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Abstract We present our results on the adoption of a set-

theoretic framework for granular computing to situation

awareness. The proposed framework guarantees a high

degree of flexibility in the process of creation of granules

and granular structures allowing to satisfy the wide variety

of requirements for perception and comprehension of sit-

uations where some elements must be perceived per simi-

larity, others per spatial proximity, some must be fused to

improve their comprehension, and so on. A second value is

the support for approximate reasoning in situation aware-

ness. A granular structure in particular represents a snap-

shot of a situation, and is a building block for the

development of tools and techniques to reason on situation

in order to reduce situation awareness errors and accelerate

the process of decision-making. To this purpose, we show a

technique to support operators in the analysis of conformity

between a recognized situation and an expected one. A

third value is the fact that we can support operators in

having rapid and indicative measures of how two

situations, e.g. a recognized and a projected, may differ. A

preliminary evaluation instantiating our approach with self-

organizing maps is reported and discussed. The results are

encouraging with respect to the capability of improving

perception and comprehension of a situation, reducing

comprehension errors and supporting projection of

situations.

Keywords Situation awareness � Granular computing �
Computational intelligence

1 Introduction

Situation awareness (SA) is an essential construct sup-

porting decision-making in complex and dynamic envi-

ronments. In software systems for SA individual pieces of

raw information (e.g. sensor data) are interpreted into a

higher, domain-relevant concept called situation, which is

an abstract state of affairs interesting to specific applica-

tions. The power of using situations lies in their ability to

provide a simple, human understandable representation of

the elements of the environment and support informed

decision-making.

SA is being aware of what is happening around you and

understanding what that information means to you now and

in the future. The concept of SA is applied to operational

situations, where humans or agents (from now on, we refer

to these entities as SA operators) must have SA for a

specified reason (e.g. to drive a car, treat a patient, control

air traffic). However, achieving a good SA is not easy and

software systems for SA have to be properly designed

following a clear set of principles that are discussed by

Endsley (2011). Among these we recall the importance of

organizing information around goals and providing a
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proper level of abstraction of information, supporting the

alternation between goal-driven and data-driven informa-

tion processing, supporting patterns matching to schemata

(i.e. prototypical states of the mental model) to allow rapid

retrieval of comprehension and projection for the recog-

nized situation.

Loia et al. (2016) present a detailed overview of how

granular computing (GrC) can enforce SA and discussed

how GrC methods and techniques can address requirements

and design principles of SA systems. In proposing this

study we were motivated by the recognition that GrC and

SA share some important concepts and principles but,

currently, are two separate areas that have not been

investigated in a systemic way. In this paper, we take a step

forward along this systemic integration with the adoption

of a set-theoretic framework for GrC that fits well with SA

requirements, and the definition of a technique to reason on

granular structure in SA applications.

Specifically, the framework is based on the concepts of

granule, granular structure, information granulation and

distance between granular structures. We use the concept

of granule as a way to improve the perception of the ele-

ments of an environment by clumping together these ele-

ments per proximity, similarity, indistinguishably, or other

requirements that the specific SA application demands.

However, in most cases, it is quite impossible to properly

represent situations with stand-alone granules. A situation

can be represented better with the support of a granular

structure. The criteria that guide the creation of a granular

structure depend on the specific SA application. As situa-

tions usually evolve over time, an SA operator must have

the capability of projecting in the near future a recognized

situation. This capability includes also the assessment of

diversity between a recognized situation and a possible

evolution. This can be supported by evaluating a distance

between two granular structures representing, respectively,

the situation recognized and a possible evolution.

Besides the need for a systemic integration of GrC and

SA, an additional motivation to investigate GrC for SA

relates to rapid decision-making and reduction of errors

and biases. Usually, SA operational scenarios are mission

critical requiring accurate and rapid decisions with mini-

mum processing time. SA operators work in complex

environments and take decisions under time pressure,

information uncertain and changing conditions. GrC is

gaining attention as a paradigm for decision-making under

uncertainty (Pedrycz 2014) and several GrC methods have

been applied with success to support multi-attribute deci-

sion-making (Wang et al. 2016), multi-criteria decision-

making (Das et al. 2016), group decision-making (Xu and

Wang 2016), and three way decisions (Cai et al. 2016;

Ciucci 2016; Yao 2013), showing the benefits and added

value of reasoning and taking decision with granules and

granular structures in several domains such as power

energy (Ekel et al. 2016), risk management (Skowron et al.

2016), aircraft landing control problem (Ahmad and Ped-

rycz 2016).

To show the potentiality of reasoning with granular

structures in SA, we have defined a technique to analyse

the conformity of a recognized situation with respect to the

one that is expected by an SA operator. This information is

of great importance for decision-making. It is quite clear, in

fact, that a different level of attention is required by SA

operators if they are processing a situation that conforms to

their expectations with respect to a corresponding one that

does not conform or unexpected. This can reduce some SA

level 2 errors and biases.

Our contribution is thus twofold. First, we enhance the

synergistic view of GrC and SA with the adoption of GrC

framework along all the levels of SA, showing the benefits

of reasoning with granules in SA in terms of improved

comprehension of situation, support for projection, reduc-

tion of biases. Second, we rely on the foundational con-

cepts of the framework to define and develop tools and

techniques to enforce SA. In this paper, we focus on the

conformity analysis.

The paper is organized as follows. Section 2 reports

background on GrC and SA. Section 3 reports in a

descriptive way how we can represent situations and their

evolutions with granules and granular structures, and how

we can reason on granular structures to reduce some SA

errors. Section 4 presents our approach, that is based on the

adoption of a theoretical framework to be used as foun-

dation for the development of tools and techniques to

reason on situations. Section 5 formally defines the

framework and Sect. 6 reports the conformity analysis.

Section 7 presents the results of a preliminary evaluation

using self-organizing map (SOM) (Kohonen 1998) as a

technique to build granules and granular structures. Sec-

tion 8 lastly draws conclusions and presents future works.

2 Background

2.1 Granular computing

GrC is an information-processing paradigm focused on

representing and processing basic chunks of information,

namely granules, and finds its origin in the works of Zadeh

(1997) that defines a granule as a clump of points (objects)

drawn together by indistinguishability, similarity, proxim-

ity or functionality. Granules can be decomposed into

smaller or finer granules called subgranules. Granules and

subgranules can be organized by means of levels, hierar-

chies and granular structures. In order to construct or

decompose granules we need to employ a specific
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operation called granulation. An overall picture of GrC that

considers all its different perspectives is given by Yao et al.

(2013).

There are different formal settings for GrC: set theory,

interval calculus, fuzzy sets, rough sets, shadowed sets,

probabilistic granules. In each of these environments,

granules and granulation are defined in different ways and

a tentative one to find similarity and bridge the gap

between these settings is described in Dubois and Prade

(2016).

In general, all the formal settings allow for the creation

of granular structures. Multi-level structures where high-

level granules represent more abstract concepts and low-

level granules represent more specific concepts are used in

human reasoning, and such granular structures are funda-

mental for our objectives. There is a wide set of relation-

ships in GrC (Yao et al. 2013; Yao 2016) that can be used

to organize granules in hierarchies, trees, networks, and so

on. Formally, a granule g is a refinement of G (or G is a

coarsening of g), denoted with g � G, if every data or

subgranules of g is contained in some subgranules of G.

Refinement (Coarsening) can be also partial when not

every but only some data or subgranules of g is contained

in some subgranules of G, and is denoted as gYG.

Building granules in a correct and appropriate way is an

open issue that has been investigated by several scholars

and partially depends on the requirements of the applica-

tion. Pedrycz et al. (2015), Pedrycz and Homenda (2013)

has proposed the principle of justifiable granularity as a

way to evaluate the performance of informative granules.

This principle is based on a trade-off between two mea-

sures that do not strictly depend on the specific application:

coverage and specificity. A correct expression of these two

measures depends on the nature of the set created (e.g.

crisp as for k-means or fuzzy as for the fuzzy c-means) but,

in general, coverage is related to the ability of covering

data and specificity deals with the level of abstraction of

the granule prototype by considering its size. As an

example, for crisp sets a measure of coverage can be

CovðPÞ ¼ 1
N
cardfXkjxk�Pg while for fuzzy sets we can

sum the degree of memberships of the elements

CovðPÞ ¼ 1
N

PN
k¼1 lPðXkÞ. Ideally CovðPÞ should be 1 that

means all data are covered by the prototype. Specificity

requires that the intervals are as narrow (specific) as pos-

sible. The specificity of an interval can be evaluated in

numerous ways. A specificity measure has to satisfy two

requirements: it attains a maximal value for single-element,

and the broader the interval, the lower the specificity

measure. Coverage and specificity are in conflict. A pro-

posal to visualize their relationship is to arrange them

together in the form of a coverage-specificity plot, which

can be also parametrized, and to evaluate the area under the

curve to have a global measure of quality.

Another criterion to design granules is the principle of

uncertainty level preservation (Livi and Sadeghian

2015, 2016) that is mainly focused on evaluating the

quality of the granulation itself. By considering informa-

tion granulation as a mapping between some input and

output, this principle considers the quantification of the

uncertainty as an invariant property to be preserved during

the process of granulation. The difference among the input

and output entropy is considered as an error to be reduced

for a proper granulation of information.

2.2 Situation awareness

Endsley (1995c) defines situation awareness (SA) as ‘‘the

perception of elements in the environment within a volume

of time and space, the comprehension of their meaning, and

the projection of their status in the near future’’. The SA

model proposed by Endsley is shown in Fig. 1. The model

has three levels (Endsley 2011): (1) perception, which

involves the capability to perceive the status, attributes and

dynamics of the relevant elements of the environment; (2)

comprehension, which refers to the understanding of what

data and cues perceived mean in relation to goals and

objectives; and (3) projection, which relates to the capa-

bility of projecting in near future the elements recognized.

Endsley’s model is not linear but iterative, with under-

standing driving the search for new data and new data

coming together to feed understanding. Furthermore, it

must not be understood as a pure data-driven process since

factors such as goals, mental models, attention, working

memory, expectations play a significant role in SA.

A fundamental component of SA is the goal directed

task analysis (GDTA) that is a form of cognitive task

analysis focusing on the goals that SA operators must

achieve and the information requirements at the levels of

perception (SA L1), comprehension (SA L2) and projec-

tion (SA L3) that are needed in order to make appropriate

decisions. Information is, step-by-step, decomposed until

reaching finer elements that cannot be further decomposed.

The result of GDTA is an abstract and hierarchical struc-

ture (see Fig. 2) establishing the requirements needed at the

three levels of SA.

GDTA plays a pivotal role in achieving good SA and it

is important to underline that GDTA focuses on dynamic

information requirements rather than static system knowl-

edge. When experts build a GDTA structure they consider

information needed to perform well a specific task, that has

to be acquired and analysed by an operator in a certain

domain during the execution of such task. In other words, a
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GDTA structure embeds subject matter knowledge (and to

some extent also expectations) that is required by SA

operators to perform well and achieve good SA.

A GDTA can also be seen as a result of a granulation

process. Usually, in fact, experts perform a top-down anal-

ysis of the domain decomposing a whole into its parts. This

kind of goal-driven approach to information processing is

balanced by a data-driven one that develop a bottom-up

analysis of the domain via integration of low-level elements

into a whole. These two approaches (goal-driven and data-

driven) essentially resemble two human cognitive capabili-

ties that are analysis (i.e. from whole to parts) and synthesis

(i.e. from parts to whole). A GDTA is at the same time a

value and an issue if we regard SA from a computational

perspective. The value is that a well formalized GDTA gives

correct requirements and can avoid most of SA errors. The

issue is that GDTA poses serious challenges in the way we

must process and present data and information, and demands

a highly flexible computational support.

3 Representing situations with granules
and granular structures

With reference to Fig. 3, we present in a descriptive way

the process of granulation and creation of granular struc-

tures in the context of SA. A more formal description is

deepened in Sect. 5.

Fig. 1 Endsley’s model (from Endsley 2011)

Fig. 2 Results of a GDTA
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Starting from data registered by sensors, we can create

type 1 granules g on the basis of the requirements at the

perception level of the GDTA, i.e. SA L1 requirements,

giving information on what are the elements to perceive for

the specific SA objective. The number and level of

abstraction of granules to be created depend on several

factors such as the number and kind of elements to be

perceived, and their relative importance for the objective.

At this level, common issues relate to object recognition,

feature reduction and outlier detection. We refer to (Loia

et al. 2016) for an overview of GrC techniques that can be

used to solve these issues. Once created, granules g can be

optimized with criteria such as Coverage and Specificity

introduced in Sect. 2.1. Type 1 granules can be abstracted

and fused to create type 2 granules G to accommodate SA

L2 requirements for comprehension. Coarsening or partial

coarsening relationships can be used depending on the

specific SA L2 requirements. It is worth evidencing that we

could also start with creation of type 2 granules using

techniques such as multi-sensor data fusion (Xu and Yu

2017) and use refinement or partial refinement relation-

ships to accommodate SA L1 requirements. The decision

of using a bottom-up or a top-down approach for creation

of type 1 and type 2 granules depends on the application.

As we already mentioned, a granular structure is a

representation of the elements of the environment created

following SA L1 and L2 requirements. It comes with a

degree of imprecision and uncertainty that can be measured

with the concept of information granulation, IG. The

information granulation gives a measure of how much

information is granulated in a structure. It takes its minimal

value when the granulation is finest. In this case the

granular structure is a precise representation of the ele-

ments of an environment that, however, is not optimal for

SA applications requiring information fusion. The correct

level of information granulation depends of course on the

GDTA but also on behavioural determinants of the human

operator such as attention, memory, and so on, that give

information on the capabilities that a human operator owns

for perceiving and understanding a granulated information.

A discussion on how to design SA systems considering

these and other factors is in (Endsley 2011) and an inves-

tigation on how to take into account all the human factors

required is out of the scope of this paper. However, the

information granularity associated with a granular structure

is an interesting information for SA operators that can be

considered as a degree of abstraction of the situation rep-

resented by the structure.

3.1 Evolving situations

So far we have created a hierarchical granular structure

resembling the hierarchies existing between SA L1 and SA

L2 requirements of a GDTA. This structure gives a snap-

shot of a situation at a specific time. To accommodate SA

L3 requirements for the projection phase, we can leverage

on the concept of evolvable granules (Antonelli et al. 2016;

Pedrycz 2010).

If we recall the definition of SA, we recognize the

importance of coupling Time and Space domain granula-

tion processes for a correct creation of granules and gran-

ular structures for SA. In (Leite et al. 2012), it is suggested

that time granulation is earlier than space granulation. In

processing data from sensor networks, sensor readings are

analysed over a fixed time window. Very simply, we can

fix a time window, c, where we expect a slice of data and

perform space granulation on this data. Space granulation

results in a granular structure, a granular tree of two levels

of granularity, e and eI , corresponding to the two levels of

SA requirements for perception and comprehension.

Selecting a different time window, cI , can lead to a dif-

ferent granular structure where some granules can be

merged, split or new granules can be created. This is the

behaviour of evolvable granules (Pedrycz 2010).

With reference to Fig. 4 the bottom of the figure shows

some objects registered by sensors in three time slices, the

top of the figure shows three consequential granular

structures, where granules report the position of the objects

in the space. Starting with the first snapshot of data in the

first time slice, we can create type 1 granules a, b, and c. In

Fig. 3 Granular structure at

time t
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the next time slice objects d and e are recognized and can

be merged into existing granules to form higher level

granules fa; dg and fb; eg. This process iterates in the

subsequent time slices and, as output, granular structures

evolve with granules that can be merged, split, removed or

new granules created. (Pedrycz 2010) reported on a com-

plete formalism to deal with splitting and merging criteria

in the case of granules created with Fuzzy c-means.

To accommodate SA L3 requirements on the projection,

we should reason on the evolution of granular structures.

To this purpose, let us take a look at Fig. 5 that reports the

case depicted in Fig. 4 in the form of a granular graph that

combines time and space domain granulation. The tree in

the middle of the figure reports time granulation. It is a

lattice of partitions of indistinguishable objects in time

slices of different width. Its semantics is that objects a, b,

and c are indistinguishable with respect to time in a time

window of width c. With respect to time, they are a single

granule fa; b; cg. The same is for d and e, as well as for f, g,

and h. If we consider a larger time slice, e.g. 2c, we have

coarser granules of indistinguishable objects, e.g.

fa; b; c; d; eg or fd; e; f ; g; hg. The grey ellipses show the

results of space granulation for the case reported in Fig. 4.

Each ellipse gives a snapshot of a situation at a specific

time-slot represented by a granular structure such as the

ones of Fig. 3. Intuitively, to accommodate in a correct way

SA L3 requirements, SA operators have to reason on the

transitions GSðS0Þ ! GSðS1Þ ! GSðS2Þ. This can be done

in a more or less difficult way depending on previous

knowledge about the rules that govern the evolution of

phenomena under observations and/or the actions that can

enable situations transitions.Fig. 4 Time and space domain granulation

Fig. 5 Evolution of granular

structures
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In many cases, however, SA operators can have good

mental models, knowledge and expertise to foresee some

probable evolutions of a situation and in these cases

information on how much a projected situation differs from

the recognized one can be useful to take decisions in SA.

To this purpose, we use the concept of distance between

granular structures to evaluate the dissimilarity between

two granular structures representing consequential snap-

shots of a situation.

3.2 How to reduce SA errors

To clarify how GrC can concretely support SA, let us look

the Fig. 6 that shows the taxonomy of SA errors described

by Endsley (1995b). Reasoning on situations represented as

granular structures can support reduction of several of

these SA errors.

Specifically, SA L1 errors related to difficulty to per-

ceive data and operators failures to observe data can be

reduced with a proper granulation process that creates

granules according to the GDTA requirements. We need to

assure flexibility to accommodate requirements but, if

granulated and properly organized, data becomes more

easy to be perceived and understood.

SA L2 errors are related to difficulty in comprehending

situations, i.e. information is correctly perceived, but its sig-

nificance or meaning is not comprehended. Poor mental

models do not allow operators to understand part of data and

information and, thus, they defer or takewrong decisions. The

capability of zooming in-out granules can help in reducing

these errors, because it allows operators to have different

views (more fine or more abstract) of the same information.

The adoption of wrong mental models is a different story. In

this case, an operator is not able to comprehend because his

mental model is not correct with respect to the current situa-

tion. Sometimes, this may be due because of his expectations,

and we will show in Sect. 6 a technique that can support

reduction of errors in this case, as well as reduction of errors

due to misinterpretation of information and over-reliance of

the operators. At other times, a wrong mental model is due to

the incomplete knowledge of models and schema of the cur-

rent situation. GrC and granular structures have been widely

studied for the problem of concept formation, and abductive

reasoning (Skowron et al. 2016) may be considered a suit-

able strategy for L2 errors due to wrong mental models.

An operator may be aware of what is happening, but

have a poor mental model to project the situation in the

near future. This is a common error at L3. As discussed,

evolvable granular structures and the capability to reason

and compare current situation with possible evolutions is

useful to support reduction of this type of error and to

enforce mental models for projection.

Lastly, failure to maintain multiple goals and adoption of

habitual schema are two general problems in SA. In the first

case, an operator can have problems in maintaining multiple

goals in memory and in assessing their relative importance.

Techniques to compare and rank granular structures with

regard to the different goals can lighten the operator effort. By

comparing different granular structures, we can also clearly

show the differences and this can avoid the trap of using

habitual schemas that do not fit with the current situation.

4 The proposed approach to use GrC for SA

To enable the process of information granulation and rea-

soning described in Sect. 3 and related subsections, we

propose the adoption of a framework for GrC and the

Fig. 6 Taxonomy of SA errors

(our elaboration from Endsley

1995b)
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development of a set of tools and techniques implementing

capabilities to support human-oriented reasoning and cog-

nition. The approach we propose is shown in Fig. 7.

The framework for GrC is devoted at the creation of

granules and granular structures, and offers functionalities

to operate with granules (e.g. refinement, coarsening,

zooming-in and zooming out). Functionalities to assess the

performance of the created granules, such as implementa-

tion of trade-off between coverage and specificity men-

tioned in Sect. 2.1, can be part of the framework. The

granulation process and organization of granules in struc-

tures is done principally following the GDTA require-

ments. The framework is described in Sect. 5 and is based

on the results of Yao (1999) on GrC using neighbourhood

systems.

On the top of this framework a set of techniques to

support human-oriented reasoning and cognition can be

developed. The objective of these techniques is to reason

on granular structures that represent situations in order to

reduce SA errors and improve decision-making. As an

example, we propose in this paper the conformity analysis

to reduce SA L2 errors that is based on the results on

finding interesting patterns proposed in (Liu et al. 1999).

The conformity analysis is reported in Sect. 6.

5 The theoretical framework

Let us give a more formal definition of granule, granular

structure, information granulation and distance between

granular structures. We use the concepts of neighbour and

neighbourhood systems described by Yao (1999). As dis-

cussed by Yao both rough sets and fuzzy sets can be

understood in the context of the proposed framework.

For each element x of an universe U, we can define a

subset nðxÞ � U that we call neighbourhood of x. More

formally, given a distance function D:U � U ! Rþ, for

each d 2 Rþ we can define the neighbourhood of x:

ndðxÞ ¼ fyjDðx; yÞ� dg ð1Þ

We define (1) as a (type 1) granule. A cluster containing

the element x can be considered as (1). Equation (1) is

generic enough to support also other types of granulation

besides spatial proximity. For instance, if D is a similarity

function D:U � U ! ½0; 1�, then (1) defines a granule of

similar elements. If D is an equivalence relation, (1)

denotes an equivalence class. Using a fuzzy binary rela-

tionship, we can define a neighbourhood (1) as a fuzzy set.

From (1) high-order granules and granular structures

may be constructed. Let us consider a neighbourhood

system of x as a non empty family of neighbourhoods:

NSðxÞ ¼ fndðxÞjd 2 Rþg ð2Þ

Neighbourhood systems like (2) can be used to create

multi-layered granulations. Specifically, a nested system

NSðxÞ ¼ fn1ðxÞ; n2ðxÞ; . . .; njðxÞg with n1ðxÞ � n2ðxÞ �
� � � � njðxÞ can induce a hierarchy such that we can define

refinement and coarsening relationships on granules

n1ðxÞ 	 n2ðxÞ 	 ::: 	 njðxÞ. The union of neighbourhood

systems for all the elements of an universe defines a

granular structure:

GS ¼ [jUj
i¼1NSðxiÞ ð3Þ

If NSðxiÞ is a hierarchy, GS is a hierarchical granular

structure.

For a granular structure GS we define the information

granularity as:

Fig. 7 The proposed approach
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IG ¼ 1

jUj
XjUj

i¼1

jNSðxiÞj
jUj

ð4Þ

For the information granularity the two extremes (finest

and coarser granularity) are 1
jUj � IG� 1.

The last concept that we need to formalize is the distance

between two granular structures. This concept has been

proposed in GrC based on rough sets (Liang 2011) and fuzzy

sets (Qian et al. 2015). Given two granular structures GS1
and GS2, we define their distance as follows:

DðGS1;GS2Þ ¼
1

jUj
XjUj

i¼1

jNS1ðxiÞ 4 NS2ðxiÞj
jUj ; ð5Þ

where |.| is a cardinality, and jNS1ðxiÞ 4 NS2ðxiÞj is the

cardinality of a symmetric difference between the neigh-

bourhood systems: jNS1ðxiÞ [ NS2ðxiÞj 
 jNS1ðxiÞ \ NS2
ðxiÞj. It is easy to understand that the operation 4 removes

the elements that are common between two sets and, thus,

can be considered as a sort of dissimilarity. Formula (5)

considers the accumulated dissimilarity between the gran-

ules of two granular structures. A distance defined as (5) is

clearly a measure of dissimilarity, so conversely we can

define the similarity between two granular structures as:

SðGS1;GS2Þ ¼ 1
 DðGS1;GS2Þ ð6Þ

Illustrative example Before continuing, we present an

illustrative example to show how to create granular struc-

tures and evaluating information granularity and distance

between structures. This example is partially based on

some operational scenarios reported in Newman (2002) for

the assessment of SA.

A flight air traffic controller has to monitor flight paths in

order to assess rare events or unusual situations. In our

specific case, the unusual situation to recognize is a splitting

manoeuvre that occurs when one aircraft staying close in a

group suddenly moves away from a predefined trajectory.

Let us suppose U ¼ fa; b; c; dg is the universe of all

aircrafts an operator has to monitor. Let us suppose the

situation recognized at t ¼ t0 is S with four objects sepa-

rated. Let us suppose that from S the SA operator expects

two probable projections, let us call P1(S) and P2(S), where

three objects group together. The example is graphically

shown in Fig. 8.

Let us see how to create granular structures that can

support reasoning on this scenario.

For S we have the following neighbourhood systems:

NSðaÞ ¼ ffagg
NSðbÞ ¼ ffbgg
NSðcÞ ¼ ffcgg
NSðdÞ ¼ ffdgg

In this case, the granular structure GSS is the union of four

singletons corresponding the four objects of the universe.

For P1(S) we have the following neighbourhood systems:

NSðaÞ ¼ffag; fa; b; cgg
NSðbÞ ¼ffbg; fa; b; cgg
NSðcÞ ¼ffcg; fa; b; cgg
NSðdÞ ¼fdg

Fig. 8 Situations and granular structures—example
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with NS(a), NS(b) and NS(c) that are nested systems and

induce the hierarchy we can see in GSP1ðSÞ with the creation

of a coarse granule fa; b; cg reporting information on

groups of aircrafts.

For P2(S) we have the following neighbourhood systems:

NSðaÞ ¼ ffag; fa; b; dgg
NSðbÞ ¼ ffbg; fa; b; dgg
NSðcÞ ¼ fcg
NSðdÞ ¼ ffdg; fa; b; dgg

and the granular structure for this second projection GSP2ðSÞ
‘‘appears’’ to be in some way similar to GSP1ðSÞ for what

concern the number of the object aggregated.

Let us calculate the information granularity of these

structures

IGðGSSÞ ¼
1

4

1

4
þ 1

4
þ 1

4
þ 1

4

� �

¼ 1

4

IGðGSP1ðSÞÞ ¼
1

4

2

4
þ 2

4
þ 2

4
þ 1

4

� �

¼ 7

16

IGðGSP2ðSÞÞ ¼
1

4

2

4
þ 2

4
þ 1

4
þ 2

4

� �

¼ 7

16

and the distance between these structures:

DðGSS;GSP1ðSÞÞ ¼
1

4

2
1

4
þ2
1

4
þ2
1

4
þ0

� �

¼ 3

16

DðGSP1ðSÞ;GSP2ðSÞÞ ¼
1

4

3
1

4
þ3
1

4
þ2
1

4
þ2
1

4

� �

¼ 6

16

DðGSS;GSP2ðSÞÞ ¼
1

4

2
1

4
þ2
1

4
þ0þ2
1

4

� �

¼ 3

16

5.1 What is the value for SA?

In our illustrative example, the scenario requires granula-

tion of data per spatial proximity. In this case, the for-

malism of (1) fits well since SA L1 requirements demand

the perception of elements that are spatial closed. However,

as mentioned in the previous section, if SA L1 require-

ments demand the perception of similar objects, a proper

similarity function can be defined, and if SA L1 require-

ments demand the perception of objects that are indistin-

guishable with respect to some attributes, an equivalence

relation can be defined to induce the creation of granules.

In other words, the value of defining granules as done in

the framework lies in the flexibility we gain in the creation

of type 1 granules according to the different granulation

criteria that match the criteria a GDTA indicates for SA L1

requirements.

At comprehension level, SA L2 requirements usually

give indications on what are the elements of L1 to be fused

and/or abstracted in order to improve the comprehension.

In our illustrative example, we need to comprehend if

objects are spatially close together to assess the situation.

We can support the comprehension with the creation of

more abstract information fusing low-level information (in

our scenario about the position of groups of objects), and

this can be done with the adoption of neighbourhood sys-

tems such as (2). Neighbours of an element may be con-

sidered high-order granules and can be aggregated into a

single multi-layered hierarchical structure, which is a

granular structure such as (3). A granular structure such as

(3) can be considered as an approximated representation of

a situation at a particular time. A measure of the uncer-

tainty associated with this representation is given by the

information granularity (4).

A granular structure is such to organize the elements of

an environment according to the SA L2 requirements

improving the comprehension of a situation and, at the

same time, is a building block for reasoning on situations

and support projections of situations.

We evidence that to reason on situations, information

granularity (4) and distance between granular structures (5)

are useful for an SA operator. The first allows to measure

the degree of uncertainty associated with a situation rep-

resented by a granular structure, the second allows to

understand how two situations may differ. So these mea-

sures can be considered as building blocks of some inter-

esting application we mentioned in Sect. 3.2 such as the

comparison and ranking of situations.

However, this is not sufficient for an SA operator to take

informed decision, since SA model demands the capability

to project into near future the recognized situation, i.e.

satisfying SA L3 requirements. To this purpose (4) and (5)

can be used to give early indications on how projected

situations differ with respect to a recognized one.

Let us look at the three situations of the illustrative

example in terms of IG and D. The situation S is repre-

sented by GSS with a value of IGðGSSÞ ¼ 1
jUj that is the

finest granulation. The SA operator in this case has precise

information on the position of the four objects. We can

appreciate that there is a difference between the situation S

and its two projections P1(S) and P2(S) because of the

different values of IG. This means that both the projected

situations bring a different and additional information that,

intuitively, is the creation of an higher order granule.

However, with IG we are not able to differentiate between

the two projections since the information granularity is the

same, i.e. IGðGSP1ðSÞÞ ¼ IGðGSP2ðSÞÞ.
In this case, we can say to an SA operator that the

projected situations bring a new kind of information (that is

the high-order granule), but we cannot support the operator

with early warnings on the fact that the two projections are,

indeed, representative of different situations. Also the
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values of the distances between S and the projections is the

same, i.e. DðGSS;GSP1ðSÞÞ ¼ DðGSS;GSP2ðSÞÞ. On these

bases one could be tempted to consider the two projections

as similar. But the two projections are different and the

distance between the two projections DðGSP1ðSÞ;GSP2ðSÞÞ 6¼
0 clearly evidences this fact.

When two granular structures have the same information

granulation, the distance between granular structures is the

only way to measure dissimilarity. In SA applications, in

most cases, granules and levels of granulations are strongly

related to the hierarchies defined in the GDTA, and situa-

tions can evolve during the time without changing the

information granulation of the correlated granular structures.

In these cases the distance between structures appears the

only indicator of dissimilarity between situations.

Information granulation and distance between granular

structures may be used to support projection by giving

indications on new kind of information that can be avail-

able into a projected situation and/or how the projected

situations differ from the recognized one. These measures

can be considered by an SA operator as early indicators of

informative and structural differences between a recog-

nized situation and a possible projection.

6 Conformity analysis

We have seen that information granularity and distance are

useful indicators that show how two granular structures

representing situations can differ or be similar from an

informative and structural perspective. However, these

indicators do not state anything about classification or

interpretation (e.g. good, bad, expected, etc.) of a specific

situation. The conformity analysis presented in this section

is devoted to understand if a recognized situation conforms

to the expectations of an SA operator. Conformity analysis

is inspired by the fuzzy pattern matching technique pro-

posed by Liu et al. (1999). The idea is simple: we provide a

linguistic description of the granules in a granular structure

and then compare these descriptions with a set of expec-

tations formalized with fuzzy if-then rules.

Let us suppose we granulate per spatial proximity using

centroid-based clustering. A granule is a cluster of obser-

vations that are close in the space and can be regarded as

fuzzy pattern in the form x1 is A1 AND � � � xk is Ak, where

xk is the kth attribute of the centroid of the cluster and Ak is

a family of linguistic variables. We can also evaluate a

confidence degree of the linguistic description as a t-norm

r ¼ minðlA1
; . . .; lAk

Þ. r gives information on the strength

of the linguistic description associated with a granule. If we

have a classification of this pattern, we can write this as an

association rules in the form

Ri : xi;1 is Ai;1 AND ::: xi;k is Ai;k ! Class is Ci;

where Ci can be a fuzzy set or a categorical value. If we

cannot classify the pattern, we should not assume anything

on its classification.

A granular structure is the union of all the granules and

thus can be succinctly formalized as:

R ¼
[

i

Ri; ð7Þ

where i 2 ½1; n� with n the number of granules of the

structure.

Let us suppose we have another set of fuzzy patterns or

rules that are formalized by SA operators based on their

knowledge and expectations:

Ej: yj;1 is Bj;1 AND . . . yj;k is Bj;k ! Class is Cj;

where y are attributes, B linguistic variables, and C fuzzy

sets or categorical values. The set of expected rules is:

E ¼
[

j

Ej ð8Þ

with j\i, since usually experts do not provide a high

number of rules.

We can rank a granular structure with respect to a set of

expectations of an operator comparing (7) and (8). In Liu

et al. (1999) weights wi;j between Ri and Ej are calculated

in order to rank the discovered patterns with regard to

conformity and unexpectedness. While conformity may be

quite clear to understand, unexpectedness indeed is more

challenging and can be considered as any kind of deviation

with respect to expectations. We refer to the original work

of Liu et al. (1999) for additional details on this aspect.

In Liu et al. (1999) the basic idea is to compute a set of

weights wði;jÞ in two phases:

– evaluating a degree of matching between the attribute

names of Ri and Ej. This degree is evaluated via the

formula

Li;j ¼
jAði;jÞj

maxðjejj; jrijÞ
; ð9Þ

where jAði;jÞj is the size of the set of attribute names

that are common to the conditional parts of Ri and Ej,

and jejj, jrij are the numbers of attribute names in the

conditional parts of, respectively, Ej and Ri. For the

consequential parts, we suppose the name of the class is

the same so it does not account in (9);

– Evaluating the degrees of matching between the

attribute values, via Vði;jÞk that is the degree of matching

between the kth attribute value of conditional parts, and

Zði;jÞ that is the degree of value match of consequential

parts. If we do not have the correct classification, we
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consider 1 the degree of value matches of the conse-

quential parts.

On the basis of Lði;jÞ, Vði;jÞk and Zði;jÞ, the weights wði;jÞ for

the conformity ranking can be calculated via:

wði;jÞ ¼
Zði;jÞ � Lði;jÞ �

P
k2Aði;jÞ

Vði;jÞk

jAði;jÞj
ð10Þ

if jAði;jÞj 6¼ 0. wði; jÞ ¼ 0 if jAði;jÞj ¼ 0.

The degree of match of a rule Ri 2 R with respect to the

set of expected rules Ej 2 E is defined as:

Wi ¼ maxðwði;1Þ; wði;2Þ; ::: wði;jÞÞ ð11Þ

If E is a set of expected rules of a specific SA operator, then

Wi represents a degree of conformity of a granule within a

granular structure with respect to the expectations of the

operator. In SA terms, this means a degree of conformity of

information (granule) characterizing a recognized situation

(granular structure) with the expectations of the operators.

Let us now define how to calculate Vði;jÞk and, if we have

a classification, also Zði;jÞ. In Liu et al. (1999) different

cases to evaluate similarity between attribute values are

presented that depend also on the specific operators

f\ [ ¼ 6¼ :::g involved in the rules. In fact, Liu et al.

(1999) treat the case where patterns are discovered with

knowledge mining technique, such as C4.5 (Quinlan 2014),

so they need to compare cases such as Age \65 in the

discovered patterns with fuzzy statements such as

Age is Young of the user expectations. In our case, attri-

bute values are represented by fuzzy sets in both Ri and Ej,

so we need to find a similarity between two fuzzy sets and

we can do this via the mutual subsethood (Kosko 1997).

Given two fuzzy sets A and B, the mutual subsethood

measures the extent to which A equals B and can be

evaluated via:

eðA;BÞ ¼ jA \ Bj
jAj þ jBj 
 jA \ Bj ; ð12Þ

where |.| is the cardinality of the fuzzy set. In the case of

Gaussian membership function, jAj ¼
Rþinf


inf
aðxÞ ¼

Rþinf


inf
exp
ðx
c

r Þ2 , and jA \ Bj can be easily calculated based

on the crossover points. Let us take a look at Fig. 9 from

Paul and Kumar (2003) reporting an example of mutual

subsethood for two Gaussian membership functions, with

c1 [ c2 and r1 [ r2.
The crossover points are evaluated as follows:

h1 ¼
c1 þ r1

r2
c2

1þ r1
r2

ð13Þ

h2 ¼
c1 
 r1

r2
c2

1
 r1
r2

ð14Þ

Equations (13) and (14) are used to calculate jA \ Bj in all

the cases for which c1 6¼ c2. If c1 ¼ c2 there are no

crossover points and h1 ¼ h2 ¼ c. In this case,

jA \ Bj ¼ minðr1; r2Þ
ffiffiffi
p

p
. Details on the formulas, which

are Gaussian integrals, to evaluate jA \ Bj in the other

cases are available in literature, for instance in annex of

Paul and Kumar (2003).

7 Evaluation

The objectives of our evaluation are related to a prelimi-

nary assessment of some of the benefits we envision for

GrC in SA, specifically: to support comprehension and

projection, and reduce L2 errors. The term preliminary

here indicates the fact that we do not use a methodology for

assessment of situation awareness, such as SAGAT (End-

sley 1995a), in a real scenario with real operators. We have

instantiated the proposed framework using a clustering

technique and used a synthetic data set to simulate an

evolving situation, and evaluated how granular structures

can be used to reason on evolving situations.

7.1 Using SOM to create granules and granular

structures

To create granules and granular structures we decided to

use SOM as a clustering technique. The Kohonen SOM

(Kohonen 1998) is an unsupervised neural network method

particularly useful for data exploration and discovery of

novel inputs. An SOM performs a topology-preserving

mapping of the input data to the output units, enabling a

reduction in the dimensionality of the input. This aspect

gives SOM an added value related to visualization and

visual inspections of the formed clusters. An SOM learns in

a competitive way: the output neurons compete for the

classification of the input patterns that are presented in the

Fig. 9 Mutual subsethood (from Paul and Kumar (2003))
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training phase. The output neuron with the nearest weight

vector is classified as the winner. An output neuron is

activated according to Outj ¼ Fmin

P
iðxi 
 wjiÞ2, where

Fmin is a threshold function, and wji is a connection weight

between nodes j and i. Several works have compared SOM

with other clustering techniques. In Mingoti and Lima

(2006) SOM has been compared with k-means, fuzzy

c-means and hierarchical clustering. Results show that

SOMs generally have lower performance and are very

sensitive to input data structure. In deciding to use SOMs

for granulation in SA we accept a trade-off: to pay the cost

of non-optimal clusters formation in favour of intuitive

visualization features and easy data/pattern exploration that

can offer benefits for SA.

7.2 Scenario for evaluation

To evaluate our approach, we refer to the already intro-

duced surveillance scenario devoted to recognize anoma-

lous situations, such as a splitting manoeuver. Let us

suppose that two out of the four aircrafts are approaching

the destination and the SA operator has to assess if they are

proceeding close. Latitude and longitude of the objects are

mapped on a bi-dimensional area that has to be monitored

by the operator. The normal situation is defined by a tra-

jectory that the aircraft objects have to follow in

approaching the destination. Figure 10 shows an example

of the normal trajectory from A to B that two aircrafts

(depicted with red and blue points) have to follow in

approaching B. The normal situation is when both the

objects are approximatively in the area marked with two

straight lines. When two objects are close and, at a certain

time, one of the two suddenly changes, there is a split

situation that is circled with an ellipse in the figure.

In our scenario, to reason with granules we have to induce

a partition of the area under observation of Fig. 10 in several

sub-areas that can group together per proximity the objects

under surveillance. Figure 11 shows a partition in 9 sub-

areas of proximity that can be induced using three fuzzy sets

and linguistic labels on the x and y dimensions of the area.

The 9 partitions can be classified with respect to normal

(N) or anomalous (A) positions that the objects can take in

the area under observation. For each axis, we used Gaussian

functions centred at 0, 0.5 and 1, with variance 0.175.

Starting from a data set of observations oj ¼ ðxj; yjÞ of

positions of an aircraft, we can create granules

g ¼ foj; okjoj � okg, where � is a proximity relation. A

granule g groups a set of observations that are close together.

7.3 Preparation of granular structure

To create granular structure we fuse granules g for aircrafts

under observations. In our example, we limit to two objects

and use a 3� 2 SOM (where � refers to the multiplication

sign) to fuse positions of the two objects. To train the

SOM, we use the data set graphically shown in Fig. 10 and

is representative of an evolutionary situation (the two

objects are moving towards the destination) that includes a

split manoeuvre. The trained map is shown in Fig. 12. Each

neuron of the map is a granular structure fusing the position

of two objects and the figure shows also the situations

associated with the granular structures.Fig. 10 Area under observation

Fig. 11 Partition of the area under observation
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As we can see there are three granular structures that

represent the situation GS2. The other three situations are

represented by different granular structures. This is due to

the fact that the partition we have done is larger in the

middle of the area. Let us provide a linguistic description of

the granular structures in the map and evaluate the confor-

mity with respect to the expectations of the SA operators

that can be succinctly described as Ob1 isN ANDOb2 isN,

i.e. the two aircrafts move close together along a normal

trajectory. The set of expectations can be formalized as

follows, where FAR, MED and CLO are fuzzy sets with

Gaussian membership functions previously reported:

Ob1:x is FAR and Ob1:y is FAR and Ob2:y is FAR and

Ob2:y is FAR

Ob1:x is MED and Ob1:y is MED and Ob2:y is MED and

Ob2:y is MED

Ob1:x is CLO and Ob1:y is CLO and Ob2:y is CLO and

Ob2:y is CLO

The results shown in Table 1 reports the linguistic

description of each granular structure, the confidence

degree r associated with the description, and the rank of

conformance with the set of expectations evaluated with

(10) and (11). We report as separated the three different

granular structures associated with the situation GS2, i.e.

GS21, GS23 and GS23.

As mentioned, an SOM map allows visual inspection of

the data. In Fig. 12 we used a fan diagram style where, for

all the granular structures created, the size of each variable

for the two objects is clearly understandable. Another

advantage of using SOM for spatial granulation is that the

position of the neurons reflects proximity in the data. This

means that granular structures positioned around a neuron

represents probable projections of the granular structure

represented by the neuron. The data set for our scenario in

fact reports observations of a spatio-temporal evolution of

the two objects. This has allowed us to replicate a case

similar to the spatio-temporal granulation shown in Fig. 4,

Fig. 12 Granular structures created with the SOM
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with the four granular structures resembling the case of an

evolvable granular structure. This simplification is useful

for our objectives that aim to show the benefits of rea-

soning with granular structures.

7.4 Reasoning with the created granular structures

Now let us monitor the positions of ob1 and ob2 during three

time windows. Table 2 reports the observations for the two

objects in [t1, t2], and the associated granular structures of

the map, i.e. GS1. If we review Table 1, an SA operator

processing this information can easily perceive that the two

objects are in a proximity region that is quite far from the

destination. This information has an associated degree of

confidence sufficiently high. At comprehension level, the

operator recognizes the situation in this time window as in

line with expectations, i.e. rank is 1. In summary, Table 2

reports a set of observations for which no anomalous situ-

ations are recognized. Also in terms of projections, looking

at the neighbours of GS1, that are GS21 and GS23, an SA

operator does not expect changes in the situations. The

indicators of information granularity IG of the current situ-

ation GS1 and of its probable projections are the same, and

the distance D between GS1 and its probable projections is

zero. This means that the situations are similar from an

informative and structural perspective. Also the ranking of

the projections with respect to the expectations is 1 meaning

the situations projected conform to the expectations.

Table 3 reports the observations for the two objects in

another time window, i.e. [t4, t5], and the associated

granular structures. Similar arguments can be provided for

perception and comprehension levels. However, in this

case a SA operator can receive early warnings on one of the

probable projections of the situation recognized with the

last observations. In fact, if we evaluate the IG of GS22 and

of its projection GS3, we can see that are different and their

distance is not zero. This indicates that the situation is

changing in this projection, and also the ranking value

indicates that this projection is not so conform to the

expectations.

Table 4 lastly reports the observations for the two

objects in [t5, t6]. In this case, as anticipated in the pre-

vious slice, the situation changes and does not fully

Table 1 Linguistic

interpretation of GS and ranking

with expectations

GS Ob1.x Ob1.y Ob2.x Ob2.y Confidence Rank

GS3 Medium Close Medium Medium 0.527894402317402 0.7533617

GS21 Medium Medium Medium Medium 0.738956334326206 1

GS1 Far Far Far Far 0.897528148874471 1

GS4 Close Close Close Close 0.49204685199817 1

GS22 Medium Medium Medium Medium 0.839144780957984 1

GS23 Medium Medium Medium Medium 0.707422298051907 1

Table 2 Observations in t 2 ½t1; t2� and associated G

Ob1.x Ob1.y Ob2.x Ob2.y GS

0.02 0.00 0.02 0.00 GS1

0.00 0.04 0.05 0.04 GS1

0.02 0.04 0.07 0.04 GS1

0.02 0.04 0.07 0.04 GS1

0.02 0.00 0.07 0.00 GS1

0.03 0.08 0.08 0.12 GS1

0.03 0.04 0.08 0.04 GS1

0.03 0.04 0.08 0.04 GS1

0.03 0.04 0.08 0.04 GS1

0.05 0.04 0.10 0.04 GS1

0.07 0.12 0.12 0.17 GS1

0.10 0.04 0.15 0.04 GS1

0.10 0.08 0.15 0.12 GS1

Table 3 Observations in t 2 ½t4; t5� and associated GS

Ob1.x Ob1.y Ob2.x Ob2.y GS

0.34 0.62 0.34 0.42 GS21

0.44 0.37 0.49 0.42 GS23

0.51 0.66 0.51 0.46 GS22

0.53 0.70 0.53 0.50 GS22

0.53 0.70 0.53 0.50 GS22

0.54 0.70 0.54 0.50 GS22

0.54 0.66 0.54 0.46 GS22

0.56 0.70 0.56 0.50 GS22

0.58 0.66 0.58 0.46 GS22

Table 4 Observations in t 2 ½t5; t6� and associated GS

Ob1.x Ob1.y Ob2.x Ob2.y GS

0.58 0.74 0.58 0.54 GS3

0.59 0.78 0.59 0.58 GS3

0.59 0.78 0.59 0.58 GS3

0.61 0.74 0.61 0.54 GS3

0.64 0.74 0.64 0.54 GS3

0.64 0.91 0.64 0.71 GS3

0.66 0.91 0.66 0.71 GS3

0.68 0.78 0.68 0.58 GS3
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conform to the expectations. A deeper look at the finer

granules for the two objects clearly shows that object ob1 is

moving away from the normal trajectory.

8 Conclusions and future works

In this paper, we presented a GrC framework based on the

results of Yao on granular computing using neighbourhood

systems. The set-theoretic framework adopted defines the

concepts of granule, granular structure, information gran-

ulation and distance between granular structures that are

used as building blocks for representing situations and

reasoning on them. The conformity analysis is an example

of how we can reason on granular structures in order to

reduce errors at comprehension level and biases, by adding

information on how much a situation conforms to domain

knowledge or expectations of an SA operator. Furthermore,

it can support multiple views for different SA operators.

This can be done via conformity analysis with different sets

of fuzzy rules that represent different SA operators

expectations. A preliminary evaluation has been done in

the context of a surveillance scenario.

The results achieved need further investigations that we

are going to execute also in additional scenarios such as

airport security (Fenza et al. 2010), blended commerce

(D’Aniello et al. 2014) and green fleet management

(D’Aniello et al. 2016b), but are encouraging in the per-

spective of a systemic integration of SA and GrG, and are a

good basis for the development of our perception-oriented

SA framework delineated in Benincasa et al. (2015) and

Loia et al. (2016).

The preliminary evaluation reported in this paper was

not devoted to show how to create good granular structures

with SOM but, instead, used an SOM as a rapid way to

create granular structures resembling a case of evolvable

granular structures for an evolving situation. This allowed

us to show the benefits of our approach for comprehension

and projection. However, the study of evolvable granular

structure for evolutionary situations needs further concep-

tual development which we left for future works.

As example, in general, projecting into a near future

requires the capability to perceive and comprehend evo-

lutions of a granular structure. Given an universe U the

number of granular structures we can create is limited by

the number of partitions of the universe. Furthermore, in

real cases not all the partitions of the universe can be

admissible projections of a situation. Knowing the rules

that govern phenomena under observation can help in

selecting the granular structures that can be considered as

admissible projections. Moreover, the projection of a sit-

uation may depend also on the actions executed by actors

of the situation. Having a clear view of the actions that are

admissible in a specific situation can give a strong support

Fig. 13 Projection of the situations on the basis of actions
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to SA operators for the SA L3 issue. Formal languages to

model transitions between situations, such as situation

calculus (Lin 2008), can be useful to model transitions

between situations on the basis of admissible actions.

Figure 13 shows how we can combine GDTA and a formal

representation of transition between situations. GDTA L1

and L2 requirements are used as described in this paper to

create granules and granular structures. L3 requirements

are used to create a graph of transitions between situations.

This graph is created taking into account also what we need

to project. Each circle in the graph is a situation (a granular

structure) and the transition between situations can be

governed by simple rules such as if doða; SiÞ then Sj where
a is an admissible action.

With the combined application of the information

granularity, distance and conformance analysis an operator

may be aware of the differences between the situations

represented in the graph. If an SA operator is able to

classify good or expected situations (e.g. green circle in the

Fig. 13) from bad or unexpected ones (red circles), he can

be aware of how much the projections are similar to bad or

good situations. The combined adoption of action-based

rules and granular structures may bring additional inter-

esting applications in SA, such as the development of

decision support systems based on SA D’Aniello et al.

(2016a) that can recommend a flow of actions that opera-

tors have to execute to reach a particular situation of

interest.
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