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1  Introduction

With successful applications in medicine (John and Inno-
cent 2005; Garibaldi et al. 2012; Mazandarani and Kamyad 
2011; Najariyan et  al. 2011), control theory (Najariyan 
and Farahi 2015), food science (Zolfaghari et  al. 2014), 
mathematics (Najariyan and Mazandarani 2015), comput-
ing with words (Mendel 2016), decision making (Wang 
et al. 2016; Das et al. 2016), fuzzy logic is well known as 
an effective tool for dealing with uncertainty in modeling 
processes. Generalization of concepts and achievements 
already obtained in the field of mathematics using fuzzy 
logic have recently captured much attention. Fuzzy linear 
systems (FLSs) can be regarded as a case of the generaliza-
tion. By definition, FLSs are systems of linear equations in 
which coefficients and/or variables are uncertain and this 
uncertainty is expressed using fuzzy numbers. Simply put, 
the crisp linear equation system is a special form of an FLS 
when uncertainty vanishes. Just as the application of lin-
ear equations system as a model has been used in various 
areas (e.g., electrical engineering, chemical, physics), FLS 
can also enable us to model process and phenomenon more 
effectively.

FLS was first studied in 1991 (Buckley and QU 1991) 
and the general framework of FLSs originated in 1998 
(Friedman et al. 1998). With the use of the parametric form 
of Type-1 Fuzzy Numbers (T1FNs)—which are a class of 
possibility distribution functions—and by replacing the 
original fuzzy n × n linear system by a crisp 2n × 2n lin-
ear system proposed, Friedman et  al. (1998) solved FLS 
whose coefficients matrix was crisp and the right-hand side 
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column was an arbitrary T1FN vector. Moreover, it was 
derived that a unique fuzzy solution does not exist when-
ever the crisp linear system is not uniquely solved. Then, 
they continued studying the so-called duality in FLSs 
(Ming et  al. 2000) by considering the linear system as 
AX = BX + Y  in which A and B are real n × n matrices, X 
and Y are unknown and known vectors of T1FNs, respec-
tively. It was demonstrated that the dual FLS has a unique 
fuzzy solution on conditions that the inverse matrix of 
A − B exists and has only non-negative entries.

Since then, extensive research was conducted on the 
issue with several methods for solving FLSs presented, 
such as the steepest descent method (Abbasbandy and 
Jafarian 2006), LU decomposition method (Abbasbandy 
et al. 2006), perturbation analysis (Tian et al. 2010), and the 
linear programming problem approach (Ghanbari 2015). In 
addition, some studies were dedicated to investigate dif-
ferent forms of FLSs. In (Wang et al. 2001), solving FLS 
X = AX + U, where A is a crisp square matrix, and U a vec-
tor of fuzzy numbers was considered. A method for solv-
ing fuzzy linear systems of the form A1X + b1 = A2X + b2
—in which A1 and A2 are fuzzy square matrices, and b1 and 
b2 are fuzzy numbers vectors—was proposed in Muzzioli 
and Reynaerts (2006). Furthermore, obtaining a solution to 
fuzzy complex system of linear equations was investigated 
in Behera and Chakraverty (2014).

To date, all studies dealing with FLSs are restricted to 
those where uncertainty is considered as a T1FN. In other 
words, it has been assumed that the uncertainty can be 
determined using a precise membership function. However, 
it may not be possible for a decision maker to consider such 
an exact form based on different experts’ interpretations of 
the uncertainty in real applications. To illustrate, suppose a 
number of electrical engineers—as the experts—are asked 
about the amount of output voltage of a specific ampli-
fier system. All the subjects mention “approximately 10 
volts”. Nevertheless, if each individual subject is asked to 
show the ”approximately 10 volts membership function” as 
T1FN, different T1FNs are likely to be presented, even if 
the T1FNs are all of the same kind (e.g., triangular). This 
issue recalls the statement that words can mean different 
things to different people (Mendel 2007). The motivation 
for this paper comes from this observation that determining 
an exact form of one single possibility distribution function 
of an uncertain value may not be always possible based on 
different experts’ interpretations about the value.

In 1975 (Zadeh 1975), Zadeh presented Type-2 Fuzzy 
Sets (T2FSs) which are a more general concept than 
Type-1 Fuzzy Sets (T1FSs). By definition, a T2FS is a set 
in which membership grades are a T1FS each. This paper 
aims at investigating FLSs in which uncertainty is consid-
ered as a special class of T2FSs called triangular perfect 
quasi-type-2 fuzzy numbers (Mazandarani and Najariyan 

2014b). This system has a solution which includes not only 
different interpretations of experts, but also provides infor-
mation about uncertainty dispersion. This paper also pre-
sents conditions for the existence of a unique fuzzy solution 
to the n × n linear system. Furthermore, the applicability 
of the proposed model is illustrated using examples in the 
pulp and paper industry, and electrical engineering.

2 � Preliminaries

This section presents some necessary definitions and theo-
rems which will be used in this paper.

Throughout this paper, the set of all real numbers is 
denoted by ℝ, the set of all T1FNs on ℝ by E1, and the set 
of all perfect T2FNs on ℝ by E2. The left and right end-
points of �-cut of a fuzzy set A, A�, are denoted by A� and 
A
�
, respectively. The transpose of a matrix Y = [yij]n×n is 

denoted by YT.

Definition 1  (Zimmermann 2001) The T1FS 
u: ℝ → [0, 1] is called a T1FN if it is normal, fuzzy convex, 
upper semi-continuous and compactly supported fuzzy sub-
sets of the real numbers.

The T1FN u ∈ E1 can be represented in a parametric 
form by the ordered pair of functions (u� , u�), 0 ≤ � ≤ 1 
satisfying the following properties:

1.	 u� is a bounded non-decreasing left continuous func-
tion;

2.	 u
� is a bounded non-increasing left continuous func-

tion;
3.	 u� ≤ u

�
, � ∈ [0, 1].

Definition 2  (Mendel 2008; Coupland and John 2007) A 
T2FS, Ã, can be characterized by the so-called point-valued 
representation as follows:

where 𝜇Ã(x, u) and u are called type-2 membership function 
and primary grade—or secondary variable—of Ã, respec-
tively, x is the primary variable, X is the domain of the 
fuzzy set, and Jx is the domain of the secondary member-
ship function at x (see Fig. 1).

Definition 3  (Mendel and John 2002). Let Ã be a T2FS. 
A vertical slice of Ã at x0 ∈ X, 𝜇Ã(x0), is a T1FS and the 
membership function of secondary domain at the fixed 
point x0. It is identified as

Ã = {((x, u),𝜇Ã(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]},
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where is called secondary grade.

It should be noted that the integral sign stands for the 
union over all admissible x and/or u is not standard integra-
tion. In addition, the sign “/” stands for association (or a 
marker) does not imply division.

Definition 4  (Mazandarani and Najariyan 2014a). An 𝛼̃-
cut set of the vertical slice of Ã at point x0 ∈ X is defined as

where cl(.) denotes the closure of the set, and it is compact.

Definition 5  (Liu 2008) Let Ã be a T2FS. The union 
of all secondary domains of the T2FS, whose secondary 
grades are greater or equal to 𝛼̃ ∈ [0, 1], is called 𝛼̃-plane of 
Ã and denoted by Ã𝛼̃ as

Theorem  1  (Liu 2008) 𝛼̃-plane representation theorem: 
A T2FS,Ã, can be represented as the union of its 𝛼̃-planes, 
i.e.,Ã =

⋃
𝛼̃∈[0,1] 𝛼̃Ã𝛼̃.

Definition 6  (Mazandarani and Najariyan 2014a; Hung 
and Yang 2004). Let Ã and B̃ be two type-2 fuzzy sets, and 

𝜇Ã(x0) = ∫u∈Jx0

fx0 (u)∕u

SÃ(x0|𝛼̃) =
{

{u ∈ Jx0 |fx0(u) ≥ 𝛼̃}, 0 < 𝛼̃ ≤ 1,

cl{u ∈ Jx0 |fx0 (u) > 𝛼̃}, 𝛼̃ = 0,

Ã𝛼̃ = ∫x∈X ∫u∈Jx

{(x, u)|SÃ(x|𝛼̃)}

Ã𝛼̃ = �x∈X �u∈Jx

{(x, u)|fx(u) ≥ 𝛼̃}

dH denote the well-known Hausdorff distance. A metric on 
the space of type-2 fuzzy sets is defined as follows:

where

Definition 7  (Mazandarani and Najariyan 2014a; Mendel 
et al. 2009) Suppose Ã is a T2FS. The 𝛼̃-plane of the set at 
𝛼̃ = 0, Ã0, is called Footprint of Uncertainty of Ã, FOU(Ã). 
In other words, FOU(Ã) is a bounded region of the set when 
it is mapped on two-dimensional plane in the x and u axes.

Note 1  The 𝛼̃-plane of a T2FS, Ã𝛼̃, is an interval valued 
fuzzy set, i.e., it is a set all of whose elements have inter-
val membership grades (Hamrawi 2011). That is, the T2FS 
at level 𝛼̃ ,Ã𝛼̃ , can be characterized in a parametric form 
by the pair (A

𝛼̃
,A𝛼̃), where A

𝛼̃
 is called Lower Member-

ship Function [LMF], and A𝛼̃ is called Upper Membership 
Function [UMF], and they are both T1FSs (Mazandarani 
and Najariyan 2014a).

Definition 8  (Hamrawi 2011) Let Ã be a T2FS. The 𝛼̃-
plane of the set at 𝛼̃ = 1, Ã1, is called Principle Set [PS] of 
Ã, and its membership function is defined as

d2(Ã, B̃) = ∫
b

a

Hf (𝜇Ã(x),𝜇B̃(x))dx

Hf (𝜇Ã(x),𝜇B̃(x)) = 2∫
1

0

𝛼̃ dH(SÃ(x|𝛼̃), SB̃(x|𝛼̃))d𝛼̃

�PS(x) = ∫x∈X

u∕xs.t.fx(u) = 1.

Fig. 1   Triangular type-2 fuzzy 
set with Lower Membership 
Function (LMF), Upper Mem-
bership Function (UMF), and 
Principle Set (PS). Top insert 
depicts the secondary member-
ship function, i.e., vertical slice 
at x

0
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Definition 9  (Hamrawi 2011; Hamrawi et al. 2010) Sup-
pose Ã is a T2FS and its 𝛼̃-plane is Ã𝛼̃ = (A

𝛼̃
,A𝛼̃). The �-cut 

of the 𝛼̃-plane, Ã𝛼
𝛼̃
, is the �-cut of its LMF and UMF, i.e., 

Ã𝛼
𝛼̃
= (A𝛼

𝛼̃
,A

𝛼

𝛼̃
).

Theorem  2  (Hamrawi 2011; Hamrawi et  al. 2010) A 
T2FS,Ã, can be represented by the union of all its�-cuts as 
follows:

3 � Triangular perfect quasi‑type‑2 fuzzy numbers

Definition 10  (Hamrawi 2011; Hamrawi et  al. 2016; 
Mazandarani and Najariyan 2014b) A T2FS, Ã, is called a 
perfect T2FN if the following conditions are satisfied:

1.	 UMF and LMF of FOU(Ã) are T1FNs themselves;
2.	 UMF and LMF of PS of Ã are T1FNs themselves.
Definition 11  (Hamrawi 2011; Hamrawi et  al. 2016) A 
perfect QT2FN is a perfect T2FN, whose all vertical slices 
are T1FNs and piecewise functions are of the same kind 
(e.g., linear).

Note 2  (Hamrawi 2011) A perfect QT2FN can be com-
pletely determined using its FOU and PS.

Ã =
⋃

𝛼̃∈[0,1]

𝛼̃
⋃

𝛼∈[0,1]

𝛼 Ã𝛼

𝛼̃
.

A class of triangular perfect QT2FNs was introduced for 
the first time by Mazandarani and Najariyan in Mazanda-
rani and Najariyan (2014b) as the septuple:

where Lw0
≤ Lw1

≤ L
w0

≤ m ≤ R
w0

≤ Rw1
≤ Rw0

. Figure  2 

shows the triangular perfect QT2FNs. The triangular per-
fect QT2FN, w̃, in the levels � and 𝛼̃, w̃𝛼

𝛼̃
= (w𝛼

𝛼̃
,w

𝛼

𝛼̃
), is 

determined as

and

where L
�

w0

≤ L�
w1

≤ L�
w0

≤ R�

w0

≤ R�
w1

≤ R
�

w0

, and they are 

characterized as

In the following, some of the arithmetic operations on the 
triangular perfect QT2FNs are given. Let 

(1)w̃ = (Lw0
, Lw1

, L
w0

,m,R
w0

,Rw1
,Rw0

)

(2)

⎧
⎪⎨⎪⎩

w
𝛼

𝛼̃
= [L

𝛼

w𝛼̃

,R
𝛼

w𝛼̃

]

L
𝛼

w𝛼̃

= L𝛼
w1

− (1 − 𝛼̃)(L𝛼
w1

− L
𝛼

w0

)

R
𝛼

w𝛼̃

= R𝛼
w1

− (1 − 𝛼̃)(R𝛼
w1

− R
𝛼

w0

)

(3)

⎧⎪⎨⎪⎩

w𝛼

𝛼̃
= [L𝛼

w𝛼̃

,R𝛼

w𝛼̃

]

L𝛼
w𝛼̃

= L𝛼
w1

− (1 − 𝛼̃)(L𝛼
w1

− L𝛼
w0

)

R𝛼

w𝛼̃

= R𝛼
w1

− (1 − 𝛼̃)(R𝛼
w1

− R𝛼

w0

)

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L�
w0

= m − (1 − �)(m − L
w0

)

R�

w0

= m − (1 − �)(m − R
w0

)

L
�

w0

= m − (1 − �)(m − Lw0
)

R
�

w0

= m − (1 − �)(m − Rw0
)

L�
w1

= m − (1 − �)(m − Lw1
)

R�
w1

= m − (1 − �)(m − Rw1
).

Fig. 2   Triangular perfect 
QT2FN, w̃, with L

w
0

, R
w
0

 as the 
left and right endpoints of the 
support of LMF, L

w
0
, R

w
0
 as the 

left and right endpoints of the 
support of UMF, L

w
1
, R

w
1
 as the 

left and right endpoints of the 
support of PS and m as the core 
of the set
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w̃ = (Lw0
, Lw1

, L
w0

,m,R
w0

,Rw1
,Rw0

) and z̃ = (L
z
0
, L

z
1
, L

z
0

, n,

R
z
0

,R
z
1
,R

z
0
) be two triangular perfect QT2FNs. The addi-

tion, w̃ + z̃, and scalar multiplication by k ∈ ℝ, kw̃, are 
defined as follows:

Moreover, the scalar multiplication by k ∈ ℝ, addition, 
subtraction, and multiplication, in the levels � and 𝛼̃ is char-
acterized as

and

where w̃ ◦ z̃ means w̃ + z̃ or w̃ − z̃ or w̃ × z̃ and

4 � Type‑2 fuzzy linear system

This section presents a class of T2FLS in which the coeffi-
cients are real crisp numbers and the variables are the trian-
gular perfect QT2FNs. An approach, similar to what was pro-
posed in Friedman et al. (1998), is introduced for obtaining 
the solution of T2FLS. In order for ideas to flow better and 
easier to follow the notations used in this section are tried to 
be compatible with that used in Friedman et al. (1998). More-
over, a definition of the type-2 fuzzy solution is presented.

A system of linear equations as

w̃ + z̃ = (Lw0
+ Lz0 , Lw1

+ Lz1 , Lw0

+ L
z0
,m + n,

R
w0

+ R
z0
,Rw1

+ Rz1
,Rw0

+ Rw0
)

kw̃ = (kLw0
, kLw1

, kL
w0

, km, kR
w0

, kRw1
, kRw0

)

for k ≥ 0,

kw̃ = (kRw0
, kRw1

, kR
w0

, km, kL
w0

, kLw1
, kLw0

)

for k < 0.

[kw̃]𝛼
𝛼̃
=

{
([kL𝛼

w𝛼̃

, kR𝛼

w𝛼̃

], [kL
𝛼

w𝛼̃

, kR
𝛼

w𝛼̃

]), k ≥ 0,

([kR𝛼

w𝛼̃

, kL𝛼
w𝛼̃

], [kR
𝛼

w𝛼̃

, kL
𝛼

w𝛼̃

]), k < 0

[w̃◦z̃]𝛼
𝛼̃
= ([w𝛼

𝛼̃
◦z𝛼

𝛼̃
], [w

𝛼

𝛼̃
◦z

𝛼

𝛼̃
])

[w𝛼

𝛼̃
◦ z𝛼

𝛼̃
] = [min{L𝛼

w𝛼̃

◦ L𝛼
z𝛼̃
, L𝛼

w𝛼̃

◦ R𝛼

z𝛼̃
,R𝛼

w𝛼̃

◦ L𝛼
z𝛼̃
,

R𝛼

w𝛼̃

◦ R𝛼

z𝛼̃
},

max{L
w𝛼̃

◦ L
z𝛼̃
, L

w𝛼̃

◦ R
z𝛼̃
,R

w𝛼̃

◦ L
z𝛼̃
,

R
w𝛼̃

◦ R
z𝛼̃
}]

[w
𝛼

𝛼̃
◦z

𝛼

𝛼̃
] = [min{L

𝛼

w𝛼̃

◦L
𝛼

z𝛼̃
,L

𝛼

w𝛼̃

◦R
𝛼

z𝛼̃
,R

𝛼

w𝛼̃

◦L
𝛼

z𝛼̃
,

R
𝛼

w𝛼̃

◦R
𝛼

z𝛼̃
},

max{Lw𝛼̃
◦Lz𝛼̃ ,Lw𝛼̃

◦Rz𝛼̃
,Rw𝛼̃

◦Lz𝛼̃ ,

Rw𝛼̃
◦Rz𝛼̃

}].

where aij ∈ ℝ, 1 ≤ i, j ≤ n and x̃i, ỹi ∈ E2 is called a 
T2FLS. T2FLS shown in Eq. (5) is expressed in the matrix 
form as AX̃ = Ỹ  in which

and

According to Definition 9, we have

and

Based on Theorem 2, solving T2FLS shown in Eq. (5) is 
equivalent to obtaining a solution of the following equa-
tions system:

The system given by equations shown in Eq. (6) is a 
4n × 4n crisp linear system, where the right-hand side col-
umn is the 4n × 1 matrix:

System shown in Eq. (6) can be rewritten in order that the 
4n × 1 matrix

includes the unknown variables, and the 4n × 1 matrix, 
including the known variables in the right-hand side, is

This rearranging leads to the system SX𝛼,𝛼̃ = Y𝛼,𝛼̃, where S 
is a real 4n × 4n square matrix in the form of

(5)

⎧
⎪⎨⎪⎩

a11x̃1 + a12x̃2 +⋯ + a1nx̃n = ỹ1
a21x̃1 + a22x̃2 +⋯ + a2nx̃n = ỹ2
⋮

an1x̃1 + an2x̃2 +⋯ + annx̃n = ỹn

A = [aij]n×n, X̃ = [x̃1 x̃2 ⋯ x̃n]
T

Ỹ = [ỹ1 ỹ2 ⋯ ỹn]
T .

(x𝛼
i𝛼̃
, x

𝛼

i𝛼̃
) = ([L𝛼

xi𝛼̃
,R𝛼

xi𝛼̃
], [L

𝛼

xi𝛼̃
,R

𝛼

xi𝛼̃
])

(y𝛼
i𝛼̃
, y

𝛼

i𝛼̃
) = ([L𝛼

yi𝛼̃
,R𝛼

yi𝛼̃
], [L

𝛼

yi𝛼̃
,R

𝛼

yi𝛼̃
]).

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L𝛼�∑n

j=1
aijx̃j

�
𝛼̃

=
∑n

j=1
L𝛼�

aijx̃j

�
𝛼̃

= L𝛼
yi𝛼̃

R𝛼�∑n

j=1
aijx̃j

�
𝛼̃

=
∑n

j=1
R𝛼�

aijx̃j

�
𝛼̃

= R𝛼

yi𝛼̃

L
𝛼�∑n

j=1
aijx̃j

�
𝛼̃

=
∑n

j=1
L
𝛼�
aijx̃j

�
𝛼̃

= L
𝛼

yi𝛼̃

R
𝛼�∑n

j=1
aijx̃j

�
𝛼̃

=
∑n

j=1
R
𝛼�
aijx̃j

�
𝛼̃

= R
𝛼

yi𝛼̃
.

[
L𝛼
y1𝛼̃

⋯ L𝛼
yn𝛼̃

R𝛼

y1𝛼̃
⋯ R𝛼

yn𝛼̃
L
𝛼

y1𝛼̃
⋯ L

𝛼

yn𝛼̃
R
𝛼

y1𝛼̃

⋯ R
𝛼

yn𝛼̃

]T
.

X𝛼,𝛼̃ =
[
L𝛼
x1𝛼̃

⋯ L𝛼
xn𝛼̃

− R𝛼

x1𝛼̃
⋯ − R𝛼

xn𝛼̃
L
𝛼

x1𝛼̃

⋯ L
𝛼

xn𝛼̃
− R

𝛼

x1𝛼̃
⋯ − R

𝛼

xn𝛼̃

]T

(7)
Y𝛼,𝛼̃ =

[
L𝛼
y1𝛼̃

⋯ L𝛼
yn𝛼̃

− R𝛼

y1𝛼̃
⋯ − R𝛼

yn𝛼̃

L
𝛼

y1𝛼̃
⋯ L

𝛼

yn𝛼̃
− R

𝛼

y1𝛼̃
⋯ − R

𝛼

yn𝛼̃

]T
.
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in which � denotes an n × n zero matrix and the matrices 
B = [bij]n×n, C = [cij]n×n, are non-negative matrices, whose 
entries are determined as

It is easy to see that A = B − C. It should be noted; if sys-
tem shown in Eq. (6) does not have a unique solution, then 
T2FLS shown in Eq. (5) does not have a unique solution 
either. The unique solution to system shown in Eq. (6) can 
be found if and only if the matrix S is invertible.

Theorem  3  The matrixSis invertible if and only if the 
matrices A and B + C are both invertible.

Proof  It is similar to the proof of Theorem 1 in (Friedman 
et al. 1998). □

Based on Theorem  3 presented in Friedman et  al. 
(1998), a special case of T1FLSs has a unique fuzzy solu-
tion. What follows is a corollary of the Theorem 3 in the 
context of T2FLSs.

Corollary 1  T2FLS shown in Eq. (5) has a type-2 fuzzy 
solution, belonging to the triangular perfect QT2FNs, 
providing that matrix S has an inverse matrix, S−1, whose 
entries are non-negative.

Proof  For the proof of this theorem, what is needed is to 
prove that L

𝛼

xi𝛼̃
≤ L𝛼

xi𝛼̃
≤ R𝛼

xi𝛼̃
≤ R

𝛼

xi𝛼̃
. It is straightforward and 

hence omitted. □

Although the conditions in Corollary 1 are sufficient 
conditions, and assure us that the unique type-2 fuzzy solu-
tion can be obtained, there is scarcely any matrix S which 
satisfies the conditions. As a result, the following definition 
of solution is given.

Definition 12  Suppose S−1 is the inverse of matrix 
S, and Z𝛼,𝛼̃ = [zl(𝛼, 𝛼̃)]4n×1, l = 1, 2,… , 4n, is a solu-
tion of SZ𝛼,𝛼̃ = Y𝛼,𝛼̃, i.e., Z𝛼,𝛼̃ = S−1Y𝛼,𝛼̃. We say that 
X̃ = [x̃1 x̃2 ⋯ x̃n]

T is the type-2 fuzzy solution of T2FLS 
shown in Eq. (5) provided that

represents the triangular perfect QT2FN, where

(8)S =

⎡
⎢⎢⎢⎣

B C � �

C B � �

� � B C

� � C B

⎤
⎥⎥⎥⎦

(9)bij =

{
aij aij > 0

0 aij ≤ 0
cij =

{
−aij aij < 0

0 aij ≥ 0.

x̃i =
⋃

𝛼̃∈[0,1]

𝛼̃
⋃

𝛼∈[0,1]

𝛼 x̃𝛼
i𝛼̃

for all i = 1, 2,… , n

and

Based on the aforementioned, the following steps can 
be considered for obtaining the unique fuzzy solution of 
T2FLS shown in Eq. (5).

Step 1 Set up the matrices Y𝛼,𝛼̃ and S according to the rela-
tions shown in Eqs. (7), (8), and (9), respectively.

Step 2 Check whether the matrix S is invertible or not. If 
the determinant of the matrix S is nonzero, i.e., |S| ≠ 0, then 
S−1 exists, and go to the next step. If the determinant of the 
matrix S is zero, i.e., |S| = 0, then S−1 does not exist, and 
therefore, the problem does not have a unique fuzzy solution.

Step 3 Obtain Z𝛼,𝛼̃ = [zl(𝛼, 𝛼̃)]4n×1, l = 1, 2,… , 4n using 
Z𝛼,𝛼̃ = S−1Y𝛼,𝛼̃.

Step 4 Using Eq. (10), determine L𝛼
xi𝛼̃

, R𝛼

xi𝛼̃
, L

𝛼

xi𝛼̃
, and R

𝛼

xi𝛼̃
 for 

each x̃𝛼
i𝛼̃

.
Step 5 Check whether ([L𝛼

xi𝛼̃
,R𝛼

xi𝛼̃
], [L

𝛼

xi𝛼̃
,R

𝛼

xi𝛼̃
]), 

i = 1, 2,… , n represents a T2FN or not. To do that, we need 
to check whether the LMF, i.e., [L𝛼

xi𝛼̃
,R𝛼

xi𝛼̃
], and UMF, i.e., 

[L
𝛼

xi𝛼̃
,R

𝛼

xi𝛼̃
], are T1FNs them selves or not. If the LMF and 

UMF are T1FNs for each i = 1, 2,… , n and 
L
𝛼

w𝛼̃

≤ L𝛼
w𝛼̃

≤ R𝛼

w𝛼̃

≤ R
𝛼

w𝛼̃

, then according to Definition 10

represents a T2FN. Moreover, based on Definition 12, 
x̃𝛼
i𝛼̃
= (x𝛼

i𝛼̃
, x

𝛼

i𝛼̃
) is the unique fuzzy solution of T2FLS shown 

in Eq. (5) which can be characterized in the form of the 
septuple shown in Eq. (1).

Step 6 The unique fuzzy solution of T2FLS shown in Eq. 
(5) can be represented in the septuple form shown in Eq. (1) 
as

where based on the relations shown in Eqs. (2), (3), and (4)

x̃𝛼
i𝛼̃
= (x𝛼

i𝛼̃
, x

𝛼

i𝛼̃
) = ([L𝛼

xi𝛼̃
,R𝛼

xi𝛼̃
], [L

𝛼

xi𝛼̃
,R

𝛼

xi𝛼̃
]),

(10)

⎧
⎪⎪⎨⎪⎪⎩

L𝛼
xi𝛼̃

= zi(𝛼, 𝛼̃)

−R𝛼

xi𝛼̃
= zi+n(𝛼, 𝛼̃)

L
𝛼

xi𝛼̃
= zi+2n(𝛼, 𝛼̃)

−R
𝛼

xi𝛼̃
= zi+3n(𝛼, 𝛼̃).

x̃𝛼
i𝛼̃
= (x𝛼

i𝛼̃
, x

𝛼

i𝛼̃
) = ([L𝛼

xi𝛼̃
,R𝛼

xi𝛼̃
], [L

𝛼

xi𝛼̃
,R

𝛼

xi𝛼̃
])

x̃i =
(
Lxi0 , Lxi1 , Lxi0

,m,R
xi0
,Rxi1

,Rxi0

)

Lxi0 = L
𝛼

xi𝛼̃
||𝛼̃,𝛼=0, Lxi1 = L

𝛼

xi𝛼̃
||𝛼̃=1,𝛼=0,

L
xi0

= L𝛼
xi𝛼̃

||𝛼̃,𝛼=0, m = L𝛼
xi𝛼̃

||𝛼̃,𝛼=1,
Rxi0

= R
𝛼

xi𝛼̃
||𝛼̃,𝛼=0, Rxi1

= R
𝛼

xi𝛼̃
||𝛼̃=1,𝛼=0,

R
xi0

= R𝛼

xi𝛼̃

||𝛼̃,𝛼=0.
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5 � Examples

Example 1  A stage in the retrofit strategy for the reduc-
tion of water and energy in pulp and paper processes is 
considered as an application of type-2 fuzzy linear system. 
The stage corresponds to pulp washing process. Pulp and 
paper are manufactured from raw materials containing cel-
lulose fibers, generally wood, recycled paper, and agricul-
tural residues (Bajpai 2012). The process of pulp washing 
has been shown in Fig.  3 which has been adopted from 
(Patino and Nunez 1998).

In this case, we are going to obtain the values of the 
pulp flowing out from filter 1, 2 and the wastewater from 
filter 2. The unknowns are concentrations. The informa-
tion has been obtained by the aim of the experiences of an 
expert and others with a level lower than that of the expert. 
Depending on their experience and expertise, the experts 
mention different uncertainty for the concentration values 
of pulp flowing into the blow tank, wastewater flowing out 
filter 1, and pulp flowing into filter 3. If it is not possible to 
present an exact form of a type-1 fuzzy number for each of 
the values, in which the specialized experience of all the 
experts with different levels of expertise is reflected hier-
archically, then type-2 fuzzy numbers may prove helpful 
in this case. This could be considered in the way that the 
more reliable an expert’s experience, compared to all of 

the others’, the higher 𝛼̃-plane includes his/her membership 
functions. Using the mass balance for each species, the fol-
lowing equations are obtained:

where

According to the steps expressed in the previous section, 
we have:

Step 1 According to the relation shown in Eq. (7), we 
have

where based on the relations shown in Eqs. (2), (3), and (4)

(11)
⎡
⎢⎢⎣

280 30 50

0 30 50

280 0 50

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c̃6
c̃8
c̃9

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

83 c̃1
65 c̃5
785 c̃12

⎤
⎥⎥⎦

(12)

⎧
⎪⎨⎪⎩

c̃1 = (5, 7, 8, 10, 12, 13, 15),

c̃5 = (1.5, 1.7, 1.8, 2, 2.2, 2.3, 2.5),

c̃12 = (0.5, 0.7, 0.8, 1, 1.2, 1.3, 1.5).

Y𝛼,𝛼̃ =
[
83L𝛼

c1𝛼̃
65L𝛼

c5𝛼̃
785L𝛼

c12𝛼̃
− 83R𝛼

c1𝛼̃
− 65R𝛼

c5𝛼̃

− 785R𝛼

c12𝛼̃
83L

𝛼

c1𝛼̃
65L

𝛼

c5𝛼̃
785L

𝛼

c12𝛼̃
− 83R

𝛼

c1𝛼̃

− 65R
𝛼

c5𝛼̃
− 785R

𝛼

c12𝛼̃

]T

Fig. 3   Process of pulp washing. Originally published in Patino and Nunez (1998) under CC BY-NC-SA 3.0 license. Available from: http://
dx.doi.org/10.5772/20882

http://dx.doi.org/10.5772/20882
http://dx.doi.org/10.5772/20882
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and by the use of the relations shown in Eqs. (8) and (9), 
we have

in which

Step 2 The determinant of the matrix S is |S| = |B|4 ≠ 0, 
then S is invertible and we go to the next step.

Step 3 The matrix Z𝛼,𝛼̃ = [zl(𝛼, 𝛼̃)]12×1, is obtained as

Step 4 Using the relation shown in Eq. (10), we have

L𝛼
c1𝛼̃

= 7 + 3𝛼 − (1 − 𝛼̃)(𝛼 − 1)

R𝛼

c1𝛼̃
= 13 − 3𝛼 − (1 − 𝛼̃)(1 − 𝛼)

L
𝛼

c1𝛼̃
= 7 + 3𝛼 − (1 − 𝛼̃)(2 − 2𝛼)

R
𝛼

c1𝛼̃
= 13 − 3𝛼 − (1 − 𝛼̃)(2𝛼 − 2)

L𝛼
c5𝛼̃

= 1.7 + 0.3𝛼 − (1 − 𝛼̃)(0.1𝛼 − 0.1)

R𝛼

c5𝛼̃
= 2.3 − 0.3𝛼 − (1 − 𝛼̃)(0.1 − 0.1𝛼)

L
𝛼

c5𝛼̃
= 1.7 + 0.3𝛼 − (1 − 𝛼̃)(0.2 − 0.2𝛼)

R
𝛼

c5𝛼̃
= 2.3 − 0.3𝛼 − (1 − 𝛼̃)(0.2𝛼 − 0.2)

L𝛼
c12𝛼̃

= 0.7 + 0.3𝛼 − (1 − 𝛼̃)(0.1𝛼 − 0.1)

R𝛼

c12𝛼̃
= 1.3 − 0.3𝛼 − (1 − 𝛼̃)(0.1 − 0.1𝛼)

L
𝛼

c12𝛼̃
= 0.7 + 0.3𝛼 − (1 − 𝛼̃)(0.2 − 0.2𝛼)

R
𝛼

c12𝛼̃
= 1.3 − 0.3𝛼 − (1 − 𝛼̃)(0.2𝛼 − 0.2)

S =

⎡⎢⎢⎢⎣

B � � �

� B � �

� � B �

� � � B

⎤⎥⎥⎥⎦

B =

⎡⎢⎢⎣

280 30 50

0 30 50

280 0 50

⎤⎥⎥⎦
.

z1(𝛼, 𝛼̃) = 1.68 + 0.82𝛼 − (1 − 𝛼̃)(0.27𝛼 − 0.27)

z2(𝛼, 𝛼̃) = 1.05 + 0.45𝛼 − (1 − 𝛼̃)(0.15𝛼 − 0.15)

z3(𝛼, 𝛼̃) = 1.58 + 0.12𝛼 − (1 − 𝛼̃)(0.04𝛼 − 0.04)

z4(𝛼, 𝛼̃) = −3.32 + 0.82𝛼 − (1 − 𝛼̃)(0.27𝛼 − 0.27)

z5(𝛼, 𝛼̃) = −1.95 + 0.45𝛼 − (1 − 𝛼̃)(0.15𝛼 − 0.15)

z6(𝛼, 𝛼̃) = −1.82 + 0.12𝛼 − (1 − 𝛼̃)(0.04𝛼 − 0.04)

z7(𝛼, 𝛼̃) = 1.68 + 0.82𝛼 − (1 − 𝛼̃)(0.55 − 0.55𝛼)

z8(𝛼, 𝛼̃) = 1.05 + 0.45𝛼 − (1 − 𝛼̃)(0.3 − 0.3𝛼)

z9(𝛼, 𝛼̃) = 1.58 + 0.12𝛼 − (1 − 𝛼̃)(0.08 − 0.08𝛼)

z10(𝛼, 𝛼̃) = −3.32 + 0.82𝛼 − (1 − 𝛼̃)(0.55 − 0.55𝛼)

z11(𝛼, 𝛼̃) = −1.95 + 0.45𝛼 − (1 − 𝛼̃)(0.3 − 0.3𝛼)

z12(𝛼, 𝛼̃) = −1.82 + 0.12𝛼 − (1 − 𝛼̃)(0.08 − 0.08𝛼).

Step 5 It is easy to see that [L𝛼
c6𝛼̃
,R𝛼

c6𝛼̃
] represents the �-level 

sets of a T1FN for each 𝛼̃ ∈ [0, 1], and [L
𝛼

c6𝛼̃
,R

𝛼

c6𝛼̃
] does too. 

In addition, since L
𝛼

c6𝛼̃
≤ L𝛼

c6𝛼̃
≤ R𝛼

c6𝛼̃
≤ R

𝛼

c6𝛼̃
, then

represents a T2FN. In a similar way, it can be investigated 
that [c̃8]

𝛼
𝛼̃
= ([L𝛼

c8𝛼̃
,R𝛼

c8𝛼̃
], [L

𝛼

c8𝛼̃
,R

𝛼

c8𝛼̃
]) and 

[c̃9]
𝛼
𝛼̃
= ([L𝛼

c9𝛼̃
,R𝛼

c9𝛼̃
], [L

𝛼

c9𝛼̃
,R

𝛼

c9𝛼̃
]) also represent two T2FNs. 

Step 6 Consequently, the fuzzy solution of the system 
shown in Eq. (11) can be characterized in the septuple form 
as

As a result, based on the multiplication of a scalar by a 
T2FN defined in Sect. 3, the values of the pulp flowing out 
from filter 1, 2 and the wastewater from filter 2 are obtained 
by the multiplication of f6 by c̃6, f8 by c̃8 and f9 by c̃9, 
respectively, as

which mean approximately 700, 45, and 85. It should be 
noted that using the obtained results, approximately 700 

L𝛼
c6𝛼̃

= 1.68 + 0.82𝛼 − (1 − 𝛼̃)(0.27𝛼 − 0.27)

R𝛼

c6𝛼̃
= 3.32 − 0.82𝛼 + (1 − 𝛼̃)(0.27𝛼 − 0.27)

L
𝛼

c6𝛼̃
= 1.68 + 0.82𝛼 − (1 − 𝛼̃)(0.55 − 0.55𝛼)

R
𝛼

c6𝛼̃
= 3.32 − 0.82𝛼 + (1 − 𝛼̃)(0.55 − 0.55𝛼)

L𝛼
c8𝛼̃

= 1.05 + 0.45𝛼 − (1 − 𝛼̃)(0.15𝛼 − 0.15)

R𝛼

c8𝛼̃
= 1.95 − 0.45𝛼 + (1 − 𝛼̃)(0.15𝛼 − 0.15)

L
𝛼

c8𝛼̃
= 1.05 + 0.45𝛼 − (1 − 𝛼̃)(0.3 − 0.3𝛼)

R
𝛼

c8𝛼̃
= 1.95 − 0.45𝛼 + (1 − 𝛼̃)(0.3 − 0.3𝛼)

L𝛼
c9𝛼̃

= 1.58 + 0.12𝛼 − (1 − 𝛼̃)(0.04𝛼 − 0.04)

R𝛼

c9𝛼̃
= 1.82 − 0.12𝛼 + (1 − 𝛼̃)(0.04𝛼 − 0.04)

L
𝛼

c9𝛼̃
= 1.58 + 0.12𝛼 − (1 − 𝛼̃)(0.08 − 0.08𝛼)

R
𝛼

c9𝛼̃
= 1.82 − 0.12𝛼 + (1 − 𝛼̃)(0.08 − 0.08𝛼).

[c̃6]
𝛼

𝛼̃
= ([L𝛼

c6𝛼̃
,R𝛼

c6𝛼̃
], [L

𝛼

c6𝛼̃
,R

𝛼

c6𝛼̃
])

⎧⎪⎨⎪⎩

c̃6 = (1.13, 1.68, 1.95, 2.5, 3.05, 3.32, 3.87),

c̃8 = (0.75, 1.05, 1.2, 1.5, 1.8, 1.95, 2.25),

c̃9 = (1.5, 1.58, 1.62, 1.7, 1.78, 1.82, 1.9).

f6 c̃6 = (316.4, 470.4, 546, 700, 854, 929.6, 1083.6),

f8 c̃8 = (22.5, 31.5, 36, 45, 54, 58.5, 67.5),

and

f9 c̃9 = (75, 79, 81, 85, 89, 91, 95)
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also means the T1FN (470.4,  700,  929.6), whose uncer-
tainty dispersion can be considered by its UMF and LMF 
as (316.4, 700, 1083.6) and (546,  700, 854), respectively. 
The uncertainty dispersion for approximately 45 and 85 can 
also be expressed in a similar way. Needless to pinpoint 
once more that, unlike T2FLSs, T1FLSs cannot provide 
any information about the uncertainty dispersion of the 
results.

Example 2  Consider the electrical circuit shown in Fig. 4, 
where ṽ1 and ṽ2 are the input voltages, and ṽ3 and ṽ4 are the 
output voltages. The circuit is a kind of summing amplifier 
with two inputs and two outputs. The relationship between 
input and output voltages is as follows:

What we are investigating is determining the input voltages 
on condition that the output voltages are known but uncer-
tain. That is, e.g., ṽ3 is “about 16(volt)”, and ṽ4 is “about 
−16(volt)”. Assume, the engineers’ expert ideas about the 
uncertainty of output voltages differ. If we prefer to con-
sider the interpretation of just one, not all of the experts, 
the linear system shown in Eq. (13) will be a T1FLS one, 
failing to consider the interpretation or experience of the 
other experts. Alternatively, we may consider a form of 
T1FN for each of the output voltages, based on the expe-
riences of the experts that, in turn, leads to the presenta-
tion of T1FLS. Even this model of system fails to hierar-
chically reflect the specialized experience of all the experts 

(13)
[
3 0.5

−2 − 3

][
ṽ1
ṽ2

]
=

[
ṽ3
ṽ4

]
.

Fig. 4   Electrical circuit consid-
ered in Example 2

Fig. 5   Output voltage, ṽ
3
, 

corresponding to the electrical 
circuit
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with different levels of expertise. However, each of the out-
put voltages may be determined using a triangular perfect 
QT2FN, as shown in Figs.  5 and 6. For determining the 
input voltages, the matrix Z𝛼,𝛼̃ = [zl(𝛼, 𝛼̃)]8×1 is needed to 
be obtained. Then, according to the steps expressed in the 
previous section, we have:

Step 1 The matrices S and Y𝛼,𝛼̃ can be gained according 
to the relations shown in Eqs. (7), (8), and (9), respec-
tively, as follows:

where based on the relations shown in Eqs. (2), (3), and (4)

Step 2 The determinant of the matrix S is |S| = 4096, then 
the matrix S is invertible and we go to the next step.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0.5 0 0 0 0 0 0

0 0 − 2 − 3 0 0 0 0

0 0 3 0.5 0 0 0 0

−2 − 3 0 0 0 0 0 0

0 0 0 0 3 0.5 0 0

0 0 0 0 0 0 − 2 − 3

0 0 0 0 0 0 3 0.5

0 0 0 0 − 2 − 3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y𝛼,𝛼̃ =
[
L𝛼
v3𝛼̃

L𝛼
v4𝛼̃

− R𝛼

v3𝛼̃
− R𝛼

v4𝛼̃
L
𝛼

v3𝛼̃

L
𝛼

v4𝛼̃
− R

𝛼

v3𝛼̃
− R

𝛼

v4𝛼̃

]T

L𝛼
v3𝛼̃

= 14 + 2𝛼 − (1 − 𝛼̃)(𝛼 − 1), L𝛼
v4𝛼̃

= −R𝛼

v3𝛼̃

R𝛼

v3𝛼̃
= 18 − 2𝛼 − (1 − 𝛼̃)(1 − 𝛼), R𝛼

v4𝛼̃
= −L𝛼

v3𝛼̃

L
𝛼

v3𝛼̃
= 14 + 2𝛼 − (1 − 𝛼̃)(1 − 𝛼), L

𝛼

v4𝛼̃
= −R

𝛼

v3𝛼̃

R
𝛼

v3𝛼̃
= 18 − 2𝛼 − (1 − 𝛼̃)(𝛼 − 1), R

𝛼

v4𝛼̃
= −L

𝛼

v3𝛼̃
.

Step 3 The matrix Z𝛼,𝛼̃ = [zl(𝛼, 𝛼̃)]8×1 is determined as

Step 4 Using the relation shown in Eq. (10), we have

Step 5 It is easy to see that [L𝛼
v1𝛼̃
,R𝛼

v1𝛼̃
] represents the �-level 

sets of a T1FN for each 𝛼̃ ∈ [0, 1], and [L
𝛼

v1𝛼̃
,R

𝛼

v1𝛼̃
] does too. 

In addition, since L
𝛼

v1𝛼̃
≤ L𝛼

v1𝛼̃
≤ R𝛼

v1𝛼̃
≤ R

𝛼

v1𝛼̃
, then

represents a T2FN. In a similar way, it can be investigated 
that [ṽ2]𝛼𝛼̃ = ([L𝛼

v2𝛼̃
,R𝛼

v2𝛼̃
], [L

𝛼

v2𝛼̃
,R

𝛼

v2𝛼̃
]) also represents a T2FN.

z1(𝛼, 𝛼̃) = 4.37 + 0.63𝛼 − (1 − 𝛼̃)(0.32𝛼 − 0.32)

z2(𝛼, 𝛼̃) = 1.75 + 0.25𝛼 − (1 − 𝛼̃)(0.13𝛼 − 0.13)

z3(𝛼, 𝛼̃) = −5.63 + 0.63𝛼 − (1 − 𝛼̃)(0.32𝛼 − 0.32)

z4(𝛼, 𝛼̃) = −2.25 + 0.25𝛼 − (1 − 𝛼̃)(0.13𝛼 − 0.13)

z5(𝛼, 𝛼̃) = 4.37 + 0.63𝛼 − (1 − 𝛼̃)(0.31 − 0.31𝛼)

z6(𝛼, 𝛼̃) = 1.75 + 0.25𝛼 − (1 − 𝛼̃)(0.12 − 0.12𝛼)

z7(𝛼, 𝛼̃) = −5.63 + 0.63𝛼 − (1 − 𝛼̃)(0.31 − 0.31𝛼)

z8(𝛼, 𝛼̃) = −2.25 + 0.25𝛼 − (1 − 𝛼̃)(0.12 − 0.12𝛼)

.

L𝛼
v1𝛼̃

= 4.37 + 0.63𝛼 − (1 − 𝛼̃)(0.32𝛼 − 0.32),

R𝛼

v1𝛼̃
= 5.63 − 0.63𝛼 + (1 − 𝛼̃)(0.32𝛼 − 0.32),

L
𝛼

v1𝛼̃
= 4.37 + 0.63𝛼 − (1 − 𝛼̃)(0.31 − 0.31𝛼),

R
𝛼

v1𝛼̃
= 5.63 − 0.63𝛼 + (1 − 𝛼̃)(0.31 − 0.31𝛼),

L𝛼
v2𝛼̃

= 1.75 + 0.25𝛼 − (1 − 𝛼̃)(0.13𝛼 − 0.13)

R𝛼

v2𝛼̃
= 2.25 − 0.25𝛼 + (1 − 𝛼̃)(0.13𝛼 − 0.13)

L
𝛼

v2𝛼̃
= 1.75 + 0.25𝛼 − (1 − 𝛼̃)(0.12 − 0.12𝛼)

R
𝛼

v2𝛼̃
= 2.25 − 0.25𝛼 + (1 − 𝛼̃)(0.12 − 0.12𝛼).

[ṽ1]
𝛼

𝛼̃
= ([L𝛼

v1𝛼̃
,R𝛼

v1𝛼̃
], [L

𝛼

v1𝛼̃
,R

𝛼

v1𝛼̃
])

Fig. 6   Output voltage, ṽ
4
, 

corresponding to the electrical 
circuit
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Step 6 Eventually, the input voltages can be expressed as

The input voltages ṽ1 and ṽ2 are two T2FNs, whose cores 
are 5 and 2, respectively. Due to uncertainty, they are not 
exactly 5 and 2, but they can be interpreted as approxi-
mately 5 and approximately 2. As a result, one can interpret 
that the circuit amplifies approximately 5 and 2 (volt) to 
approximately 16 and −16 (volt), respectively.

6 � Conclusion

In this paper, a model of fuzzy linear system called T2FLS 
has been established that enables us to model linear sys-
tems in which in addition to data, the membership function 
itself is uncertain. T2FLS, unlike T1FLS, provides infor-
mation about uncertainty dispersion. It was shown that 
how an n × n T2FLS is replaced by a 4n × 4n crisp linear 
system. Furthermore, the conditions for the existence of 
a unique type-2 fuzzy solution to the n × n T2FLS were 
given. Since the conditions may not always occur, a defini-
tion of type-2 fuzzy solution has been defined. Using two 
examples in the pulp and paper industry and electrical engi-
neering, we showed that how the T2FLSs enable the deci-
sion maker to model the system with different interpreta-
tions of uncertainty expressed by experts in different levels. 
Due to the fact that T2FLSs with the help of T2FNs model 
higher levels uncertainty than those do the T1FLSs, this 
opens up an efficient way for modeling linear system and 
human decision making. We believe that what have been 
presented in this paper can be used to extend many exist-
ing T1FLSs result to T2FLSs. The next step in the research 
direction proposed here is to investigate T2FLSs in which 
all the variables and coefficients are T2FNs.
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