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operators focus on correctly aggregating information deci-
sion making problems have been developed on this issue 
(Zhao et al. 2010; Ye 2010; He et al. 2013; 2016; Beliakov 
et al. 2010; Merigó et al. 2011).

As a common form of decision information, Zadeh 
(1965) developed the fuzzy sets. To describe vague infor-
mation more flexibly and practicably, Atanassov (1986) 
developed intuitionistic fuzzy sets (IFSs). Atanassov 
(1994) presented some basic operations on IFSs. Xu 
(2007) presented some aggregation operators under intu-
tionistic fuzzy environments and obtained their detailed 
formulas with mathematical induction. Much more atten-
tion has been paid to Granular Computing  and decision 
making problems (Xu and Yager 2006; Rodríguez et  al. 
2012, 2013; Chen 2014; Rodríguez et  al. 2014; Pedrycz 
and Chen 2015; Livi and Sadeghian 2016; Chen and 
Chang 2015; He et  al. 2015; Lorkowski and Kreinovich 
2015; Chen et al. 2016a, b; Apolloni et al. 2016; Antonelli 
et  al. 2016; Ciucci 2016; Kovalerchuk and Kreinovich 
2017; Loia et  al. 2016; Lingras et  al. 2016; Liu and 
Cocea 2017; Liu et al. 2016; Maciel et al. 2016; Min and 
Xu 2016; Peters and Weber 2016; Skowron et  al. 2016; 
Wilke and Portmann 2016; Xu and Wang 2016; Yao 2016; 
Sanchez et  al. 2017; Song and Wang 2016; Wang et  al. 
2017; Zhou 2017). Xu and Xia (2011) dealt with financial 
decision making with induced generalized aggregation 
operators. Mendel (2016) synthesized the interval type-2 
fuzzy set model for a word by comparing Hao-Mendel 
Approach, Interval Approach  and  Enhanced Interval 
Approach. Xu and Gou (2017) made an overview of inter-
val-valued intuitionistic fuzzy information aggregations 
and applications. Wei and Zhao (2012) dealt with decision 
making by the induced correlated aggregating operators. 
Considering that distorted conclusions would be obtained 
if the decision makers don’t take account the relationships 
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among the evaluated values (Yager 2008), Wei (2012) 
developed some prioritized aggregation operators. Xu and 
Xia (2011) proposed some induced generalized intuition-
istic fuzzy operators. Yager and Filev (1999) proposed 
the induced ordered weighted averaging operators. Chen 
et al. (2016a, b) proposed a multi-criteria decision making 
method based on the TOPSIS method under intuitionis-
tic fuzzy environments. Apolloni et al. (2016) proposed a 
neurofuzzy algorithm for learning from complex granules. 
Dubois and Prade (2016)  investigated the notion of exten-
sional fuzzy set and highlighted its common features with 
the notion of formal concept in regard to a similarity rela-
tion. Das et  al. (2017) developed a robust decision mak-
ing method using intuitionistic fuzzy values. Chen and 
Tsai (2016) developed multiple attribute decision making 
method based on novel interval-valued intuitionistic fuzzy 
geometric averaging operators. Kreinovich (2016) solved 
systems of equations under uncertainty and explained how 
different practical problems lead to different mathematical 
and computational formulations.

Recently, some new operational laws on intuitionistic 
fuzzy values had been proposed in He et al. (2014a, b), which 
can be used in some special cases. As a good complement 
to the existing works, the new operational laws consider the 
interactions between membership function and non-member-
ship function of different intuitionistic fuzzy values. How-
ever, when concerned with the decision making situations 
that the given intuitionistic fuzzy values and their ordered 
positions by the induced values should be considered with 
the interaction theory, very little work had been done. As a 
result, based on the works in He et al. (2014a, b), Xu (2007) 
and Xu and Yager (2006), we present some induced hybrid 
interaction aggregation operators on intuitionistic fuzzy val-
ues, such as the IFIHIA operator and the GIFIHIA operator. 
We investigate the properties of these new aggregation opera-
tors and apply them to the selection of cold chain logistics 
enterprises under intuitionistic fuzzy environment. The main 
advantage of these operators is concluded as follows, (1) the 
interactions of different intuitionistic fuzzy values are taken 
into consideration, (2) the involved intuitionistic fuzzy values 
are reordered according to the induced values and then are 
aggregated into a collective one, (3) the attitudes of decision 
makers are considered by taking different values of parameter 
according to decision makers’ preferences.

The rest of the paper is organized as follows. Section 2 
reviews some basic concepts. Section  3 presents somein-
duced hybrid interaction averaging operators  under intui-
tionistic fuzzy environments and the corresponding prop-
erties are investigated. Section 4 investigates the selection 
of cold chain logistics enterprises based on the proposed 
operators under intuitionistic fuzzy environment. In Sect. 5, 
numerical examples show the feasibility and validity of the 
presented approach. Finally, Sect. 6 concludes the paper.

2 � Preliminaries

Definition 1  (Atanassov 1986). Suppose that X is a fixed 
non-empty set.

A =
�⟨x, uA(x), vA(x),�A(x)⟩�x ∈ X

�
 indicates intuition-

istic fuzzy sets (IFSs) in X, where uA(x), vA(x) ∈ [0, 1, rep-
resenting the membership degree and the non-membership 
degree respectively. �A(x) = 1 − uA(x) − vA(x), reflecting 
the hesitant degree of x ∈ X.
Xu (2007) and Xu and Yager (2006) called A = ⟨u, v⟩ intui-
tionistic fuzzy number (IFN) for computational conveni-
ence and all IFNs are denoted as IFNs(X) in this paper.

Atanassov (1994) and De et al. (2000) introduced some 
basic operations on IFNs, which have been widely used in 
multiple attribute decision making.

Let A = <uA,vA> be an IFN, Chen and Tan (1994) 
described the suitable degree of an alternative meets the 
decision maker’s demand with score function S(A) = uA −  
vA. Hong and Choi (2000) described the accurate degree of 
IFN A with accuracy function H(A) = uA + vA.

Based on the score function and accuracy function, Xu 
(2007) and Xu and Yager (2006) defined the comparison 
law for IFNs as follows.

Definition 2  Let A = ⟨uA, vA⟩ ∈ IFNs(X) and B = ⟨u
B
, v

B
⟩

∈ IFNs(X). Then A < B if and only if.

 

i.	  S(A) < S(B) or
ii.	  S(A) = S(B) and H(A) < H(B).

Recently, the new addition operation, scalar multiplica-
tion operation, multiplication operation and power opera-
tion are developed in He et al. (2014a, b) as follows.

Definition 3  Let A = ⟨uA, vA⟩ ∈ IFNs(X) and B = ⟨u
B
, v

B
⟩

∈ IFNs(X).

(1)
A⊕̂B =

⟨
1 −

(
1 − u

A

)
⋅

(
1 − u

B

)
,

(
1 − u

A

)
⋅

(
1 − u

B

)
−

(
1 −

(
u
A
+ v

A

))
⋅

(
1 −

(
u
B
+ v

B

))⟩

(2)
𝜆A =

⟨
1 −

(
1 − uA

)𝜆
,
(
1 − uA

)𝜆
−
(
1 −

(
uA + vA

))𝜆⟩
, 𝜆 > 0

(3)
A⊗̂B =

⟨(
1 − v

A

)(
1 − v

B

)
−
(
1 −

(
u
A
+ v

A

))
(
1 −

(
u
B
+ v

B

))
, 1 −

(
1 − v

A

)(
1 − v

B

)⟩

(4)
A𝜆 =

⟨(
1 − vA

)𝜆
−
(
1 −

(
uA + vA

))𝜆
, 1 −

(
1 − vA

)𝜆⟩
, 𝜆 > 0
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3 � Intuitionistic fuzzy induced hybrid interaction 
averaging (IFIHIA) operator

Definition 4  Let A
i
=
⟨
u
A
i

, v
A
i

⟩
∈ IFNs(X)

(i = 1, 2,… , n). pi (i = 1, 2,… , n) is the induced value. 
The IFIHIA operator is defined as

where � = (�1,…�n)
T is the weight vector of 

Ai (i = 1, 2,… , n), satisfying �i ∈ [0, 1 and 
∑n

i=1
�i = 1,  

Ãi denotes n�iAi (i = 1,… , n), Ãi is reordered accord-
ing to pi as Ãindex(i) (i = 1, 2,… , n), w = (w1,w2,… ,wn)

T 
is the weight vector of Ãindex(i) (i = 1, 2,… , n), satisfying 
wi ∈ [0, 1 and 

∑n

i=1
wi = 1.

Theorem 1  Let Ai
=
⟨
u
A
i

, v
A
i

⟩
∈ IFNs(X) (i = 1, 2,… , n).  

pi (i = 1, 2,… , n) is the induced value. Then

And, IFIHIA�,w(A1,… ,An) ∈ IFNs(X).

Theorem  2  (Idempotency) Let A
i
=

⟨
u
A
i

, v
A
i

⟩
(i = 1, 2,… , n) be a collection of IFNs, if all Ai are equal, 
supposed as A, then IFIHIA�,w(A1,… ,An) = A.

Theorem  3  (Commutativity). Let A
i
=

⟨
u
A
i

, v
A
i

⟩
(i = 1, 2,… , n) be a collection of IFNs, if A�

i
(i = 1,… n) is 

any permutation of Ai(i = 1,… n), then

(5)IFIHIA𝜔,w(A1,… ,An) =
n

⊕̂
i=1

wiÃindex(i),

(6)

IFIHIA𝜔,w(A1

,… , A
n
) =

⟨
1 −

n∏
i=1

(1 − u
Ã
index(i)

)wi
,

n∏
i=1

(1 − u
Ã
index(i)

)wi −

n∏
i=1

(
1 − (u

Ã
index(i)

+ v
Ãindex(i)

)
)w

i

⟩

IFIHIA�,w(A1,… ,An) = IFIHIA�,w(A
�
1
,… ,A�

n
).

Example 1  Let A1 = ⟨0.2, 0.7⟩A2 = ⟨0.5, 0.3⟩
A3 = ⟨0.4, 0.5⟩A4 = ⟨0.3, 0.4⟩A5 = ⟨0.6, 0⟩ be five IFNs. 
� = {0.25, 0.20, 0.15, 0.18, 0.22}T is the weight vector of 
Ai (i = 1, 2,… , 5).

By the operational law in Atanassov (1986), De et  al. 
(2000) and Xu (2007), it has.

Ã
1

=
�
1 − (1 − 0.2)5×0.25, 0.75×0.25

�
= ⟨0.243, 0.640⟩,

Ã
2

=
�
1 − (1 − 0.5)5×0.20, 0.35×0.20

�
= ⟨0.500, 0.300⟩,

Ã
3

=
�
1 − (1 − 0.4)5×0.15, 0.55×0.15

�
= ⟨0.318, 0.595⟩,

Ã
4

=
�
1 − (1 − 0.3)5×0.18, 0.45×0.18

�
= ⟨0.275, 0.438⟩,

Ã
5

=
�
1 − (1 − 0.6)5×0.22, 05×0.22

�
= ⟨0.635, 0.00⟩.

By Definition 2, we have

For a fair comparison, we suppose the score values of 
IFNs are the induced values, Obviously,

So

Suppose that w = (0.112, 0.236, 0.304, 0.236, 0.112)T. 
Then, by the intuitionistic fuzzy hybrid interaction aver-
aging (IFHA) operator in Xu (2007), it follows that.

A = IFHA
w,𝜔(A1

,A
2

,A
3,

A
4

,A
5

) =

⟨
1 −

5∏
j=1

(
1 − u

Ã𝜎(j)

)w
j

,

5∏
j=1

(
v
Ã𝜎(j)

)w
i

⟩
=
⟨
1 − (1 − 0.6350)0.112 ⋅ (1 − 0.5)0.236⋅

⋅(1 − 0.2745)0.304 ⋅ (1 − 0.3183)0.236 ⋅ (1 − 0.2434)0.112,

0.1703

0.112

⋅ 0.3

0.236

⋅ 0.4384

0.304

⋅ 0.5946

0.236

⋅ 0.0000

0.112

⟩

= ⟨0.3910, 0.000⟩.
While according to Definition 3, we have

S(Ã
1

) = −0.3969, S(Ã
2

) = 0.2000, S(Ã
3

) = −0.2763,

S(Ã
4

) = −0.1639, S(Ã
5

) = 0.6350.

S(Ã5) > S(Ã2) > S(Ã4) > S(Ã3) > S(Ã1).

Ã
index(1)

= ⟨0.6350, 0.0000⟩, Ã
index(2)

= ⟨0.5000, 0.3000⟩,
Ã
index(3)

= ⟨0.2745, 0.4384⟩, Ã
index(4)

= ⟨0.3183, 0.5946⟩,
Ã
index(5)

= ⟨0.2434, 0.6403⟩.

Ã
1

=
�
1 − (1 − 0.2)5×0.25, (1 − 0.2)5×0.25 − (1 − 0.9)5×0.25

�
= ⟨0.2434, 0.7004⟩,

Ã
2

=
�
1 − (1 − 0.5)5×0.20, (1 − 0.5)5×0.20 − (1 − 0.8)5×0.20

�
= ⟨0.500, 0.300⟩,

Ã
3

=
�
1 − (1 − 0.4)5×0.15, (1 − 0.4)5×0.15 − (1 − 0.9)5×0.15

�
= ⟨0.3183, 0.5039⟩,

Ã
4

=
�
1 − (1 − 0.3)5×0.18, (1 − 0.3)5×0.18 − (1 − 0.7)5×0.18

�
= ⟨0.2745, 0.3870⟩,

Ã
5

=
�
1 − (1 − 0.6)5×0.22, (1 − 0.6)5×0.22 − (1 − 0.6)5×0.22

�
= ⟨0.6350, 0.0000⟩.



190	 Granul. Comput. (2017) 2:187–197

1 3

According to Definition 2, we obtain

obviously,

Thus,

Suppose that w = (0.112, 0.236, 0.304, 0.236, 0.112)T,  
which is determined by the normal distribution based 
method (Xu 2007). Then, by Theorem 1, it follows that

It is obvious that vIFIHA�,w(A1,…,An)
= 0.3950 ≠ 0. Thus, 

vA5
 doesn’t play a decisive role, which is the advantage 

of the proposed operator in this paper over that in Xu 
(2007).

The IFIHIA operator can be interpreted from three 
aspects as follows.

1.	 It considers not only the effects of membership func-
tion of different IFNs and effects of non-membership 
degree of different IFNs, but also the interactions of 
different IFNs.

2.	 The weighted IFNs n�iAi (i = 1,… , n) are reordered 
according to the induced value pi (i = 1, 2,… , n). 
The weighted IFNs n�iAi (i = 1,… , n) are obtained 
by multiplies Ai (i = 1,… , n) by the corresponding 
weights � = (�1,…�n)

T and a balancing coefficient n.
3.	 In the process of all the weighted IFNs 

wiÃindex(i) (i = 1, 2,… , n) are aggregated into a collec-
tive one, both the given IFNs and their induced values 
pi (i = 1, 2,… , n) are considered.

4 � Generalized intuitionistic fuzzy induced hybrid 
interaction averaging (GIFIHIA) operator

Definition 5  Let Ai =
⟨
uAi

, vAi

⟩
(i = 1, 2,… , n) be a 

collection of IFNs, 𝜆 > 0, pi (i = 1, 2,… , n) be the induced 
value. The generalized intuitionistic fuzzy induced hybrid 
interaction averaging (GIFIHIA) operator of dimension n 

S(Ã
1

) = −0.4570, S(Ã
2

) = 0.2000, S(Ã
3

) = −0.1856,

S(Ã
4

) = −0.1125, S(Ã
5

) = 0.6350.

S(Ã5) > S(Ã2) > S(Ã4) > S(Ã3) > S(Ã1).

Ã
index(1)

= ⟨0.6350, 0.0000⟩, Ã
index(2)

= ⟨0.5000, 0.3000⟩,
Ã
index(3)

= ⟨0.2745, 0.3870⟩, Ã
index(4)

= ⟨0.3183, 0.5039⟩,
Ã
index(5)

= ⟨0.2434, 0.7004⟩.

lA = IFIHIAw,𝜔(A1

,A
2

,A
3,

A
4

,A
5

) =

�
1 −

5�
j=1

(1 − uÃindex(j)
)wj

,

5�
j=1

�
1 − uÃindex(j)

�wi

−

5�
j=1

�
1 − (uÃindex(j)

+ v
Ãindex(j)

)
�wi

�

=
�
1 − (1 − 0.6350)0.112 ⋅ (1 − 0.5)0.236 ⋅ (1 − 0.2750)0.304 ⋅ (1 − 0.3183)0.236 ⋅ (1 − 0.2434)0.112, 0.6090 − 0.1703

0.112

⋅0.2

0.236

⋅ 0.338

0.304

⋅ 0.1778

0.236

⋅ 0.0562

0.112

�
= ⟨0.3910, 0.3950⟩.

is a mapping GIFIHIA�:IFN
n
→ IFN, which has an associ-

ated vector w = (w1,w2,… ,wn)
T, satisfying wi ∈ [0, 1 and ∑n

i=1
wi = 1 such that

where � = (�1,…�n)
T is the weight vector of 

Ai (i = 1, 2,… , n), satisfying �i ∈ [0, 1 and 
∑n

i=1
�i = 1, 

Ãi denotes n�iAi (i = 1, 2,… , n), n is the balancing coeffi-
cient, which plays a role of balance. Ãi is reordered accord-
ing to pi as Ãindex(i) (i = 1, 2,… , n).

(7)GIFIHIA𝜆(A1,… ,An) =

( n

⊕̂
i=1

wiÃ
𝜆

index(i)

)1∕𝜆

,

Lemma 1  Let Ai =
⟨
uAi

, vAi

⟩
(i = 1, 2,… , n) be a collec-

tion of IFNs. Then

where w = (w1,w2,… ,wn)
T is the weighting vector of 

Ai, satisfying wi ∈ [0, 1 and ≻.
Proof  By using mathematical induction on n, we prove 
Lemma 1 as follows.

when n = 1, w1 = 1, we obtain

w
1

A
1

� = A
1

� =
⟨(

1 − v
A
1

)�
−
(
1 −

(
u
A
1

+ v
A
1

))�
,

1 −
(
1 − v

A
1

)�⟩
=

⟨
1 −

(
1 −

(
1 − v

A
1

)�
+
(
1 −

(
u
A
1

+ v
A
1

))�)1

,

(
1 −

(
1 − v

A
1

)�
+
(
1 −

(
u
A
1

+ v
A
1

))�)1

−
(
1 −

(
u
A
1

+ v
A
1

))
1⋅�

⟩

=
⟨
1 −

(
1 −

(
1 − v

A
1

)�
+
(
1 −

(
u
A
1

+ v
A
1

))�)w
1

,

(
1 −

(
1 − v

A
1

)�
+
(
1 −

(
u
A
1

+ v
A
1

))�)w
1

−
(
1 −

(
u
A
1

+ v
A
1

))�⋅w
1

⟩
.

Thus, Lemma 1 is established for n = 1.
If Lemma 1 holds for n = k. Then, n = k + 1, by inductive 

assumption and Eq. (1), we get

n

⊕̂
i=1

w
i
A
i

𝜆 =

⟨
1 −

n∏
i=1

(
1 −

(
1 − v

A
i

)𝜆
+
(
1 −

(
u
A
i

+ v
A
i

))𝜆)w
i

,

n∏
i=1

(
1 −

(
1 − v

A
i

)𝜆
+
(
1 −

(
u
A
i

+ v
A
i

))𝜆)w
i

−

n∏
i=1

(
1 −

(
u
A
i

+ v
A
i

))𝜆w
i

⟩
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i.e. Lemma 1 is established for n = k + 1.
Thus, Lemma 1 holds for all n with the mathematical 

induction on n.

Theorem 4  Let Ai =
⟨
uAi

, vAi

⟩
(i = 1, 2,… , n) be a col-

lection of IFNs. 𝜆 > 0. Then GIFIHIA�(A1

,A
2

,…A
n
) ∈

IFNs(X). Furthermore,

Proof  By Lemma 1 we get

Then according to Eqs. (4) and (7), we have

l

k+1

⊕̂
i=1

w
i
A
i

𝜆 =

(
k

⊕̂
i=1

w
i
A
i

𝜆

)
⊕̂w

k+1Ak+1
𝜆

=

⟨
1 −

k∏
i=1

(
1 −

(
1 − v

A
i

)𝜆
+
(
1 −

(
u
A
i

+ v
A
i

))𝜆)w
i

,

k∏
i=1

(
1 −

(
1 − v

A
i

)𝜆
+
(
1 −

(
u
A
i

+ v
A
i

))𝜆)w
i

−

k∏
i=1

(
1 −

(
u
A
i

+ v
A
i

))𝜆w
i

⟩

⊕̂

⟨
1 −

(
1 −

(
1 − v

A
k+1

)𝜆

+
(
1 −

(
u
A
k+1

+ v
A
k+1

))𝜆
)w

k+1

,

(
1 −

(
1 − v

A
k+1

)𝜆

+
(
1 −

(
u
A
k+1

+ v
A
k+1

))𝜆
)w

k+1

−
(
1 −

(
u
A
k+1

+ v
A
k+1

))𝜆⋅w
k+1

⟩

=

⟨
1 −

k+1∏
i=1

(
1 −

(
1 − v

A
i

)𝜆
+
(
1 −

(
u
A
i

+ v
A
i

))𝜆)w
i

,

k+1∏
i=1

(
1 −

(
1 − v

A
i

)𝜆
+
(
1 −

(
u
A
i

+ v
A
i

))𝜆)w
i

−

k+1∏
i=1

(
1 −

(
u
A
i

+ v
A
i

))𝜆w
i

⟩

(8)
GIFIHIA𝜆(A1

,A
2

,…A
n
) =

⟨(
1 −

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

+

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆⋅w
i

)
1∕𝜆

−

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))w
i

, 1 −

(
1 −

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

+

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆w
i

)
1∕𝜆⟩

.

n

⊕̂
i=1

w
i
Ã
𝜆

index(i)
=

⟨
1 −

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

,

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

−

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆w
i

⟩
.

GIFIHIA𝜆(A1

,A
2

,…A
n
) =

(
n

⊕̂
i=1

w
i
(Ã

index(i))
𝜆

)
1∕𝜆

=

⟨(
1 −

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

+

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆⋅w
i

)1

∕
𝜆

−

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))w
i

, 1 −

(
1 −

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

+

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆w
i

)1

∕
𝜆
⟩

Therefore, Eq. (8) is established.
Next, we prove the result that 

GIFIHIA�(A1,A2,…An) ∈ IFNs(X).
Let GIFIHIA�(A1,A2,…An) = E = ⟨uE, vE⟩, By Eq. (8), 

we have
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According to Definition 1, we have 
0 ⩽ 1 −

(
1 − vÃ𝜎(i)

)𝜆

⩽ 1,then

And

Thus,

By Eqs. (11) and (13), we have

By Eq. (12) and 0 ⩽ wi ⩽ 1, we obtain

Thus,

By Eqs. (10) and (15), we have

(9)

v
E
= 1 −

(
1 −

n∏
i=1

(
1 −

(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

+

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆w
i

)1

∕
𝜆

,

(10)
uE =

⎛⎜⎜⎜⎜⎜⎝

1 −

n�
i=1

�
1 −

�
1 − vÃindex(i)

�𝜆

+
�
1 −

�
uÃindex(i)

+ vÃindex(i)

��𝜆
�wi

+

n�
i=1

�
1 −

�
uÃindex(i)

+ vÃindex(i)

��𝜆⋅wi

⎞⎟⎟⎟⎟⎟⎠

1∕𝜆

−

n�
i=1

�
1 −

�
uÃindex(i)

+ vÃindex(i)

��wi

(11)

v
E
⩾ 1 −

(
1 −

n∏
i=1

(
0 +

(
1 −

(
u
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index(i)

+ v
Ã
index(i)

))𝜆
)w

i

+
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(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆w
i

)1∕𝜆

= 0.

(12)

1 −
(
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)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
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((
1 − v

Ã
index(i)

)𝜆

−
(
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(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)

∈ [0, 1].

(13)

v
E
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(
1 −

n∏
i=1

(1)wi +

n∏
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(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆w
i

)1∕𝜆

= 1 −

(
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(
1 −

(
u Ã
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+ v
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index(i)
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i
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(
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i=1

(
1 −

(
u
Ã
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+ v
Ã
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))𝜆w
i

)1∕𝜆

= 1 −

(
n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))w
i

)
≤ 1

(14)0 ⩽ vE ⩽ 1.

(
1 −

(
1 − vÃindex(i)

)𝜆

+
(
1 −

(
uÃindex(i)

+ vÃindex(i)

))𝜆
)wi

∈ [0, 1],

(15)
1 −

n∏
i=1

(
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(
1 − v

Ã
index(i)

)𝜆

+
(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
)w

i

∈ [0, 1].

And

By Eqs. (10) and (17), we have

(16)

u
E
⩾

(
0 +

n∏
i=1

(
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(
u
Ãindex(i)
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Ãindex(i)

))𝜆⋅wi
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∕𝜆

−
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(
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(
u
Ãindex(i)

+ v
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(17)
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(
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index(i)
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(
u
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index(i)
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i

−
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(
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(
u
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index(i)
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index(i)

))𝜆⋅w
i

)

⩾

n∏
i=1

(
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(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆
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i

−

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))𝜆⋅w
i

= 0,

Then by Eqs. (16) and (18), we obtain

According to Eqs. (9) and (10), we have

(18)

u
E
⩽ (1 − 0)

1∕𝜆 −

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))w
i

= 1 −

n∏
i=1

(
1 −

(
u
Ã
index(i)

+ v
Ã
index(i)

))w
i

⩽ 1.

(19)0 ≤ uE ≤ 1.

(20)

uE + vE = 1 −

n∏
i=1

(
1 −

(
uÃindex(i)

+ vÃindex(i)

))wi

∈ [0, 1].
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Therefore, according to Eqs. (14), (19) and (20) and Defi-
nition 1, we have

Theorem 5  Let Ai =
⟨
uAi

, vAi

⟩
(i = 1, 2,… , n) be a col-

lection of IFNs, 𝜆 > 0. � → 0. Then the GIFIHIA operator 
approaches the following limit.

And Lim
�→0

GIFIHIA�(A1,A2,…An) ∈ IFNs(X).

Proof  Similar to He et al. (2014b) and omitted here.

Theorem  6  (Idempotency) LetA
i
=

⟨
u
A
i

, v
A
i

⟩
(i = 1, 2,

… , n) be a collection of IFNs, 𝜆 > 0.w = (w1,w2,… ,wn)
T 

is the weighting vector of Ai, satisfying wi ∈ [0, 1 and ≻. If 
allAi are equal, denoted as A, and � =

(
1

n
,⋯

1

n

)
, then 

GIFIHIA�(A1,A2,…An) = A.

Proof  Let Ai = A = ⟨uA, vA⟩ (i = 1, 2,… , n), if 
� =

(
1

n
,⋯

1

n

)
, it has n�Ai = A. By Eq. (8), taking note of 

∑n

i=1
wi = 1, we obtain

GIFIHIA�(A1,A2,…An) ∈ IFNs(X).

(21)
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= ⟨u
A
, v

A
⟩.

Theorem  7  (Commutativity) Let A
i
=

⟨
u
A
i

, v
A
i

⟩
(i = 1, 2,… , n) be a collection of IFNs. 𝜆 > 0.  
w = (w1,w2,… ,wn)

T is the weighting vector of 
Ai and wi =

1

n
(i = 1,… , n). If 

(
A�

1,A
�
2,…A�

n

)
is any permutation of 

(
A1,A2,…An

)
, then 

GIFIHIA�(A1,A2,…An) = GIFIHIA�(A
�
1
,A�

2
,…A�

n
)..

Proof  By Eq. (8) and the condition that 
(
A�

1,A
�
2,…A�

n

)
 

is any permutation of 
(
A1,A2,…An

)
, we can get the result 

directly.

5 � Selection of cold chain logistics enterprises 
under intuitionistic fuzzy environment

Intuitionistic fuzzy multiple attribute decision making 
(IFMADM) problems are the process of choosing the 
best alternative from all of the possible alternatives which 
are evaluated by several attributes. A cold chain is a tem-
perature-controlled supply chain, which is used to help 
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extend and ensure the shelf life of products. Suppose that 
X = {x1, x2,… , xn} is a set of cold chain logistics enter-
prises, G = {G1,G2,… ,Gm} is a set of attributes with the 
associated weighting vector w = (w1,w2,… ,wm)

T, satisfy-
ing wi ∈ [0, 1 and 

∑m

i=1
wi = 1.

Suppose that the evaluated values of the  cold chain 
logistics enterprises xi (i = 1, 2,… , n) under the attribute 
G  j  are represented by IFNs A

ij
=

⟨
u
A
ij

, v
A
ij

⟩
(i = 1, 2,… ,

n j = 1, 2,… ,m), where uAij
 reflects the degree that the 

alternative xi (i = 1, 2,… , n) satisfies the attribute 
G = {G1,G2,… ,Gm} vAij

 indicates the opposite meaning. 

The construction of IFNs can refer to Pedrycz and Chen 
(2015), Lorkowski and Kreinovich (2015) and Naim and 
Hagras (2015).

Then the selection of cold chain logistics enterprises 
under intuitionistic fuzzy environment based on the GIFI-
HIA operator can be listed as follows.

Step 1 Determine the weights w = (w1,w2,… ,wn)
T and 

� = (�1,…�n)
T, the meaning of w and � please refer to 

Definitions 4 and 5.
Step 2 Based on the GIFIHIA operator in Deinition 5, 

we aggregate the decision information by experts into col-
lective ones, and the GIFIHIA operator is listed as Eq. (22).

Step 3 Rank the final IFNs Ai (i = 1, 2,… , n) by the 
score the accuracy functions in Definition 2.

Step 4 Rank the possible cold chain logistics enterprises 
xi (i = 1, 2,… , n) and choose the best ones.

Step 5 Adjust the values of the parameter � according to 
decision makers’ preference, and analyze the rakings of the 
cold chain logistics enterprises with different values of the 
parameter �.

Step 6 Draw the figure of Step 5 to illustrate the selec-
tions of the cold chain logistics enterprises further.

6 � Numerical example

Suppose that a foodstuff general corporation plan to choose 
a cold chain logistics enterprise to store and transport its 
goods. After thinking the market environment, three pos-
sible cold chain logistics enterprises (x1, x2, x3) are to be 

(22)

Ai = GIFIHIA𝜆(Ai1,Ai2,…Ain) =

⟨(
1 −

n∏
j=1

(
1 −

(
1 − vÃindex(ij)

)𝜆

+
(
1 −

(
uÃindex(ij)

+ vÃindex(ij)

))𝜆
)wj

+

n∏
j=1

(
1 −

(
uÃindex(ij)

+ vÃindex(ij)

))𝜆⋅wj

)1∕𝜆

−

n∏
j=1

(
1 −

(
uÃindex(ij)

+ vÃindex(ij)

))wj

,

1 −

(
1 −

n∏
j=1

(
1 −

(
1 − vÃindex(ij)

)𝜆

+
(
1 −

(
uÃindex(ij)

+ vÃindex(ij)

))𝜆
)wj

+

n∏
j=1

(
1 −

(
uÃindex(ij)

+ vÃindex(ij)

))𝜆wj

)1∕𝜆⟩
.

considered. For the sake of choosing the best cold chain 
logistics enterprise to cooperate, the foodstuff general 
corporation has brought a panel. After careful thinking of 
the alternatives and decision environment, five attributes 
G =

{
G1,G2,G3,G4,G5

}
 are concluded to evaluate the 

ability of the candidate cold chain logistics enterprises.

•	 G1: Storage ability.
•	 G2: The levels of processing.
•	 G3: Transportation capability.
•	 G4: Logistics support capability
•	 G5: Coordinating optimization ability of business opera-

tions.

The evaluated decision information of the three possible 
alternatives under the above five attributes are presented by 
IFNs (Table 1).

Preliminary According to the method of constructing 
IFNs with granularity in Sect. 5, for example, experts mark 
her confidence by left membership value 2 and right mem-
bership value 5 on a scale from 1 to 10 to indicate the 
degrees x1 satisfy the property G1, thus A11 in the numerical 
example is 

�
u
A
11

, 1 − u
A
11

�
= ⟨2∕10, 1 − 5∕10⟩ =

< 0.2, 0.5 >. Similarly, we have 
Aij (i = 1, 2, 3; j = 1,… , 5), and all evaluated IFNs are 
listed in Table 1.

Step 1 The weights w and � are given by the experts as w 
= (0.112, 0.236, 0.304, 0.236, 0.112) and � = (0.2,… 0.2).

Step 2 Suppose the induced values of 
Ãij(i = 1, 2, 3;j = 1,… , 5)given by the exsperts are p

i1
= 0.9,

p
i2
= 0.8, p

i3
= 0.6, p

i4
= 0.5, p

i5
= 0.2 (i = 1, 2, 3), 

then by Eq. (22), and taking � = 0.5, we obtain

Similarly, A2 = ⟨0.4515, 0.3625⟩, A3 = ⟨0.3772, 0.4413⟩.
Step 3 By the score function proposed by Chen and Tan 

(1994), we have

Step 4 By Definition 2, we have S
(
A1

)
> S

(
A2

)
> S

(
A3

)
 

and x1 ≻ x2 ≻ x3.

A1 = GIFIHIA0.5(A11,…A15) = ⟨0.4387, 0.3262⟩.

S
(
A1

)
= 0.1125, S

(
A2

)
= 0.0891, S

(
A3

)
= −0.0640.
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Step 5 Taking different values of the parameter � and 
� = 0.001, 0.002, 0.003… , 20, here we just list the 
scores and the rankings of involved alternatives with 
� = 0.1, 1, 2, 3, 5, 10, 15, 20 as in Table 2.

Step 6. The scores of invovled alternatives with different 
values of parameter � in Step 5 are shown in Fig. 1.

From Fig. 1, we find that S
(
A1

)
 increases as � increases 

on (0,0.7883], and decreases as � increases on (0.7883, 20]. 
S
(
A2

)
 and S

(
A3

)
 increase as � increases on (0, 20]. Moreo-

ver, the ranking of the alternatives with different values of 
the parameter � are concluded as follows.

1.	 When � ∈ (0, 1.0095), the ranking of the three possible 
cold chain logistics enterprises is x1 ≻ x2 ≻ x3. There-
fore, x1 is the best alternative.

2.	 When � ∈ (1.0095, 20), the ranking of the three pos-
sible cold chain logistics enterprises is x2 ≻ x1 ≻ x3. 
Thus, x2 is the best alternative.

If we use the aggregation operators in Zhao et  al. 
(2010) to aggregate a set of IFNs, when there exists 

only one non-membership degree of IFN equals to 
zero, the non-membership degree of aggregation 
result of n IFNs is zero even if the non-membership 
degrees of n − 1 IFNs are not zero, which is the weak-
ness of the aggregation operators in Zhao et  al. (2010). 
However, if we use the operators developed in this 
paper, the aggregation result can be explained reason-
ably. For example, Let A

1

= ⟨0.3, 0.5⟩, A
2

= ⟨0.4, 0.4⟩,
A
3

= ⟨0.3, 0.6⟩, A
4

= ⟨0.4, 0.5⟩, A
5

= ⟨0.5, 0⟩ be five 
IFNs, w = {0.25, 0.20, 0.15, 0.18, 0.22}T be the corre-
sponding weight vector. By the generalized intuitionistic 
fuzzy weighted averaging (GIFWA) operator in Zhao et al. 
(2010), i.e.,

Taking � = 0.5, we get GIFWA
0.5

(A
1

,A
2

,…A
5

) =

⟨0.3845, 0⟩.
If we use the generalized intuitionistic fuzzy induced 

hybrid interaction averaging (GIFIHIA) operator in this 
paper, taking � = 0.5 and � = (0.2,… 0.2)T for the conven-
ience of comparison, we obtain

Obviously vGIFWA0.5(A1,A2,…A5)
= 0, while 

vGIFIHIA0.5(A1,A2,…A5)
= 0.4295 ≠ 0, which shows that 

vA5
= 0 plays a decisive role by Eq.  (23),While doesn’t 

play a decisive role by Eq. (22). Therefore, the new gen-
eralized weighted operator developed by this paper is 
more practical from the averaging point of view.

The characteristics of GIFIHIA operator can be inter-
preted in the following five aspects.

1.	 It considers three relations of different IFNs: the inter-
actions of membership function of different IFNs, the 
interactions of non-membership function of different 
IFNs and the interactions between membership func-
tion and non-membership function of different IFNs.

2.	 It weights the IFNs Ai =
⟨
uAi

, vAi

⟩
(i = 1, 2,… , n) by 

the associated weights � = (�1,…�n)
Tand multiplies 

(23)

GIFWA�(A1

,A
2

,…A
n
) =

⟨(
1 −

n∏
i=1

(
1 − u

A
i

�
)w

i

)
1∕�

,

1 −

(
1 −

n∏
i=1

(
1 −

(
1 − v

A
i

�
))w

i

)
1∕�⟩

GIFIHIA0.5(A1,A2,…A5) = ⟨0.3758, 0.4295⟩.

Table 1   Intuitionistic fuzzy matrix 
(
Aij

)
3×5

G1 G2 G3 G4 G5

x1 〈0.2,0.5〉 〈0.4,0.2〉 〈0.5,0.4〉 〈0.3,0.3〉 〈0.7,0.1〉
x2 〈0.2,0.7〉 〈0.6,0.3〉 〈0.4,0.3〉 〈0.4,0.4〉 〈0.6,0.1〉
x3 〈0.2,0.7〉 〈0.4,0.3〉 〈0.4,0.5〉 〈0.3,0.4〉 〈0.6,0.2〉

Table 2   Score function obtained by the GIFIHIA operator and the rank of the alternatives

GIFIHIA0.1 GIFIHIA1 GIFIHIA2 GIFIHIA3 GIFIHIA5 GIFIHIA10 GIFIHIA15 GIFIHIA20

x1 0.1281 0.1100 0.1596 0.2036 0.2535 0.3187 0.3640 0.3977
x2 0.0786 0.1098 0.1692 0.2117 0.2568 0.3306 0.3902 0.4344
x3 −0.0593 −0.0466 0.0119 0.0536 0.1031 0.1775 0.2277 0.2631
Ranking x1 ≻ x2 ≻ x3 x1 ≻ x2≻ x3 x2 ≻ x1 ≻x3 x1 ≻ x2 ≻ x3 x2 ≻ x1 ≻x3 x2 ≻ x1 ≻x3 x2 ≻ x1 ≻x3 x2 ≻ x1 ≻x3
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Fig. 1   Scores of the alternatives with different values of parameter �
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these numbers by a balancing coefficient n, and then 
gets the weighted IFNs n�iAi (i = 1, 2,… , n).

3.	 It reorders the weighted IFNs n�iAi (i = 1, 2,… , n) 
according to the induced value pi (i = 1, 2,⋯ , n) as (
Ãindex(1), Ãindex(2),… , Ãindex(n)

)
.

4.	 Both the weighted IFNs wiÃindex(i) (i = 1, 2,… , n) and 
their induced value pi (i = 1, 2,… , n) are considered, 
and all the IFNs Ai (i = 1, 2,… , n) are aggregated into 
a collective one.

5.	 The attitude of decision makers are considered by tak-
ing different values of � according to decision makers’ 
preferences.

7 � Conclusions

In this paper, we present the IFIHIA operator and the 
GIFIHIA operator, taking the interactions of different 
IFNs into consideration, reordering the involved IFNs 
according to the induced values and then aggregate them 
into a collective one, considering the attitudes of decision 
makers by taking different values of parameter accord-
ing to decision makers’ preferences. We investigate the 
properties of these operators and apply them to the selec-
tion of cold chain logistics enterprises under intuitionistic 
fuzzy environment. Examples are illustrated to show the 
validity and feasibility of the new approach. We also give 
some comparisons between this paper and other papers.

In the succeeding work, we will develop a class of 
fuzzy numbers intuitionistic fuzzy hybrid interaction 
averaging operators based on the existing works and 
apply them to the selection of cold chain logistics enter-
prises, decision support, recommender systems and mul-
tiple attribute group decision making.
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