierarchical The knowledge and information are

encoded in a hierarchical system. The inner structure

of a hierarchical system is understandable while not a

black box. Nodes in different layers of a hierarchical
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system correspond to some distinct logic meaning like

concepts. It is similar to symbolism in some degree on

this point.

• Distributed The knowledge and information are

encoded in a distributed manner. It is similar to

connectionism in some degree on this point.

• Data-driven and training based A hierarchical system

is set up based on training. The hierarchical structure is

not man made. It is trained in a data-driven manner.

• Dynamical The inner structure of a hierarchical system

could be dynamically adjusted in an adaptive and

evolutionary way.

6 Conclusion

It is a natural way to develop intelligent computing models

with inspiration of natural/brain/social cognition laws.

Inspired by human’s granularity thinking, problem solving

mechanism and the cognition law of ‘‘global precedence’’,

a new powerful cognitive computing model, DGCC, is

proposed in this paper. It could integrate two contradict

mechanisms, namely, human’s cognition mechanism of

‘‘global precedence’’ which is a cognition process of ‘‘from

coarser to finer’’ and the ‘‘from finer to coarser’’ machine

learning mechanism, in a multiple granularity space. It is a

multiple granularity representation of data, information and

knowledge. It could transform the uncertainty of big data in

a multiple granularity space, implement multiple granu-

larity joint computing and problem solving, simulate the

dynamical knowledge evolution mechanism. Both pro-

gressive variable granularity computation and calculation

going ahead of perception could be realized. Multiple

granularity mechanism of associative memory with for-

getting could also be possible in DGCC.

After examining the principles of different intelligent

cognitive computing models, such as deep learning, logic

neural network, fuzzy set, rough set, quotient space theory,

cloud model (a qualitative and quantitative mapping

model), formal concept analysis, three way decisions and

clustering, a hierarchical structuralism is proposed for

artificial intelligence based on DGCC, which is a combi-

nation of symbolism and connectionism. The HD3 char-

acteristics of the hierarchical structuralism are discussed.

Data-driven granular cognitive computing could provide

a granular cognitive computing framework for efficient

knowledge discovery from big data. The idea of DGCC has

already been applied in some real life problems success-

fully, such as clustering, image processing, time series

forecasting. The important theoretical issues of DGCC

discussed in this paper would help researchers to develop

big data intelligent computing algorithms and systems.
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