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1 Introduction

Rough set theory proposed by Pawlak (1982), is an exten-
sion of the classical set theory. This theory could be 
regarded as a mathematical and soft computing tool to 
handle vagueness, imprecision and uncertainty in data 
analysis. The methodology has received great attention in 
recent years, and it has been successfully applied in many 
science and engineering fields, such as pattern recognition, 
data mining, image processing, medical diagnosis and so 
on. Rough set theory was developed by practical needs to 
characterize, interpret, present, process indiscernibility of 
individuals (objects). The discernibility is typically char-
acterized by an equivalence relation. A rough set is the 
result of two approximating crisp sets, which are lower 
and upper approximation sets, using equivalence classes. 
The key idea of rough set theory is the use of some known 
knowledge to approximate the inaccurate and uncertain 
knowledge in information systems.

However, partition or indiscernibility relation in Paw-
lak’s original rough set theory, is still restrictive for many 
applications. To overcome such unreasonableness, the 
dominance-based rough set approach has been proposed by 
Greco et al. (1999). On the other hand, the generalization of 
rough sets is an interesting topic not only in mathematical 
point of view but also in practical point of view. Along this 
direction, rough sets have been generalized under similarity 
relations (Inuiguchi and Tanino 2001), covers (Bonikowski 
et  al. 1998) and general relations (Inuiguchi and Tanino 
2002; Shen and Jensen 2007; Yao 1996, 1998; Yao and Lin 
1996). Those results demonstrate a diversity of generaliza-
tions. Moreover, the introduction of fuzziness into rough 
set approaches (Lu et al. 2016) has attracted researchers to 
obtain more realistic and useful tools.

Abstract Multigranulation rough set theory is a desirable 
direction in the field of rough set, in which upper and lower 
approximations are approximated by multiple granular struc-
tures. However, classic multigranulation rough set is studied 
from two kinds of qualitative combination rules which were 
generated by pessimistic and optimistic viewpoints, respec-
tively. The two combination rules seem to lack of practicabil-
ity since one is too restrictive and the other too relaxed. To 
overcome this disadvantage, we propose a generalized mul-
tigranulation rough set model in this paper. First, we discuss 
upper and lower approximation sets of a generalized multi-
granulation rough set by introducing a support characteristic 
function and an information level. Then, as one of the most 
important problems in granular computing, we carefully 
study how to select optimal granularity in generalized mul-
tigranulation rough sets. Furthermore, algorithms of optimal 
granularity selection are constructed, by which we can pro-
vide an efficient approach to compute the optimal granularity 
based on generalized multigranulation rough sets. Finally, an 
illustrative example is given to show the effectiveness of the 
proposed approach. The main contribution of this paper is to 
construct the model of the optimal particle size selection on 
account of the generalized multi granularity, and overcome 
the limitation of the classical multi granularity.
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In 1985, Zadeh first explored the concept of granu-
lar computing (Zadeh 1997) between 1996 and 1997. He 
thought that information granules refer to pieces, classes, 
and groups into which complex information are divided 
in accordance with the characteristics and processes of 
the understanding and decision-making. Currently, granu-
lar computing has been viewed as an emerging computing 
paradigm of information processing. It concerns the pro-
cessing of complex information entities called information 
granules (Li et  al. 2015; Pedrycz 2013; Pedrycz and Bar-
giela 2002, 2012; Xu and Li 2014). Information granules, 
as encountered in natural language, are implicit in their 
nature. To make them fully operational so that they become 
effectively used in the analysis and design of intelligent sys-
tems (Pedrycz 2013), we need to make information gran-
ules explicit. This is possible through a prudent formaliza-
tion available within the realm of granular computing. In a 
general sense, by information granule, one regards a collec-
tion of elements drawn together by their closeness (resem-
blance, proximity, functionality, etc.) articulated in terms of 
some useful spatial, temporal or functional relationships. 
Subsequently, Granular Computing is about representing, 
constructing and processing information granules. Results 
of computing completed in the setting of Granular Comput-
ing come in the form of information granules. Information 
granules are building blocks reflective of domain knowl-
edge about a problem.

From the perspective of granular computing (Liu et  al. 
2016), an equivalence relation on the universe can be 
regarded as a granularity, and the corresponding partition 
can be regarded as a granular structure (Qian et al. 2009). 
Hence, the classic rough set theory is based on a single 
granularity (only one equivalence relation). However, the 
rough set may be associated with multiple granular struc-
tures (Apolloni et al. 2016), which can be divided into two 
cases as follows:

Case 1 If there exists at least one granular structure such 
that elements surely belongs to a given concept, then we 
say that an element surely belong to the concept.

Case 2 If there exists at least one granular structure such 
that elements possibly belongs to a given concept, then we 
say that an element possibly belong to the concept.

Currently, Yao and Deng (2014) proposes a framework 
of quantitative rough sets based on subsethood measures. 
A specific quantitative rough set model is defined by a par-
ticular class of subsethood measures satisfying a set of axi-
oms. Consequently, the framework enables us to classify 
and unify existing generalized rough set models [e.g., deci-
sion-theoretic rough sets (Xu and Wang 2016), probabilis-
tic rough sets, and variable precision rough sets], to inves-
tigate limitations of existing models, and to develop new 
models. Actually, an attribute subset (Guo and Zheng 2014) 
induces an equivalence relation, and a partition formed by 

the equivalence relation can be regard as a granularity. 
Using a finer granular structure formed through combining 
two known granularities induced from two attribute subsets 
to describe a target concept, this combination destroys the 
original granular structure. Qian and Liang extended Paw-
lak’s single granulation rough set model to a multiple gran-
ulation rough set model (Qian and Liang 2006; Qian et al. 
2010), where the set approximations were defined using 
multi equivalence relations on the universe. Moreover, 
many researchers have extended the multigranulation rough 
sets (Dou et al. 2012). Xu et al. (2014) developed a multi-
granulation fuzzy rough set model, multigranulation rough 
sets based on tolerance relations (Xu et al. 2013), a multi-
granulation rough set model in ordered information systems 
(Xu et al. 2012) and a multigranulation fuzzy rough set in a 
fuzzy tolerance approximation space (Xu et al. 2011). Yang 
et  al. proposed the hierarchical structure properties of the 
multigranulation rough sets (Yang et al. 2012), multigran-
ulation rough set in incomplete information system (Yang 
et  al. 2012a, b), and a test cost sensitive multigranulation 
rough set model (Yang and Qi 2013). Lin et al. (2012) pre-
sented a neighborhood-based multigranulation rough set. 
She et  al. (2012) explored the topological structures and 
the properties of multigranulation rough sets. Qian et  al. 
(2014) introduced three kinds of multigranulation deci-
sion-theoretic rough set models. Li et  al. (2014) extended 
multigranulation decision-theoretic rough sets by consid-
ering dominance relations in ordered information system 
(Li and Xu 2015), and investigated relationships between 
multigranulation and classical T-fuzzy rough sets. Yao 
et al. proposed a unified framework to classify and compare 
existing studies. And an underlying principle is to explain 
rough sets in a multigranulation space through rough sets 
derived using individual equivalence relations (Yao and 
She 2016). Feng and Mi (2015) studied variable precision 
multigranulation fuzzy decision-theoretic rough sets in an 
information system. A novel membership degree based on 
single granulation rough sets and two operators based on 
this membership degree were investigated in their study. 
Zhang et  al. (2015) established four kinds of constructive 
methods of rough approximation operators from existing 
rough sets and studied the non-dual multigranulation rough 
sets and hybrid multigranulation rough sets. Tan et  al. 
(2016) employed the belief and plausibility functions from 
evidence theory to characterize the set approximations and 
attribute reductions in multigranulation rough set theory in 
incomplete information systems, and an attribute reduction 
algorithm for multigranulation rough sets was proposed 
based on evidence theory. Lin et al. (2015) proposed a two-
grade fusion approach involved in the evidence theory and 
multigranulation rough set theory based on a well-defined 
distance function among granulation structures, and pre-
sented three types of covering based multigranulation 
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rough sets whose set approximations were defined by dif-
ferent covering approximation operators (Lin et  al. 2013). 
Li et al. investigated the relationship between multigranula-
tion rough sets and concept lattices via rule acquisition (Li 
et al. 2016; Yang et al. 2009). Kumar and Inbarani applied 
rough set based data mining techniques for medical data to 
discover locally frequent diseases (Senthil Kumar and Han-
nah Inbarani 2015). Huang et  al. (2014) developed a new 
multigranulation rough set model that was called intuition-
istic fuzzy multigranulation rough set (IFMGRS) and three 
types of IFMGRSs that are generalizations of three exist-
ing intuitionistic fuzzy rough set models built. Liu et  al. 
proposed four types of multi-granulation covering rough 
set (MGCRS) models under covering approximation space 
(Wang et  al.  2017a), where a target concept was approxi-
mated by employing the maximal or minimal descriptors of 
objects in a given universe of discourse (Liu et al. 2014). 
Lin et al. (2014) presented a new feature selection method 
that selects distinguishing features by fusing neighborhood 
multi-granulation, and first used neighborhood rough sets 
as an effective granular computing tool. Yang et al. (2014) 
first explored the updating of the multigranulation rough 
approximations. Qian et  al. (2014b) develop a new multi-
granulation rough set model based on “Seeking common 
ground while eliminating differences” (SCED) strategy, 
called pessimistic multigranulation rough sets based deci-
sion. Liang et  al. (2012) proposed an efficient rough fea-
ture selection algorithm for large-scale data sets, which was 
stimulated from multi-granulation rough sets.

In multigranulation rough set theory, optimistic mul-
tigranulation (Wang et  al.  2017b) and pessimistic multi-
granulation are two basic ways of research. For the lower 
approximation of a multigranulation rough set, the view of 
optimistic multigranulation reflects that there exists at least 
one granular structure such that elements surely belong to 
a given concept, and the view of pessimistic multigranula-
tion shows that elements surely belong to a given concept 
in each granular structure. It is easy to notice that both opti-
mistic and pessimistic conditions are too strict to a wide-
range of conditions. So, we will introduce a parameter, 
namely an information level to propose a generalized mul-
tigranulation rough set model. The lower approximation 
of a concept is the set that all of the elements support the 
concept based on the information level is not less than the 
given parameter in the multigranulation perspective.

The motivation of this paper is as follows: three aspects. 
(1) How to generalize the classical multigranularity rough 
sets to the generalized multigranularity rough sets. (2) how 
to select the proper granularity is an important issue. It offers 
a systematic and theoretic framework for feature selection. 
(3) How to discover knowledge in hierarchically organ-
ized information tables is of particular importance in real 

life data mining. In this paper, to describe a novel granula-
tion perspective, we will establish a special multigranulation 
rough set model, and discuss the methods of optimal granu-
larity selection in this generalized multigranulation rough set 
model. This paper is organized as follows. In Sect. 2, some 
preliminary concepts of optimistic and pessimistic multi-
granulation rough set theories are briefly reviewed. In Sect. 3, 
we introduce a support characteristic function and propose 
the generalized multigranulation rough set model. In Sect. 4, 
Moreover, measures and properties of the generalized multi-
granulation rough set are carefully investigated. How to select 
the optimal granularity is discussed in generalized multi-
granulation rough set. In Sect. 5, we consider algorithms of 
the optimal granularity selection in the new rough set model. 
In Sect. 6, an illustrative example is given to show the effec-
tiveness of the proposed approach. Finally, we conclude our 
contribution with a summary and an outlook for the further 
research.

2  Classic multigranulation rough sets

In an information system, the equivalence class of an object 
with respect to an attribute subset of A is a granularity from 
the viewpoint of granular computing. A partition of the uni-
verse is a granular structure. Rough set proposed by Pawlak is 
a single granulation rough set model, and the granular struc-
ture in this model is induced by the indiscernibility relation of 
the attribute set. In general, the above cases cannot always be 
satisfied or required in practical problems. In the three cases 
referred in reference (Qian et al. 2010), there are limitations 
in single granulation rough set for addressing practical prob-
lems with multiple partitions, and multigranulation rough set 
can now be used to effectively solve these problems. Under 
those circumstances, we must describe a target concept 
through multiple binary relations on the universe according 
to a user’s requirements or targets of problem solving. In the 
literature (Qian et al. 2009, 2010; Dang and Qian 2009; Yao 
2000), to apply rough set theory to practical problems widely, 
multigranulation rough set model has been studied based on 
multiple equivalence relations.

Let I = (U,A,V , f ) be an information system, 
X ⊆ U and P = {P1,P2,… ,Pl}, Pi ⊆ A. Then Pi 
or U∕Pi is referred to as a granulation. The equiva-
lence class of an object x with respect to Pi is defined as 
[x]Pi

= {y ∈ U|f (x, a) = f (y, a)} (a ∈ Pi). The lower and 
upper approximation sets of X with respect to single Pi are 
defined as follows:

Pi(X) = {x ∈ U|[x]Pi
⊆ X},

Pi(X) = {x ∈ U|[x]Pi
∩ X ≠ �}.
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Considering further studies on multigranulation rough set, 
we now review the two basic forms of multigranulation 
rough set model.

Definition 2.1 (Qian et  al. 2010) Let I = (U,A,V , f ) be 
an information system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A (i = 1, 2,… , l). The optimistic multigranulation 
lower and upper approximation sets of X with respect to 
single P are defined as follows:

where “∨” means the logical operator “or”, which repre-
sents that the alternative conditions are satisfied, and “∧” 
means the logical operator “and”, which represents that all 
of the conditions are satisfied.

The set X is definable if and only if P(X)OM = P(X)OM. 
Otherwise, X is rough. P(X)OM and P(X)OM are referred 
to as optimistic lower and upper approximation sets, 
respectively.

From the above definition, the operators “∨” and “∧” 
can be exchanged between the optimistic lower approxima-
tion set and the optimistic upper approximation set. Cor-
responding to optimistic multigranulation rough set, pessi-
mistic multigranulation rough set model can be defined in 
the following.

Definition 2.2 (Qian et  al. 2010) Let I = (U,A,V , f ) be 
an information system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A (i = 1, 2,… , l). The pessimistic multigranulation 
lower and upper approximation sets of X with respect to 
single P are defined as follows:

The set X is definable if and only if P(X)PM = P(X)PM. 
Otherwise, X is rough. P(X)PM and P(X)PM are referred 
to as pessimistic lower and upper approximation sets, 
respectively.

The uncertainty of a concept in a multigranulation rough 
set model is also due to the existence of a boundary region. 
The greater the boundary of a concept is, the lower its 
accuracy is, and the coarser the concept is. Similar to the 
measures in the Pawlak rough set model, the accuracy and 
roughness measures in optimistic multigranulation rough 

P(X)OM = {x ∈ U| ∨ ([x]Pi
⊆ X), i ≤ l};

P(X)OM = {x ∈ U| ∧ ([x]Pi
∩ X ≠ �), i ≤ l},

P(X)PM = {x ∈ U| ∧ ([x]Pi
⊆ X), i ≤ l},

P(X)PM = {x ∈ U| ∨ ([x]Pi
∩ X ≠ �), i ≤ l}.

set and pessimistic multigranulation rough set were defined 
in the same way (Qian et  al. 2010). As generalizations of 
the Pawlak rough set model, we only show the relations 
among optimistic multigranulation rough set, pessimistic 
multigranulation rough set and single granulation rough set 
in the following.

Proposition 2.1 (Qian et al. 2010) Let I = (U,A,V , f ) be 
an information system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A (i = 1, 2,… , l). The following properties hold:

(1) P(X)OM =
l⋃

i=1

Pi(X);

(2) P(X)OM =
l⋂

i=1

Pi(X);

(3) P(X)PM =
l⋂

i=1

Pi(X);

(4) P(X)PM =
l⋃

i=1

Pi(X);

(5) P(X)PM ⊆ P(X)OM;
(6) P(X)OM ⊆ P(X)PM.

In addition, there are many related properties as well 
as proof please refer to (Qian and Liang 2006; Qian et al. 
2010).

3  Generalized multigranulation rough sets

To present and illustrate the generalized multigranulation 
rough set model, we first define the support characteristic 
function.

Let I = (U,A,V , f ) be an information system, X ⊆ U 
and P = {P1,P2,… ,Pl}, Pi ⊆ A (i = 1, 2,… , l). A char-
acteristic function SPi

X
(x) describes the inclusion relation 

between the class [x]Pi
, which is defined in the following:

We then call SPi

X
(x) the support characteristic function of x. 

It shows whether x supports the concept X or not precisely 
with respect to Pi.

From the support characteristic function for any 
Pi ⊆ A (i = 1, 2,… , l) and X ⊆ U, the number of equiva-
lence classes [x]Pi

 that satisfies [x]Pi
⊆ X can be computed 

by

S
Pi

X
(x) =

{
1, [x]Pi

⊆ X;

0, else.
(i ≤ l).

l∑
i=1

S
Pi

X
(x).
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At the same time, for any x ∈ U, the number of equiva-
lence classes [x]Pi

 that satisfies [x]Pi
∩ X ≠ � can be repre-

sented by

By the support characteristic function, the lower and upper 
approximation sets in optimistic multigranulation rough set 
and pessimistic multigranulation rough set can be repre-
sented, respectively, with the following formulas:

From the view of granular computing, one can note that 
classical multigranulation rough set might not always be 
effective in practice. Optimistic multigranulation rough 
set might be so loose that the approximation sets cannot 
describe the concepts as precisely as possible. Additionally, 
pessimistic multigranulation rough set might be too strict to 
depict concepts on the universe.

In optimistic multigranulation rough set, we consider 
the case that an object x supports the concept X precisely 
if there exists at least one Pi ⊆ P such that [x]Pi

⊆ X. This 
model could bring in a large amount of useless information 
for the concept described. The descriptions and information 
in optimistic multigranulation rough set could be redundant 
and cannot show the nature of the concept. Furthermore, 
some useful information will be lost because this model 
demands that any object x can possibly describe a concept 
X in terms of multigranulation satisfying [x]Pi

∩ X ≠ � for 
all Pi. In practical applications, the object can possibly 
describe a concept by most of the granulations.

Conversely, an object x supporting the concept X pre-
cisely means that [x]Pi

⊆ X must hold for all Pi with respect 
to multigranulation in pessimistic multigranulation rough 
set. This approach also causes disadvantages in practice. 
If x supports the concept, then all granulations must be 
considered. This approach is so strict that some informa-
tion and descriptions which are not very effective can be 

l∑
i=1

(1 − S
Pi

∼X
(x)).

P(X)OM =

�
x ∈ U

����

∑l

i=1
S
Pi

X
(x)

l
> 0

�
;

P(X)OM =

�
x ∈ U

����

∑l

i=1
(1 − S

Pi

∼X
(x)).

l
= 1

�
.

P(X)PM =

�
x ∈ U

����

∑l

i=1
S
Pi

X
(x)

l
= 1

�
;

P(X)PM =

�
x ∈ U

����

∑l

i=1
(1 − S

Pi

∼X
(x)).

l
> 0

�
.

ignored. Thus, we can introduce the parameter �, i.e., the 
information level, to realize that the objects support a con-
cept with respect to the majority granulations. The higher 
the information level � is, the stricter our requirements 
are. Our requirements can be employed to depict the con-
cept better. Next, we will propose a novel multigranulation 
rough set model with a parameter � ∈ (0.5, 1].

Definition 3.1 Let I = (U,A,V , f ) be an infor-
mation system, X ⊆ U and P = {P1,P2,… ,Pl, } 
Pi ⊆ A(i = 1, 2,… , l). A characteristic function S

Pi

X
(x) 

describes the inclusion relation between the class [x]Pi
. For 

any � ∈ (0.5, 1], generalized lower and upper approxima-
tion sets of X with respect to P are defined as follows:

The set X is definable if and only if P(X)� = P(X)�. Oth-
erwise, X is rough. We call � the information level with 
respect to P.

For classic rough set model, the roughness or uncer-
tainty in an information system is also due to the existence 
of a boundary region of concepts in generalized multigran-
ulation rough set. The boundary region of a concept with 
respect to P in generalized multigranulation rough set is 
defined by

Objects in approximation sets and boundary regions are 
changed corresponding to the information level �. Addi-
tionally, we can have the following interpretations to 
approximation sets and boundary regions in generalized 
multigranulation rough set.

•	 The lower approximation set of a concept X is the set of 
all of the elements that can surely support the concept 
X on the basis of an information level not less than � in 
terms of the multigranulation.

•	 The upper approximation set of a concept X is the set of 
all of the elements that can possibly support the concept 
X on the basis of an information level not less than 1 − � 
in terms of the multigranulation.

•	 The boundary region of a concept X with respect to P is 
the set of all of the elements that cannot surely support 
either X or ∼ X on the basis of an information level �. 

P(X)𝛽 =

�
x ∈ U

����

∑l

i=1
S
Pi

X
(x)

l
≥ 𝛽

�
;

P(X)𝛽 =

�
x ∈ U

����

∑l

i=1
(1 − S

Pi

∼X
(x)).

l
> 1 − 𝛽

�
.

Bn(X)GM = P(X)� − P(X)� .
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That is, Bn(X)GM is the set of all of the elements that 
cause the uncertainty of X in an information system 
with respect to P on the basis of the information level �.

From the above, we can easily compare the approximation 
sets in optimistic multigranulation rough set, pessimistic 
multigranulation rough set and generalized multigranula-
tion rough set. Next, we will study the relations between 
generalized multigranulation rough set, optimistic mul-
tigranulation rough set and pessimistic multigranulation 
rough set, and discuss some important properties of the 
approximation operators in generalized multigranulation 
rough set.

Figure 1 shows the relationships of the lower and upper 
approximations in generalized multigranulation rough set, 
optimistic multigranulation rough set and pessimistic mul-
tigranulation rough set, respectively.

Proposition 3.1 Let I = (U,A,V , f ) be an infor-
mation system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A(i = 1, 2,… , l). For any � ∈ (0.5, 1], the lower and 
upper approximation operators in generalized multigranu-
lation rough set have the following relations with those in 
optimistic multigranulation rough set and pessimistic mul-
tigranulation rough set (Fig. 1):

(1) P(X)PM ⊆ P(X)𝛽 ⊆ P(X)OM;
(2) P(X)OM ⊆ P(X)𝛽 ⊆ P(X)PM.

Proof 

(1) For any x and �, one can prove P(X)PM ⊆ P(X)𝛽 

through x ∈ P(X)PM ⇔

∑l

i=1
S
Pi
X
(x)

l
≥ 1. As � ∈ (0.5, 1],  

so 
∑l

i=1
S
Pi
X
(x)

l
≥ 1 ≥ �, that is to say 

x ∈ P(X)�. Similarly, for any � ∈ (0.5, 1], 

x ∈ P(X)𝛽 ⇔

∑l

i=1
S
Pi
X
(x)

l
≥ 𝛽 > 0 ⇒ x ∈ P(X)OM. Then 

P(X)𝛽 ⊆ P(X)OM. This item is proved.
(2) This item can be obtained similarly.

  □

Lemma 3.1 For any a1, a2, b1, b2 ∈ [0, 1], the following 
inequalities hold:

(1) a1 ∧ b1 + a2 ∧ b2 ≤ (a1 + a2) ∧ (b1 + b2);
(2) a1 ∨ b1 + a2 ∨ b2 ≥ (a1 + a2) ∨ (b1 + b2),

where “∧” and “∨” represent the operators “minimum” 
and “maximum”, respectively.

Proof 

(1) Because a1 ∧ b1 ≤ a1, a1 ∧ b1 ≤ b1 and a
2
∧ b

2
≤ a

2
, 

a
2
∧ b

2
≤ b

2
, we have that a

1
∧ b

1
+ a

2
∧ b

2
≤

(a
1
+ a

2
). a

1
∧ b

1
+ a

2
∧ b

2
≤ b

1
+ b

2
.Then we have 

a1 ∧ b1 + a2 ∧ b2 ≤ (a1 + a2) ∧ (b1 + b2).
(2) This item can be obtained similarly.

Proposition 3.2 Let I = (U,A,V , f ) be an infor-
mation system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A (i = 1, 2,… , l). For any � ∈ (0.5, 1]. The following 
properties are true.

(1a) P(∼ X)� =∼ P(X)�;
(1b) P(∼ X)� =∼ P(X)�.
(2a) P(X)𝛽 ⊆ X;
(2b) X ⊆ P(X)𝛽.
(3a) P(�)� = P(�)� = �;
(3b) P(U)� = P(U)� = U.

(4a) P(X ∩ Y)𝛽 ⊆ P(X)𝛽 ∩ P(Y)𝛽 ;

(4b) P(X ∪ Y)𝛽 ⊇ P(X)𝛽 ∪ P(Y)𝛽 .

(5a) P(X ∪ Y)𝛽 ⊇ P(X)𝛽 ∪ P(Y)𝛽 ;

(5b) P(X ∩ Y)𝛽 ⊆ P(X)𝛽 ∩ P(Y)𝛽 .

(6a) X ⊆ Y ⇒ P(X)𝛽 ⊆ P(Y)𝛽 ;

(6b) X ⊆ Y ⇒ P(X)𝛽 ⊆ P(Y)𝛽 .

(7a) X ∩ Y = � ⇒ P(X)� ∩ P(Y)� = �;

(7b) X ∩ Y = � ⇒ P(X)� ∩ P(Y)� = �.

Proof 

(1a) For any x ∈ U,

x ∈ P(X)𝛽 ⇔

∑l

i=1
(1 − S

Pi

∼X
(x)).

l
> 1 − 𝛽,

Fig. 1  Relationships of upper and lower approximations
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 we have that 

 Then this item is proved. Item (1b) can be proved 
similarly.

(2a) For any x ∈ P(X)� , we have 

 There exists i ≤ l such that [x]Pi
⊆ X. Thus, we can get 

x ∈ X.

(2b) By the duality and item (2a), we have 

 Thus, X ⊆ P(X)𝛽.
(3a) (3b) From item (2) in Proposition 3.1, SPi

�
(x) = 0 and 

S
Pi

U
(x) = 1 (∀X ∈ U), then we can have 

 From the duality, we can easily have 

(4a) For any x ∈ P(X ∩ Y)�, we can get 

 By Lemma 3.1, we have 

 Then, we have the following 

x ∈∼ P(X)� ⇔

∑l

i=1
(1 − S

Pi

∼X
(x)).

l
≤ 1 − �

⇔

∑l

i=1
S
Pi

∼X
(x).

l
≥ � ⇔ P(∼ X)� .

∑l

i=1
S
Pi

X
(x)

l
≥ 𝛽 > 0.

∼ P(X)𝛽 = P(∼ X)𝛽 ⊆∼ X.

P(�)� =

�
x ∈ U

����

∑l

i=1
S
Pi

�
(x)

l
=

∑l

i=1
0

l
= 0 ≥ �

�
= �,

P(U)� =

�
x ∈ U

����
∑l

i=1
S
Pi

U
(x)

l
=

∑l

i=1
1

l
= 1 ≥ �

�
= U.

P(�)� = P(∼ U)� =∼ P(U)� =∼ U = �.

P(U)� = P(∼ �)� =∼ P(�)� =∼ � = U.

∑l

i=1
S
Pi

X∩Y
(x)

l
=

∑l

i=1
S
Pi

X
(x) ∧ S

Pi

Y
(x)

l
≥ �.

∑l

i=1
S
Pi

X
(x) ∧

∑l

i=1
S
Pi

Y
(x)

l
≥

∑l

i=1
S
Pi

X
(x) ∧ S

Pi

Y
(x)

l
.

∑l

i=1
S
Pi

X
(x) ∧

∑l

i=1
S
Pi

Y
(x)

l
≥ �

⇔

�∑l

i=1
S
Pi

X
(x)

l
≥ �

�
∧

�∑l

i=1
S
Pi

Y
(x)

l
≥ �

�

⇔ x ∈ P(X)� ∧ x ∈ P(Y)� .

 Therefore x ∈ P(X)� ∩ P(Y)� .

(4b) From the duality, this item can be proved by item (4a) 
in this proposition.

(5a) From Proposition 3.1, for any x ∈ U, 
x ∈ P(X)� ∪ P(Y)�, it means that x ∈ P(X)� ∨ P(Y)� ,

 By Lemma 3.1, one can have 

 Then, 

 It means that x ∈ P(X ∪ Y)�.
(5b) From duality, we can get it easily.
(6a) For any x ∈ P(X)�, we have 

∑l

i=1
S
Pi
X
(x)

l
≥ �. As X ⊆ Y , 

we have SPi

X
(x) ≤ S

Pi

Y
(x). Then we can get 

 Thus, x ∈ P(Y)� is obtained. Then this item is proved.
 (6b) Similarly, x ∈ P(X)�, we have ∑l

i=1
(1−S

Pi
∼X

(x))

l
> 1 − 𝛽. As X ⊆ Y , we have 

S
Pi

∼X
(x) ≥ S

Pi

∼Y
(x). Then 

 Additionally, x ∈ P(Y)� is obtained.
(7a) From X ∩ Y = �, we can directly obtain that X ⊆∼ Y .  

We then have P(X)𝛽 ⊆ P(∼ Y)𝛽. Moreover, from the 
duality and items (2a) (2b) in this proposition, we have 
P(∼ Y)𝛽 =∼ P(Y)𝛽 ⊆ P(Y)𝛽. Thus, we can develop that 
P(X)𝛽 ⊆∼ P(Y)𝛽. That is to say P(X)� ∩ P(Y)� = �.  
This item is proved.

(7b) It is easy to get this item.

  □

Remark 1 The properties P(P(X)�)� = P(X)� = P(P(X)�)� 
and P(P(X)�)� = P(X)� = P(P(X)�)� do not hold in gener-
alized multigranulation rough set.

�∑l

i=1
S
Pi

X
(x)

l
≥ �

�
∨

�∑l

i=1
S
Pi

Y
(x)

l
≥ �

�

⇔

∑l

i=1
S
Pi

X
(x) ∨

∑l

i=1
S
Pi

Y
(x)

l
≥ �.

∑l

i=1
S
Pi

X
(x) ∨ S

Pi

Y
(x)

l
≥

∑l

i=1
S
Pi

X
(x) ∨

∑l

i=1
S
Pi

Y
(x)

l
.

∑l

i=1
S
Pi

X∪Y
(x)

l
≥

∑l

i=1
S
Pi

X
(x) ∨ S

Pi

Y
(x)

l
≥ �.

∑l

i=1
S
Pi

Y
(x)

l
≥

∑l

i=1
S
Pi

X
(x)

l
≥ �.

∑l

i=1
(1 − S

Pi

∼Y
(x))

l
≥

∑l

i=1
(1 − S

Pi

∼X
(x))

l
> 1 − 𝛽.
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For different information levels � and �, the following 
properties can be obtained.

Proposition 3.3 Let I = (U,A,V , f ) be an infor-
mation system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A(i = 1, 2,… , l). For any � ≤ � and �, � ∈ (0.5, 1], the 
following properties are true.

(1) P(X)𝛽 ⊆ P(X)𝛼;
(2) P(X)𝛼 ⊆ P(X)𝛽.

Proof 

(1) From Definition 3.1, on can have that for any 
x ∈ P(X)� ⇒

∑l

i=1
S
Pi
X
(x)

l
≥ � ≥ � ⇒ x ∈ P(X)� .

(2) From the duality in Proposition 3.2 and item (1), this 
item can be proved easily.

  □

Proposition 3.4 Let I = (U,A,V , f ) be an information sys-
tem, X ⊆ U and P = {P1,P2,… ,Pl}, Pi ⊆ A(i = 1, 2,… , l). 
Additionally, Q = {Qi|Qi ⊆ Pi, i = 1, 2,… , l} is a set for 
which some attributes have been removed from the corre-
sponding granulations. For any � ∈ (0.5, 1], the following 
properties hold:

(1) Q(X)𝛽 ⊆ P(X)𝛽;
(2) P(X)𝛽 ⊆ Q(X)𝛽.

Proof As Q = {Qi|Qi ⊆ Pi, i = 1, 2,… , l}, so Qi may be 
the empty set. If Qi = �, then we denote [x]� = U. This 
finding is logical and reasonable because all of the objects 
are indistinguishable with no attributes being considered.

(1) From the above assumptions, one can obtain 
that [x]Pi

⊆ [x]Qi
 holds for any x ∈ U and i ≤ l 

is obvious. Furthermore, S
Pi

X
(x) ≤ S

Qi

X
(x). Thus, 

S
Pi

X
(x) = 1 ⇒ S

Qi

X
(x) = 1. Moreover, for any x ∈ U, we 

can obtain that 

(2) This item can be proved using the duality. For any 
� ∈ (0.5, 1], P(X)𝛽 =∼ P(X)𝛽 ⊆∼ Q(X)𝛽 = Q(X)𝛽.

  □

x ∈ Q(X)� ⇔

∑l

i=1
S
Qi

X
(x)

l
≥ �

⇒

∑l

i=1
S
Pi

X
(x)

l
≥

∑l

i=1
S
Qi

X
(x)

l
≥ �

⇒ x ∈ P(X)� .

Next, we will discuss some measures in generalized multi-
granulation rough sets to further study the new model.

Definition 3.2 Let I = (U,A,V , f ) be an information sys-
tem, X ⊆ U and P = {P1,P2,… ,Pl}, Pi ⊆ A(i = 1, 2,… , l). 
The accuracy and roughness of X are defined as

The relationships of accuracies and roughness among gen-
eralized, optimistic and pessimistic multigranulation rough 
sets are described as follows:

(1) �(X)PM ≤ �(X)P
�
≤ �(X)OM;

(2) �(X)PM ≥ �(X)P
�
≥ �(X)OM.

Where �(X)OM =
P(X)OM

P(X)OM
, �(X)PM =

P(X)PM

P(X)PM
, �(X)

OM
=

1 −
P(X)

OM

P(X)
OM

, �(X)PM = 1 −
P(X)PM

P(X)PM
.

Proposition 3.5 Let I = (U,A,V , f ) be an infor-
mation system, X ⊆ U and P = {P1,P2,… ,Pl}, 
Pi ⊆ A(i = 1, 2,… , l). For any X, Y ⊆ U and � ∈ (0.5, 1], 
the following properties hold:

(1) X is more accurate than Y with respect to P under �, if 
and only if �(X)P

�
≥ �(Y)P

�
;

(2) X is more rough than Y with respect to P under �, if 
and only if �(X)P

�
≥ �(Y)P

�
.

For different information levels �, � ∈ (0.5, 1]. If � ≤ �, 
�(X)P

�
≥ �(X)P

�
 and �(X)P

�
≥ �(X)P

�
 hold.

In Pawlak rough sets model, a parameter called the 
dependent degree is used to illustrate the importance of 
a condition attribute subset with respect to the decision 
attributes in a target information system. This parameter 
can be defined similarly in generalized multigranulation 
rough set, as follows:

Let I = (U,A,V , f ) be an information system, 
X ⊆ U and P = {P1,P2,… ,Pl}, Pi ⊆ A(i = 1, 2,… , l), 
U∕d = {D1,D2,… ,Dr}. The dependent degree of P with 
respect to d under the information level � is defined by

�(X)P
�
=

P(X)�

P(X)�

,

�(X)P
�
= 1 −

P(X)�

P(X)�

.

�(P, d)� =

���
⋃r

k=1
P(Dk)�

���
�U� =

∑r

k=1

���P(Dk)�
���

�U� .
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From Definition 3.3, the dependent degrees in pessimistic 
multigranulation rough set, generalized multigranulation 
rough set and optimistic multigranulation rough set have 
the following relations.

where

4  Optimal granulation selection in generalized 
multigranulation rough sets

It is important to select the optimal granulation in detail 
corresponding a suitable information system. In this sec-
tion, we investigate optimal granulation selection with 
different requirements for the generalized multigranula-
tion rough sets.

Let I = (U,A ∪ {d},V , f ) be a target information system, 
P = {P1,P2,… ,Pl}, Pi ⊆ A (i = 1, 2,… , l). We say that I 
is granular consistent if for any Pi ∈ P, [x]Pi

⊆ [x]d holds. 
Otherwise, I is a granular inconsistent information system.

For a granular consistent information system 
I = (U,A ∪ {d},V , f ) and Q ⊆ P, if the depend-
ent degree of Q with respect to d under the level �: 
�(Q, d)� = �(P, d)� , we call Q is a granularity selection. 
∀R ∈ Q, if the dependent degree of R with respect to d 
under the level �: �(Q − {R}, d)� ≠ �(P, d)� , then Q is an 
optimal granulation selection of I.

Let I = (U,A ∪ {d},V , f ) be a granular inconsist-
ent information system, and P = {P1,P2,… ,Pl}, 
Pi ⊆ A (i = 1, 2,… , l). The lower and upper approximation 
granular distribution functions of I are denoted as follows:

The lower approximation granular distribution function fig-
ures all of the certain knowledge representations, and the 
upper approximation granular distribution function shows 
all of the possible knowledge representations in the sense 
of multigranulation. Moreover, optimal granularity selec-
tion can be acquired by considering these representations in 
terms of multigranulation.

Definition 4.1 Let I = (U,A ∪ {d},V , f ) be a granular 
inconsistent information system, and P = {P1,P2,… ,Pl}. 
Pi ⊆ A(i = 1, 2,… , l), Q = {Pi|i ≤ l}, and R = {Pi|i < l}.

�(P, d)PM ≤ �(P, d)� ≤ �(P, d)OM,

�(P, d)PM =

∑r

k=1
�P(Dk)PM�
�U� , �(P, d)OM =

∑r

k=1
�P(Dk)OM�
�U� .

f (P)� = (P(D1)� ,P(D2)� ,… ,P(Dr)�),

f (P)� = (P(D1)� ,P(D2)� ,… ,P(Dr)�).

(1) If f (P)� = f (Q)�, we say that Q is a lower distribution 
granulation selection of I. Moreover, if Q is a lower 
distribution granulation selection and no proper R of Q 
is a lower distribution granulation selection, then Q is 
called a lower distribution optimal granulation selec-
tion of I.

(2) If f (P)� = f (Q)�, we say that Q is a upper distribution 
granulation selection of I. Moreover, if Q is a upper 
distribution granulation selection and no proper R of 
Q is a upper distribution granulation selection, then 
Q is called a upper distribution optimal granulation 
selection of I.

Let I = (U,A ∪ {d},V , f ) be a granular inconsist-
ent information system, and P = {P1,P2,… ,Pl}, 
Pi ⊆ A(i = 1, 2,… , l). The lower and upper approximation 
granular quality functions of I are denoted as follows:

The lower approximation granular quality function lays out 
the number of objects in all of the certain knowledge rep-
resentations, and the upper approximation granular quality 
function delivers the number of objects in all of the possible 
knowledge representations in the sense of multigranulation.

Definition 4.2 Let I = (U,A ∪ {d},V , f ) be a granular 
inconsistent information system, and P = {P1,P2,… ,Pl}. 
Pi ⊆ A(i = 1, 2,… , l), Q = {Pi|i ≤ l}, and R = {Pi|i < l}.

(1) If �P
�
= �

Q

�
, then we say that Q is a lower quality granu-

lation selection of I. Moreover, if Q is a lower quality 
granular and no proper R of Q is a lower quality granu-
lation selection, then Q is referred to as a lower quality 
optimal granulation selection of I.

(2) If �P
�
= �

Q

�
, we say that Q is an upper quality granula-

tion selection of I. Moreover, if Q is an upper quality 
granulation selection and no proper R of Q is an upper 
quality granulation selection, then Q is referred to as 
an upper quality optimal granulation selection of I.

The optimal granulation selections defined in Defini-
tions 4.1 and 4.2 are entirely the same when the consid-
ered target information system is granular consistent. 
Additionally, the method of computing the significance 
of every granulation and every condition attribute in sig-
nificant granulations is the same as considering �P

�
= �

Q

�
. 

Thus, this method can also be used in granular 

�P
�
=

∑r

k=1
�P(Dk)��
�U� ,

�P
�
=

∑r

k=1
�P(Dk)��
�U� .
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inconsistent information system, and the results obtained 
are lower approximation quality granulation selection.

Proposition 4.1 LetI = (U,A ∪ {d},V , f ) be a granular 
inconsistent information system, and P = {P1,P2,… ,Pl}, 
Pi ⊆ A(i = 1, 2,… , l).

(1) The lower approximation distribution optimal granula-
tion selection is equivalent to the lower quality optimal 
granulation selection in generalized multigranulation 
rough set.

(2) The upper approximation distribution optimal granu-
lation selection is equivalent to the upper quality opti-
mal granulation selection in generalized multigranu-
lation rough set.

Proof Assume that Q ⊆ P.

(1) ⇒ f (Q)� = f (P)� ⇒ �
Q

�
= �P

�
 is obvious.

⇐ For any Di ∈ U∕d, we can have that Q(Di)𝛽 ⊆ P(Di)𝛽. 
Then we can get �Q

�
≤ �P

�
. If �Q

�
= �P

�
, for any Di ∈ U∕d, 

we can have Q(Di)� = P(Di)�. Otherwise, if there exists 
Di0

∈ U∕d such that Q(Di0
)𝛽 ⊊ P(Di0

)𝛽, then 𝜎Q

𝛽
< 𝜎P

𝛽
.

Therefore, �Q

�
= �P

�
⇒ f (Q)� = f (P)� .

(2) ⇒ f (Q)� = f (P)� ⇒ �
Q

�
= �P

�
 is obvious.

⇐ For any Di ∈ U∕d, we can have that P(Di)𝛽 ⊆ Q(Di)𝛽. 
Then we can get �Q

�
≤ �P

�
. If there exists Di0

∈ U∕d such 

that P(Di0
)𝛽 ⊊ P(Di0

)𝛽, 𝜆P𝛽 < 𝜆
Q

𝛽
.

Therefore, �Q
�
= �P

�
⇒ f (Q)� = f (P)� .   □

When � = 1, generalized multigranulation rough set can 
be degenerated into pessimistic multigranulation rough 
set. That is to say, pessimistic multigranulation rough set 
is a special case of generalized multigranulation rough set 
while � = 1. Thus, the above proposition holds for pessi-
mistic multigranulation rough set. From the proof of the 
proposition, we can easily obtain that this proposition also 
holds for optimistic multigranulation rough set. However, it 
would not hold for other rough set models such as variable 
precision being considered in the sense of multigranulation. 
The lower and upper quality consistent reductions provide 
an easy and quick way to check reductions in computing by 
programs on computers.

From the above, we can know that the higher the infor-
mation level � is, the stricter our requirements are. The rea-
son is that when � = 1, generalized multigranulation rough 
set degenerated into pessimistic multigranulation rough set. 
Optimistic multigranulation rough set needs only at least 

one granule that supports the concept, while pessimistic 
multigranulation rough set needs all granule to support the 
concept.

Information level � must be subordinated to the major-
ity principle, so � need to satisfy � ∈ [0.5, 1]. The bigger 
the � the finer the information granular, the results will 
be more accurate. The smaller the � the thicker the infor-
mation granular, the results will be more macroscopic. 
Therefore, � can be artificially adjusted according to our 
needs. For a granular consistent information system, from 
the perspective of dependence, optimal granularity selec-
tion level: to find the smallest subset Q of P and Q meets 
�(Q, d)� = �(P, d)� . Thus, Q is the optimal granularity of 
the information system. The dependent degree of P with 
regard to d can be observed in an overall and systematic 
way. Furthermore, it also improves the computational 
efficiency. For a granular inconsistent information sys-
tem, from the perspective of the lower distribution func-
tions, the criterion for optimal granularity selection is to 
find the smallest subset Q of P and make Q satisfy 
f (P)� = f (Q)� . So Q becomes the optimal granularity of 
the information system. Each decision class lower 
approximate distribution can be observed under the 
attribute set P and information level �. The upper approx-
imation distribution is similarly analyzed. From the per-
spective of lower approximation granular quality func-
tions, the level of optimal granularity selection is to find 
the smallest subset Q of P and such that �P

�
= �

Q

�
. Subse-

quently, Q is the optimal granularity of the information 
system. The proportion of lower approximation of deci-
sion classes in the total objects can be considered from 
the macroscopic point of view. This approach can effec-
tively promote the performance of computing works. For 
the upper approximation granular quality function, the 
situation is analogous to the lower approximation.

5  Algorithm

According to the above theory, one can select the optimal 
granulation in generalized multigranulation rough sets. In 
this section, we present the algorithm of optimal granula-
tion selection. And a real-life case study is given to show 
effectiveness of the proposed approach.

We outline the optimal granulation selection process 
of the lower and upper distribution in Algorithm 1. And 
the optimal granulation selection process of lower and 
upper quality are shown in Algorithm 2.
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 In Algorithm 1, it should be noted that Q1 and Q2 take 
all of the subsets of P.

Time complexity analysis of Algorithm  1 Let 
I = (U,A ∪ {d},V , f )) be a target information system. The 
number of objects and attributes are denoted by N and 
|A|. The number of objects and attributes in the i-th gran-
ule Pi are denoted by Ni and Ki (i ∈ {1, 2,… , l}, ΣNi = N 
and ΣKi = |A|), respectively. U∕d = {D1,D2,… ,Dr} is the 
decision classes. We take a variable ti to stand for the time 
complexity in an implementation. In the next, we can ana-
lyze the time complexity of Algorithm 1 step by step.

The time complexity to do initialized setting and input 
the information table, the information level, and the gran-
ule set is 0, then the analysis to do the initial settings is 
finished. The time complexity to calculate U/d is denoted 
by t1 = (N − 1) + (N − 2) +⋯ + 1 = N × (N − 1)∕2, 
the time complexity to calculate U∕Pi(i = 1, 2,… , l) 
is t2 = N × |A|∕2. So the time is 
t3 = t1 + t2 = N × (N − 1)∕2 + N × |A|∕2. The next to 
judge whether the information system is granular con-
sistent is t4 = N × l. The time to obtain lower and upper 
approximations in generalized multigranulation rough sets 
is t5 = 2 × N × l × r + 2 × N.

The first four steps calculate the lower and upper 
approximation granular distribution functions of I, 
lower and upper distribution optimal granulation selec-
tion. The time complexity of methods are denoted by 
t
6
= 2

l−1 × (N∕2 + N × |A|∕2 + 2 × N × l × r + 2 × N) × 2

= 2
l−1 × (N × |A| + 4 × N × l × r + 5N∕2).

From the above analysis, we can know that the maxi-
mum time complexity of the main part in the Algorithm 1 
is

As r (1 ≤ r ≤ N) is the number of decision classes, and 
l (1 ≤ l ≤ |A|) is the number of granular structure, the max-
imum complexity of the main algorithm is approximately 
O((2|A|+1 + 2) × N2 × |A|).

The explanation of the Fig. 2: In Algorithm 1, the lower 
distribution optimal granularity selection and upper dis-
tribution optimal granularity selection are accordance 
with this flow graph. Input a target information system 
(an information table I = (U,A ∪ {d},V , f )), an infor-
mation level �, and the granule set P = {P1,P2,… ,Pl},  
Pi ⊆ A(i = 1, 2,… , l). We first calculate U / d and U∕Pi to 
make the judgement of whether this information system 
is granular consistent or not. If it is granular inconsistent, 
we cannot do the lower and upper distribution optimal 

t1
main

= t3 + t4 + t5 + t6

= N2∕2 + (2l+1 + 2) × N × l × r

+ (2l × 5∕4 + 3∕2) × N + (2l−1 + 1∕2) × N × |A|
+ N × l

granularity selection. If it is granular inconsistent, we then 
compute the lower and upper approximations of each deci-
sion class and its complement in generalized multigranu-
lation rough set. After that, we get the lower and upper 
approximation granular distribution functions of I which 
are f (P)� and f (P)�, respectively. According to the optimal 
granularity selection of lower distribution and upper distri-
bution in Definition 4.1, we can obtain the lower and upper 
distribution granularity selections, respectively. Among the 
obtained lower and upper distribution granularity selec-
tions, we can further get the lower distribution optimal 
granularity selection and upper distribution optimal granu-
larity selection.

In Algorithm 2, it should be noted that Q1 and Q2 take all 
of the subsets of P.

Time complexity analysis of Algorithm  2 Let 
I = (U,A ∪ {d},V , f )) be a target information system. The 
number of objects and attributes are denoted by N and 
|A|. The number of objects and attributes in the i-th gran-
ule Pi are denoted by Ni and Ki (i ∈ {1, 2,… , l}, ΣNi = N 
and ΣKi = |A|), respectively. U∕d = {D1,D2,… ,Dr} is 
the decision classes. We take a variable ti to stand for 
the time complexity in an implementation. Next, we 
can analyze the time complexity of Algorithm  2. The 
time complexity to do initialized setting and input the 
information table, the information level, and the gran-
ule set is 0, then the analysis to do initial settings is fin-
ished. The time complexity to calculate U  /  d is denoted 
by t1 = (N − 1) + (N − 2) +⋯ + 1 = N × (N − 1)∕2, 
the time complexity to calculate U∕Pi(i = 1, 2,… , l) 
is t2 = N × |A|∕2. So the time to finish them is 

Fig. 2  The program flow graph of lower and upper distribution opti-
mal granulation selection
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t3 = t1 + t2 = N × (N − 1)∕2 + N × |A|∕2. The time to 
obtain lower and upper approximations in generalized mul-
tigranulation rough sets is t4 = 2 × N × l × r + 2 × N.

The first three steps calculate the lower and upper 
approximation granular distribution functions of I, lower 
and upper distribution optimal granularity selection. To 
judge whether the information system is granular consistent 
is t5 = N × l. The time complexity of methods are denoted 
by t6 = 2l−1 × (N × |A|∕2 + 2 × N × l × r + 5N∕2) × 3∕2.

From the above analysis, we can know that the maxi-
mum time complexity of the main part in Algorithm 2 is

The maximum complexity of the main algorithm is approx-
imately O((3 × 2|A|−1 + 2) × N2 × |A|).

The explanation of Fig.  3: In Algorithm  2, the lower 
quality optimal granularity selection and upper quality 
optimal granularity selection are in accordance with this 
flow graph. Unlike Algorithm  1, we can get the optimal 
granularity selection when it is granular consistent, so is it 
inconsistent, we can get the lower quality optimal granular-
ity selection. After calculating U  /  d and 
U∕Pi (i = 1, 2,… , l), we obtain the characteristic functions 
of Dk and ∼ Dk. Then we further get the lower and upper 

t2
main

= t3 + t4 + t5 + t6

= (3 × 2l−1 + 2) × N × l × r + (15∕4 × 2l−1 + 2)

× N + (3∕8 × 2l−1 + 1∕2) × N × |A|
+ 1∕2 × N × (N − 1) + N × l

approximation granular quality functions, respectively. 
After getting the lower approximation granular quality 
function, we need to make the judgement of whether this 
information system is granular consistent. If it is granular 
consistent, we can do the optimal granularity selection. If it 
is granular inconsistent, we then compute the lower and 
upper approximations of each decision class and its com-
plement in generalized multigranulation rough set. After 
that, we get the lower and upper approximation granular 
distribution functions of I which are �P

�
=

∑r

k=1
�P(Dk)� �
�U�  and 

�P
�
=

∑r

k=1
�P(Dk)� �
�U� , respectively. According to Definition 4.2, 

we can obtain the lower and upper quality granularity 
selections, respectively. Among the obtained lower and 
upper quality granularity selections, we can further get the 
lower quality optimal granularity selection and upper qual-
ity optimal granularity selection. Multigranulation rough 
set can be very useful in many case, especially in handing 
problem in information system.

6  Case study

Suppose that Table  1 is an information system 
I = (U,C ∪ {d},V , f ) which concerns the achieve-
ments of some students and U = {x1, x2,… , x20} is a uni-
verse including twenty students in a school, a1(Chinese), 
a2(Mathematics), a3(English), a4(History), a5(Geography), 
a6(Politics), a7(Physics), a8(Chemistry), a9(Biology) are 
the conditional attributes of the system, and d(Decision) is 
the decision attribute given by the experts according to the 
achievements of these students. We use “1” to express that 
the student is excellent and “0” to express that the student 
is not excellent.

However, in the college entrance examination, junior 
colleges only select excellent students from the view of 
three major subjects (Chinese, Mathematics, English). Uni-
versities of undergraduate level select excellent students 
from the view of arts (History, Geography, Politics) and 
from the view of science (Physics, Chemistry, Biology).

From the point of view of arts, selecting the attribute set 
{a4, a5, a6} is better than the attribute set {a7, a8, a9}. And 
from the point of view of science, selecting the attribute set 
{a7, a8, a9} is better than the attribute set {a4, a5, a6}. So we 
can get the following three granulations.

If we consider only one of these conditions, we can obtain 
that

P1 = {a1, a2, a3},

P2 = {a4, a5, a6},

P3 = {a7, a8, a9}.

Fig. 3  The program flow graph of lower and upper quality optimal 
granularity selection
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First, according to existence [x]P ⊄ [x]d,it is easy to check 
that Table 1 is a granular inconsistent information system.

Next, on the basis of generalized multi granularity, how 
to choose the best particle size of the two algorithms is 
explained.

The nonempty subsets of P are denoted by

We set the information level � = 2∕3.
The calculation steps of the algorithm 1 are as follows:
Step 1. From Definition 3.1, we can calculate the gener-

alized lower and upper approximations of the decision class 
D1 as follows:

U∕P
1
= {{x

1
, x

6
, x

15
, x

20
}, {x

2
, x

12
}, {x

3
, x

5
},

{x
8
, x

9
, x

14
, x

19
}, {x

4
, x

18
}, {x

7
, x

10
, x

16
},

{x
11
, x

13
, x

17
}};

U∕P
2
= {{x

1
, x

8
, x

16
, x

19
}, {x

2
, x

7
, x

11
}, {x

3
, x

4
},

{x
5
, x

14
}, {x

6
, x

10
}, {x

12
, x

13
, x

17
, x

18
},

{x
9
, x

15
, x

20
}};

U∕P
3
= {{x

1
}, {x

3
, x

5
, x

6
}, {x

10
, x

14
}, {x

2
, x

12
, x

20
},

{x
4
, x

9
, x

15
, x

18
}, {x

7
, x

8
, x

19
}, {x

11
, x

13
}, {x

16
, x

17
}};

U∕d = {D
1
,D

2
} = {{x

1
, x

8
, x

9
, x

10
, x

14
, x

15
, x

16
, x

19
},

{x
2
, x

3
, x

4
, x

5
, x

6
, x

7
, x

11
, x

12
, x

13
, x

17
, x

18
, x

20
}}.

P = {P1,P2,P3},Q1 = {P1,P2},Q2 = {P1,P3},

Q3 = {P2,P3},Q4 = {P1},Q5 = {P2},Q6 = {P3}.

The generalized lower and upper approximations of the 
decision class D2 are

Step 2. According to the definition of distribution function , 
we can obtain the lower and upper approximation granular 
distribution functions as follows.

Step 3. For Q1,Q2,Q3,Q4,Q5,Q6, we can get the general-
ized multigranulation lower and upper approximations of 
the decision classes D1 and D2:

P(D1)2∕3 = {x1, x8, x14, x19};

P(D1)2∕3 = {x1, x8, x9, x10, x14, x15, x16, x19}.

P(D
2
)
2∕3 = {x

2
, x

3
, x

4
, x

5
, x

6
, x

7
, x

11
, x

12
, x

13
, x

17
, x

18
,

x
20
};

P(D
2
)
2∕3 = {x

2
, x

3
, x

4
, x

5
, x

6
, x

7
, x

9
, x

10
, x

11
, x

12
, x

13
, x

15
,

x
16
, x

17
, x

18
, x

20
}.

f (P
−
)
2∕3 = (P

−
(D

1
)
2∕3,P− (D2

)
2∕3)

= ({x
1
, x

8
, x

14
, x

19
}, {x

2
, x

3
, x

4
, x

5
, x

6
, x

7
, x

11
, x

12
,

x
13
, x

17
, x

18
, x

20
}).

f (P̄)
2∕3 = (P̄(D

1
)
2∕3, P̄(D2

)
2∕3)

= ({x
1
, x

8
, x

9
, x

10
, x

14
, x

15
, x

16
, x

19
}, {x

2
, x

3
, x

4
, x

5
, x

6
,

x
7
, x

9
, x

10
, x

11
, x

12
, x

13
, x

15
, x

16
, x

17
, x

18
, x

20
}).

Table 1  A target information 
system

U a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

d

x
1

1 0 2 1 1 2 3 1 2 0
x
2

2 1 4 2 4 0 1 3 0 1
x
3

0 2 4 3 1 2 3 0 2 1
x
4

2 0 3 3 1 2 2 3 0 1
x
5

0 2 4 4 0 0 3 0 2 1
x
6

1 0 2 0 2 3 3 0 2 1
x
7

1 1 1 2 4 0 4 4 3 1
x
8

0 3 4 1 1 2 4 4 3 0
x
9

0 3 4 3 3 4 2 3 0 0
x
10

1 1 1 0 2 3 3 0 1 0
x
11

3 2 2 2 4 0 0 2 2 1
x
12

2 1 4 2 3 4 1 3 0 1
x
13

3 2 2 2 3 4 0 2 2 1
x
14

0 3 4 4 0 0 3 0 1 0
x
15

1 0 2 3 3 4 2 3 0 0
x
16

1 1 1 1 1 2 3 4 4 0
x
17

3 2 2 2 3 4 3 4 4 1
x
18

2 0 3 2 3 4 2 3 0 1
x
19

0 3 4 1 1 2 4 4 3 0
x
20

1 0 2 3 3 4 1 3 0 1
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For Q1 = {P1,P2}, we can get the generalized multi-
granulation lower and upper approximations of the decision 
classes D1 and D2:

For Q2 = {P1,P3}, we can calculate the generalized multi-
granulation lower and upper approximations of the decision 
classes D1 and D2:

For Q3 = {P2,P3}, we can compute the generalized multi-
granulation lower and upper approximations of the decision 
classes D1 and D2:

For Q4 = {P1}, we can get the generalized multigranulation 
lower and upper approximations of the decision classes D1 
and D2:

For Q5 = {P2}, we can receive the generalized multigran-
ulation lower and upper approximations of the decision 
classes D1 and D2:

Q1(D1)2∕3 = {x8, x19};

Q1(D1)2∕3 = {x1, x8, x9, x10, x14, x15, x16, x19}.

Q1(D2)2∕3 = {x2, x3, x4, x5, x6, x7, x11, x12, x13, x17, x18, x20};

Q1(D2)2∕3 = {x2, x3, x4, x5, x6, x7, x10, x11, x12, x13, x15, x17, x18, x20}.

Q2(D1)2∕3 = {x14};

Q2(D1)2∕3 = {x1, x8, x9, x10, x14, x15, x16, x19}.

Q2(D2)2∕3 = {x2, x3, x4, x5, x6, x7, x11, x12, x13, x17, x18, x20};

Q2(D2)2∕3 = {x2, x3, x4, x5, x6, x7, x11, x12, x13, x15, x16, x17, x18, x20}.

Q3(D1)2∕3 = {x1};

Q3(D1)2∕3 = {x1, x8, x9, x10, x14, x15, x16, x19}.

Q3(D2)2∕3 = {x2, x3, x4, x5, x6, x7, x11, x12, x13, x17, x18, x20};

Q3(D2)2∕3 = {x2, x3, x4, x5, x6, x7, x9, x11, x12, x13, x15, x17, x18, x20}.

Q
4
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, x

9
, x

14
, x

19
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Q
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For Q6 = {P3}, we can obtain the generalized multigranula-
tion lower and upper approximations of the decision classes 
D1 and D2:

Step 4. For Q1,Q2,Q3,Q4,Q5,Q6, the lower approximation 
granular distribution functions are computed as follows:

Step 5. For Q1,Q2,Q3,Q4,Q5,Q6, the upper approximation 
granular distribution functions are computed as follows:

Q
6
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1
, x
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, x

14
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Q
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4
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6
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7
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, x
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17
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Q
6
(D

2
)
2∕3 = {x

2
, x

3
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5
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7
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x
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f (Q1)2∕3 = (Q1(D1)2∕3,Q1(D2)2∕3)

= ({x8, x19}, {x2, x3, x4, x5, x6, x7, x11, x12, x13,

x17, x18, x20}).

f (Q2)2∕3 = (Q2(D1)2∕3,Q2(D2)2∕3)

= ({x14}, {x2, x3, x4, x5, x6, x7, x11, x12, x13, x17,

x18, x20}).

f (Q3)2∕3 = (Q3(D1)2∕3,Q3(D2)2∕3)

= ({x1}, {x2, x3, x4, x5, x6, x7, x11, x12, x13, x17,

x18, x20}).

f (Q4)2∕3 = (Q4(D1)2∕3,Q4(D2)2∕3)

= ({x8, x9, x14, x19}, {x2, x3, x4, x5, x6, x7, x11,

x12, x13, x17, x18, x20}).

f (Q5)2∕3 = (Q5(D1)2∕3,Q5(D2)2∕3)

= ({x1, x8, x16, x19}, {x2, x3, x4, x5, x6, x7, x11,

x12, x13, x17, x18, x20}).

f (Q6)2∕3 = (Q6(D1)2∕3,Q6(D2)2∕3)

= ({x1, x10, x14}, {x2, x3, x4, x5, x6, x7, x11, x12,

x13, x17, x18, x20}).

f (Q1)2∕3 = (Q1(D1)2∕3,Q1(D2)2∕3)

= ({x1, x8, x9, x10, x14, x15, x16, x19}, {x2, x3, x4,

x5, x6, x7, x10, x11, x12, x13, x15, x17, x18, x20}).

f (Q2)2∕3 = (Q2(D1)2∕3,Q2(D2)2∕3)

= ({x1, x8, x9, x10, x14, x15, x16, x19}, {x2, x3, x4,

x5, x6, x7, x11, x12, x13, x15, x16, x17, x18, x20}).
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Step 6. According to Definition 4.1, P = {P1,P2,P3} is 
the lower distribution optimal granularity selection of the 
system. And P = {P1,P2,P3} is also the upper distribution 
optimal granularity selection of I.

The calculation steps of the algorithm 2 are as follows:
Step 1. Same as the step 1 in algorithm 1
Step 2. According to the definition of quality function, 

the lower and upper approximation granular quality func-
tions can be also computed as

Step 3. Same as the step 3 in algorithm 1
Step 4. For Q1,Q2,Q3,Q4,Q5,Q6, The lower approxima-

tion granular quality functions can be also computed as:
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f (Q6)2∕3 = (Q6(D1)2∕3,Q6(D2)2∕3)

= ({x1, x8, x9, x10, x14, x15, x16, x19}, {x2, x3, x4,

x5, x6, x7, x8, x9, x11, x12, x13, x15, x16, x17, x18,

x19, x20}).

�P
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=

∑2

k=1
�P(Dk)2∕3�
�U� =
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20
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2∕3
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∑2

k=1
�P(Dk)2∕3�
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�
Q1

2∕3
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, �

Q2

2∕3
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20
, �

Q3

2∕3
=
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20
,

�
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2∕3
=
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20
, �

Q5

2∕3
=

16
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, �

Q6

2∕3
=

15

20
.

Step 5. For Q1,Q2,Q3,Q4,Q5,Q6, the upper approximation 
granular quality functions can be also computed as:

Step 6. According to Definition 4.2, Q4 = {P1} or 
Q5 = {P2} are the lower quality optimal granularity selec-
tion of I. And Q4 = {P1} or Q5 = {P2} are also the upper 
quality optimal granularity selection of I

Finally, we get results as shown in the following Table 2.

7  Conclusions

The multigranulation rough set proposed by Qian et al. is 
an important development of Pawlak’s rough set theory. 
By considering the strict optimistic and pessimistic condi-
tions in classic multigranulation rough set model, the sup-
port characteristic function has been presented in our work. 
We also introduced the information level � to propose novel 
multigranulation rough set, called generalized multigranu-
lation rough set model. The main contributions of this 
paper are as follows. First, the generalized multi granularity 
rough set model is discussed, and the corresponding meas-
ures and performance are discussed. Second, to deal with 
the appropriate size of the selection, we also study the four 
best particle size selection method, and design a selection 
algorithm. Finally, we have constructed a real life exam-
ple to explain and illustrate the best particle size selec-
tion method. In the future, we will study other new parti-
cle size selection methods and the corresponding attribute 
reduction.
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