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Abstract In this paper, we incorporate the concepts of

evidence theory and variable precision rough set model

(VP-model) to examine inconsistent decision tables. For

the decision classes in a given decision table, we point out

the relationship between approximation degree of depen-

dency and the belief functions. We also introduce the

notion of weakly discernable decision tables, and show

how to obtain the discernibility threshold of a given weakly

discernable decision table. We prove that weakly dis-

cernibility is a necessary condition of relative consistency

in a given decision table.

Keywords Rough sets � Belief functions � Variable

precision rough set models � Inclusion degrees �
Inconsistent decision tables � Relative discernibility

1 Introduction

Nowadays, we live in a world submerged with more

information than ever before, and the information is

growing faster. On the other hand, we encounter imperfect

decision-relevant information in some situations. Although

big information systems appear everywhere, data has

begun to accumulate to the point where a new and special

event is taking place. Today we deal with big data which

does not necessarily mean good data. And that, as an

increasing number of experts are saying more insistently,

means big data does not automatically yield good analytics.

If the data is imperfect, out of context or otherwise con-

taminated, it can lead to decisions that could undermine the

competitiveness of an enterprise or damage the personal

lives of individuals. Therefore, knowledge representation

plays an important role in dealing with many aspects of

problem solving. This includes handling imperfect

knowledge. More precisely, we study inconsistent decision

tables that can further analyze imperfect knowledge. One

of the most important concepts an intelligent system needs

to understand is the concept of knowledge. It may or may

not be perfect. Also, one wants to know what knowledge is

needed to achieve particular goals, and how that knowledge

can be obtained. So, one of the important problems along

this line is to seek an appropriate approach to analyze

imperfect knowledge. The problem related to imperfect

knowledge or an inconsistent decision table has been

investigated by many researchers in different areas. Our

idea is to apply a granular computing approach (Pedrycz

and Chen 2014, 2015; Skowron et al. 2016), rough set

theory, to cope with imperfect data analysis. Rough set

theory is proposed by Pawlak (1982) and is based on

fundamental set theory and has been applied extensively in

many different aspects of theoretical and applied research

areas.

Regarding the inclusion degree, several papers have

done various aspects of research. Polkowski and Skowron

(1996) proposed rough mereology as a foundation for

approximate reasoning about complex objects. Yao et al.

(2015) adopted the Bayesian decision-theoretic analysis to

provide a systematic method for determining the precision

parameters by using some notions of costs and risks. Zhang
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and Leung (1996) proposed a generalized notion of inclu-

sion degree in the context of a partially ordered set.

Gomolinska (2008) obtained two rough inclusion functions

(RIFs in short), different from the standard one and from

each other. With every RIF, she associated a mapping

which is in some sense complementary to it. She used these

complementary mappings (co-RIFs) to define certain met-

rics. While the distance functions may directly be used to

measure the degree of dissimilarity of sets of objects, their

complementary mappings are useful in measuring the

degree of mutual similarity of sets.

In our work, we use a table to represent some collections

of data in the real world. Using the concept of lower and

upper approximations in rough set theory together with the

variation of parameter to describe the characterizations of

the objects, we are able to come up with some variable

precision models through the given decision information. It

was first introduced by Ziarko (1993), the tool of variable

precision and later was used by many others. However, this

is the first time, we derive better analysis of equivalence

classes by using infimum and supremum of inclusion

degrees of equivalence classes in a given set with smaller

(or greater) values than 0.5 instead of minimum and

maximum, respectively. In fact, the family of inclusion

degrees of equivalence classes in a given set with smaller

(or greater) values than 0.5 may be empty. In what follows,

we first provide some preliminary backgrounds in rough set

theory and variable precision model (VP-model), under

decision tables, and the definitions of positive region,

boundary region and relative reduct for a decision table in

the VP-model in Sect. 2. In Sect. 3, we provide the rela-

tionship between the approximation degree of dependency

and the belief function in evidence theory. We then provide

the intrinsic properties of positive regions and upper

approximations of decision classes using the threshold of

the decision table in Sect. 4. We also present several

examples in Sect. 4. We show a very useful tool in

understanding the condition classes in positive regions in

Sect. 5. We show a clear relationship between consistency

and positive regions of a given decision table in Sect. 6.

Several concluding remarks are presented in Sect. 7.

2 Preliminaries

Let U be a finite and nonempty set, known as the universe

of discourse. We use the symbol ‘‘�’’ (‘‘�’’) to denote set

inclusion (strict set inclusion, respectively). The cardinality

of a set S � U, denoted | S |, is the number of elements in

S. The power set of U is the collection 2U ¼ fS j S � Ug.

The inclusion degree of a nonempty set X � U in a set

Y � U is defined as

IðX; YÞ ¼ jX \ Yj
jXj : ð1Þ

Let us define Pr : 2U �! ½0; 1� as follows:

PrðXÞ ¼ jXj
jUj ; 8 X � U: ð2Þ

The greatest lower bound (inf or infimum) and least upper

bound (sup or supremum) of a subset S of the unit interval

[0, 1] will be denoted by inf S and sup S, respectively.

From the definitions of inf and sup, we have

inf; ¼ 1 and sup; ¼ 0: ð3Þ

Remark If infS 2 S, then we also denote it by minS and call

it the minimum of S, and if supS 2 S, then we also denote it

by maxS and call it the maximum of S. However, nothing is

an element of the empty set and the empty set would not

have a minimum. In fact, we will deal with the family of

inclusion degrees of equivalence classes in a given set with

smaller (or greater) values than 0.5, which may be empty.

We therefore introduce infimum and supremum to include

all the possibilities.

2.1 VP-models under decision tables

The knowledge representation in the rough set model is

often structured in a decision table which is a 4-tuple

ðU;Q ¼ C [ D;V ; f Þ, where U is a nonempty finite uni-

verse, C is a nonempty finite set of condition attributes,

D is a nonempty finite set of decision attributes,

C \ D ¼ ;, V ¼
S

q2Q Vq and Vq is a domain of the attri-

bute q, and

f : U � Q �! V

is an information function such that f ðx; qÞ 2 Vq for every

x 2 U and q 2 Q.

Every nonempty subset P of condition attributes C, or

decision attributes D, generates an equivalence relation on

U, denoted by P̂ and defined as follows (Pawlak 1988).

P̂ ¼ fðx; yÞ 2 U � U j 8 q 2 P; f ðx; qÞ ¼ f ðy; qÞg: ð4Þ

Let P� ¼ fP1;P2; . . .;PjP�jg denote the partition on U in-

duced by equivalence relation P̂. Each member of D� will

be called a decision class. The decision table ðU;C [ D;

V ; f Þ is consistent if Ĉ � D̂; otherwise, the decision table is

inconsistent (Pawlak 1987).

For any X � U, we can define the P-lower approxima-

tion PðXÞ and P-upper approximation PðXÞ of X, in the

classical rough set model as follows (An et al. 1996):

PðXÞ ¼ [fPi 2 P� j Pi � Xg ¼ [fPi 2 P� j IðPi;XÞ ¼ 1g;
ð5Þ

66 Granul. Comput. (2017) 2:65–72

123



PðXÞ ¼ [fPi 2 P� j Pi \ X 6¼ ;g ¼ [fPi 2 P� j IðPi;XÞ[ 0g:
ð6Þ

Let b be a parameter such that 0:5\b	 1. For Pi 2 P� and

X � U, we define

Pi �b X if and only if IðPi;XÞ
 b; ð7Þ

Pi \b X 6¼ ; if and only if IðPi;U � XÞ\b: ð8Þ

Then, we can define the Pb-lower approximation PbðXÞ
and Pb-upper approximation P

bðXÞ of X, in the VP-model

under the threshold b, as follows (An et al. 1996):

PbðXÞ ¼ [fPi 2 P� j Pi �b Xg ¼ [fPi 2 P� j IðPi;XÞ
bg;
ð9Þ

P
bðXÞ ¼ [fPi 2 P� j Pi \b X 6¼ ;g

¼ [fPi 2 P� j IðPi;XÞ[ 1 � bg:
ð10Þ

Evidently, we have

Pbð;Þ ¼ P
bð;Þ ¼ ; and PbðUÞ ¼ P

bðUÞ ¼ U;

ð11Þ

PðXÞ ¼ P1ðXÞ � PbðXÞ � P
bðXÞ � P

1ðXÞ ¼ PðXÞ;
ð12Þ

P
bðXÞ ¼ U � PbðU � XÞ: ð13Þ

2.2 Positive region and reduct

Approximations of equivalence classes are obtained by

using these concepts of lower approximations, upper

approximations, boundary regions and positive regions. We

extend the concepts to VP models by providing similar

extensions via parameters. To obtain optimal approxima-

tions, we introduce reducts of decision classes.

Definition 1 Given a decision table ðU;C [ D;V; f Þ and

a parameter b 2 ð0:5; 1�, let D� ¼ fD1;D2; . . .;DjD�jg.

1. (Inuiguchi 2005; Zhou and Miao 2011; Ziarko 1993)

The quality of classification, or b-approximation

degree of dependency, of D w.r.t. a nonempty A � C

is defined as:

cbAðDÞ ¼
jPOS

b
AðD�Þj
jUj ¼

XjD
�j

j¼1

jAbðDjÞj
jUj ð14Þ

where

POS
b
AðD�Þ ¼

[

Dj2D�
AbðDjÞ ð15Þ

is called the b-positive region of D� w.r.t. A.

2. A nonempty B � C is called a b-reduct of C w.r.t. D iff

it is a minimum subset of C such that cbBðDÞ ¼ cbCðDÞ.

Here ‘‘iff’’ is Halmos’ convention for ‘‘if and only if’’.

3 Evidence theory and VP-models in decision
tables

Let ðU;C [ D;V ; f Þ be a decision table. To each nonempty

A � C, we associate a basic probability assignment (bpa)

(Lin 1998; Shafer 1976; Skowron and Grzymala-Busse

1994) mA : 2U �! ½0; 1� defined as follows:

mAðXÞ ¼
PrðXÞ if X 2 A�

0 elsewhere:

�

Then, by replacing ‘‘�’’ and ‘‘\’’ with ‘‘�b’’ and ‘‘\b’’,

respectively, in the definitions of the belief and plausibility

function generated by the bpa mA, we obtain the general-

ized notions of b-belief and b-plausibility functions gen-

erated by the bpa mA as follows (Syau and Lin 2015): for

any X � U,

Bel
b
AðXÞ¼

X

Ai2A�:Ai�bX

mAðAiÞ; Pl
b
AðXÞ¼

X

Ai2A�:Ai\bX 6¼;
mAðAiÞ:

ð16Þ

In addition, motivated by our earlier paper (Syau and Lin

2015), we also have

Bel
b
AðXÞ ¼

X

Ai2A�:Ai�bX

mAðAiÞ ¼
X

Ai2A�:Ai�bX

PrðAiÞ

¼
X

Ai2A�:Ai�bX

jAij
jUj ¼ j [ fAi 2 A� j Ai �b Xgj

jUj

¼ PrðAbðXÞÞ;
ð17Þ

Pl
b
AðXÞ ¼

X

Ai2A�:Ai\bX 6¼;
mAðAiÞ ¼

X

Ai2A�:Ai\bX 6¼;
PrðAiÞ

¼
X

Ai2A�:Ai\bX 6¼;

jAij
jUj ¼ j [ fAi 2 A� j Ai \b X 6¼ ;gj

jUj

¼ PrðAbðXÞÞ:
ð18Þ

The duality

Pl
b
AðXÞ ¼ 1 � Bel

b
AðU � XÞ ð19Þ

follows immediately from (13), (17) and (18).

Let D� ¼ fD1;D2; . . .;DjD�jg. According to (2), (14) and

(17), we obtain
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cbAðDÞ ¼
XjD

�j

j¼1

jAbðDjÞj
jUj ¼

XjD
�j

j¼1

PrðAbðDjÞÞ

¼
XjD

�j

j¼1

Bel
b
AðDjÞ:

ð20Þ

This leads to the following:

Theorem 1 Given a decision table ðU;C [ D;V; f Þ and
a parameter b 2 ð0:5; 1�, let D� ¼ fD1;D2; . . .;DjD�jg. For
any nonempty A � C, we have

cbAðDÞ ¼ cbCðDÞ ()
XjD

�j

j¼1

Bel
b
AðDjÞ ¼

XjD
�j

j¼1

Bel
b
CðDjÞ: ð21Þ

4 Relative discernibility of decision classes

As an immediate consequence of (9) and (10), we have the

following:

Lemma 1 Given a decision table ðU;C [ D;V ; f Þ and a

parameter b 2 ð0:5; 1�, let D� ¼ fD1;D2; . . .;DjD�jg. For

every decision class Dj 2 D�, we have

CbðDjÞ � Cb0 ðDjÞ � C
b0 ðDjÞ � C

bðDjÞ; 8 b0 2 ð0:5; b�:
ð22Þ

Ziarko (1993) states that a decision class Dj 2 D� is said

to be b-discernable if

CbðDjÞ ¼ C
bðDjÞ: ð23Þ

According to Ziarko (1993), a decision class which is not

discernable for every b 2 ð0:5; 1� will be called absolutely

indiscernible. A decision class Dk 2 D� is absolutely

indiscernible iff its absolute boundary

MðDkÞ ¼ [fCi 2 C� : IðCi;DkÞ ¼ 0:5g 6¼ ;: ð24Þ

A decision class which is not absolutely indiscernible will

be referred to as weakly discernable. More precisely, a

decision class Dj 2 D� is weakly discernable iff CbðDjÞ ¼
C
bðDjÞ for some b 2 ð0:5; 1�. The greatest value of b which

makes Dj discernable is referred to as discernibility

threshold. Ziarko (1993) also gives a proposition which

provides the computation procedures for discernibility

thresholds. Considering this proposition together with

inclusion degrees and the remark in Sect. 2, we obtain the

following.

Lemma 2 Given a decision table ðU;C [ D;V ; f Þ, let

C� ¼ fC1;C2; . . .;DjC�jg and D� ¼ fD1;D2; . . .;DjD�jg. If a

decision class Dj 2 D� is weakly discernable and its dis-

cernibility threshold is equal to fj. Then

fj ¼ minfgj; kjg; where

gj ¼ inffIðCi;DjÞ j Ci 2 C� & IðCi;DjÞ[ 0:5g; ð25Þ

kj ¼ 1 � supfIðCi;DjÞ j Ci 2 C� & IðCi;DjÞ\0:5g:
ð26Þ

Example 1 Let us consider an example of an inconsistent

decision table ðU;C [ D;V ; f Þ as shown in Table 1, where

C ¼ fa; b; cg is the set of condition attributes, D ¼ fdg is

the decision attribute.

From this table, we have

1. U ¼ fx1; x2; . . .; x8g.

2. Va ¼ Vb ¼ Vc ¼ Vd ¼ f1; 2g:
3. C� ¼ fC1;C2;C3g; D� ¼ fD1;D2g; where

C1 ¼ fx1; x5; x7g; C2 ¼ fx2; x3; x6; x8g; C3 ¼ fx4g;
D1 ¼ fx1; x2; x4; x6; x7; x8g; D2 ¼ fx3; x5g:

According to (1), we have

IðC1;D1Þ ¼
2

3
; IðC1;D2Þ ¼

1

3
;

IðC2;D1Þ ¼
3

4
; IðC2;D2Þ ¼

1

4
;

IðC3;D1Þ ¼ 1; IðC3;D2Þ ¼ 0:

ð27Þ

This gives the following:

(i) fIðCi;D1Þ j Ci 2 C� & IðCi;D1Þ\0:5g ¼ ;,

2

3
¼ minfIðCi;D1Þ j Ci 2 C� & IðCi;D1Þ[ 0:5g;

CbðD1Þ ¼ C
2
3ðD1Þ ¼ U; 8 b 2 0:5;

2

3

� �

; ð28Þ

C
bðD1Þ ¼ U; 8 b 2 ð0:5; 1�: ð29Þ

It follows from (28) and (29) that the decision class

D1 is weakly discernable and its discernibility

threshold is equal to 2
3
. This example clearly

Table 1 Exemplary decision
U a b c d

x1 1 2 1 1

x2 2 2 1 1

x3 2 2 1 2

x4 1 1 2 1

x5 1 2 1 2

x6 2 2 1 1

x7 1 2 1 1

x8 2 2 1 1
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validates that our method works and indicates that

why we use supremum instead of maximum in

(26).

(ii) fIðCi;D2Þ j Ci 2 C� & IðCi;D1Þ[ 0:5g ¼ ;,
2

3
¼ 1 � max fIðCi;D2Þ j Ci 2 C� & IðCi;D1Þ\
0:5g;
CbðD2Þ ¼ ;; 8 b 2 ð0:5; 1�; ð30Þ

C
bðD2Þ ¼ ;; 8 b 2 ð0:5; 2

3
�: ð31Þ

It follows from (30) and (31) that the decision class D2 is

weakly discernable and its discernibility threshold is equal

to 2
3
. Similarly to part (i), this example clearly validates that

our method works and indicates that why we use infimum

instead of minimum in (25).

In what follows, we consider a given decision tale,

ðU;C [ D;V ; f Þ. Let

C� ¼ fC1;C2; . . .;CjC�jg; D� ¼ fD1;D2; . . .;DjD�jg;
MðDjÞ ¼ [fCi 2 C� : IðCi;DjÞ ¼ 0:5g;
HðDjÞ ¼ [fCi 2 C� : IðCi;DjÞ
 0:5g;
gj ¼ inffIðCi;DjÞ j Ci 2 C� & IðCi;DjÞ[ 0:5g;
kj ¼ 1 � supfIðCi;DjÞ j Ci 2 C� & IðCi;DjÞ\0:5g;
fj ¼ minfgj; kjg;
g ¼ minfg1; g2; . . .; gjD�jg; k ¼ minfk1; k2; . . .; kjD�jg;
f ¼ minfg; kg ¼ minff1; f2; . . .; fjD�jg:

ð32Þ

Then, by Lemma 2 and Example 1, we obtain the

following:

Lemma 3 Given a decision table ðU;C [ D;V; f Þ, and
the notations g, k defined in (32), for each Dj 2 D�, we

have

CbðDjÞ ¼ CgjðDjÞ; 8 b 2 ð0:5; gj� ð33Þ

C
bðDjÞ ¼ C

kjðDjÞ ¼ HðDjÞ; 8 b 2 ð0:5; kj� ð34Þ

If MðDjÞ ¼ [fCi 2 C� : IðCi;DjÞ ¼ 0:5g ¼ ;, then the

decision class Dj is weakly discernable and its discerni-

bility threshold is equal to fj. That is,

CbðDjÞ ¼ C
bðDjÞ; 8 b 2 ð0:5; fj�: ð35Þ

Considering an improvement of Cheng et al. (2015), we

define relative discernibility of decision tables as follows.

Definition 2 A decision table ðU;C [ D;V ; f Þ is said to

be weakly discernible iff all its decision classes

D1;D2; . . .;DjD�j are weakly discernible, or equivalently, iff

for each Dj 2 D�,

MðDjÞ ¼ [fCi 2 C� : IðCi;DjÞ ¼ 0:5g ¼ ;: ð36Þ

The greatest value of b which makes the decision

table ðU;C [ D;V; f Þ discernable will be referred to as

discernibility threshold.

Theorem 2 Given a decision table ðU;C [ D;V ; f Þ, and
the notations g, k defined in (32), we have

1. POS
b
CðD�Þ ¼ POS

g
CðD�Þ; 8 b 2 ð0:5; g�.

2. for each Dj 2 D�,

C
bðDjÞ ¼ C

kðDjÞ; 8 b 2 ð0:5; k�:

If the decision table is weakly discernable, then its dis-

cernibility threshold is equal to f ¼ minfg; kg. That is,

POS
b
CðD�Þ ¼

[

Dj2D�
CbðDjÞ ¼

[

Dj2D�
C
bðDjÞ; 8 b 2 ð0:5; f�;

ð37Þ

or equivalently, for each Dj 2 D�,

C
bðDjÞ ¼ CbðDjÞ; 8 b 2 ð0:5; f�: ð38Þ

To illustrate the above concepts, we present below an

example of a weakly discernable decision table (Table 2).

Example 2 Let us consider a decision table ðU;C [
D;V; f Þ as shown in Table 1, where C ¼ fa; b; cg is the set

of condition attributes, D ¼ fdg is the decision attribute.

From this table, we have

1. U ¼ fx1; x2; . . .; x11g:
2. Va ¼ Vb ¼ Vc ¼ f1; 2g; Vd ¼ f1; 2; 3g:
3. C� ¼ fC1;C2;C3g; D� ¼ fD1;D2;D3g; where

Table 2 Exemplary decision
U a b c d

x1 1 1 1 1

x2 1 2 2 2

x3 1 1 2 2

x4 1 2 2 1

x5 1 1 1 2

x6 1 2 2 1

x7 1 1 1 3

x8 1 1 2 3

x9 1 1 2 3

x10 1 2 2 1

x11 1 1 2 3
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C1 ¼ fx1; x5; x7g; C2 ¼ fx2; x4; x6; x10g;
C3 ¼ fx3; x8; x9; x11g; D1 ¼ fx1; x4; x6; x10g;
D2 ¼ fx2; x3; x5g; D3 ¼ fx7; x8; x9; x11g:

According to (1), we obtain

IðC1;D1Þ ¼
1

3
; IðC1;D2Þ ¼

1

3
; IðC1;D3Þ ¼

1

3
;

IðC2;D1Þ ¼
3

4
; IðC2;D2Þ ¼

1

4
; IðC2;D3Þ ¼ 0;

IðC3;D1Þ ¼ 0; IðC3;D2Þ ¼
1

4
; IðC3;D3Þ ¼

3

4
:

ð39Þ

Then, according to (5) and (6), we obtain

CbðD1Þ ¼
C2; if 0:5\b	 3

4

;; if
3

4
\b	 1;

8
><

>:
ð40Þ

CbðD2Þ ¼ ;; 8 b 2 ð0:5; 1� ð41Þ

CbðD3Þ ¼
C3; if 0:5\b	 3

4

;; if
3

4
\b	 1;

8
><

>:
ð42Þ

C
bðD1Þ ¼

C2; if 0:5\b	 2

3

C1 [ C2; if
2

3
\b	 1;

8
><

>:
ð43Þ

C
bðD2Þ ¼

;; if 0:5\b	 2

3

C1; if
2

3
\b	 3

4

U; if
3

4
\b	 1;

8
>>>>><

>>>>>:

ð44Þ

and

C
bðD3Þ ¼

C3; if 0:5\b	 2

3

C1 [ C3; if
2

3
\b	 1:

8
><

>:
ð45Þ

Equations (40)–(45) give

C
bðD1Þ ¼ CbðD1Þ ¼ C2; 8 b 2 0:5;

2

3

� �

; ð46Þ

C
bðD2Þ ¼ CbðD2Þ ¼ ;; 8 b 2 0:5;

2

3

� �

; ð47Þ

C
bðD3Þ ¼ CbðD3Þ ¼ C3; 8 b 2 0:5;

2

3

� �

; ð48Þ

and

POS
b
CðD�Þ ¼

[

Dj2D�
CbðDjÞ ¼ POS

3
4

CðD�Þ

¼ C2 [ C3; 8 b 2 0:5;
3

4

� �

:

ð49Þ

According to (32) and (39), we have

g1 ¼ 3

4
; k1 ¼ 1 � 1

3
¼ 2

3
; f1 ¼ minfg1; k1g ¼ 2

3
;

g2 ¼ inf; ¼ 1; k2 ¼ 1 � 1

3
¼ 2

3
; f2 ¼ minfg2; k2g ¼ 2

3
;

g3 ¼ 3

4
; k3 ¼ 1 � 1

3
¼ 2

3
; f3 ¼ minfg3; k3g ¼ 2

3
;

g ¼ minfg1; g2; g3g ¼ 3

4
; k ¼ minfk1; k2; k3g ¼ 2

3
;

f ¼ minfg; kg ¼ minff1; f2; f3g ¼ 2

3
:

ð50Þ

This example validates the results of Lemma 3 and

Theorem 2.

5 Inclusion degrees in computing b-positive region

Let b 2 ð0:5; 1�. As it is indicated in (14) that

CbðDjÞ \ CbðDkÞ ¼ ;; 8 Dj; Dk 2 D� ðj 6¼ kÞ: ð51Þ

Notice that for each Ci 2 C�, we have

IðCi;D1Þ þ IðCi;D2Þ þ � � � þ IðCi;DjD�jÞ

¼ jCi \ D1j
jCij

þ jCi \ D2j
jCij

þ � � � þ
jCi \ DjD�jj

jCij
¼ 1:

ð52Þ

This, combined with (9) and (51), leads to the following:

Lemma 4 Let Ci 2 C�.

1. For b 2 ð0:5; 1�, one and only one of the following two

cases: case 1: Ci � POS
b
CðD�Þ, or case 2: Ci \

POS
b
CðD�Þ ¼ ; must occur.

2. Ci � POS
b
CðD�Þ for some b 2 ð0:5; 1� iff there exists

(one and only one) Dj 2 D� with IðCi;DjÞ[ 0:5. In

this case, we have

IðCi;DkÞ\0:5; 8 Dk 2 D� � fDjg: ð53Þ

3. If IðCi;DjÞ	 0:5 for all Dj 2 D�, or if there exists Dj 2
D� with IðCi;DjÞ ¼ 0:5, then we must have

Ci \ POS
b
CðD�Þ ¼ ;; 8 b 2 ð0:5; 1�:
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6 Relative consistency of decision tables

Following from Example 2, the b-positive regions,

POS
b
CðD�Þ for all b 2 ð0:5; 1�, of the weakly discernable

decision table can be expressed as:

POS
b
CðD�Þ ¼

C2 [ C3 if b 2 ð0:5; 3
4
�;

; if b 2 ð3
4
; 1�:

8
><

>:

We indeed have POS
b
CðD�Þ � U for all b 2 ð0:5; 1�. We

have thus seen that weakly discernibility of a decision

table ðU;C [ D;V; f Þ is not able to ensure that

POS
b
CðD�Þ ¼ U. This gives a counterexample to Proposi-

tion 3.2 of Cheng et al. (2015). The above observation

leads to the following definition:

Definition 3 A decision table ðU;C [ D;V ; f Þ is said to

be b-consistent ðb 2 ð0:5; 1�Þ if its b-positive region of D�

w.r.t. C equals the universe U. That is,

POS
b
CðD�Þ ¼ U: ð54Þ

A decision table which is not consistent for every b 2
ð0:5; 1� will be called absolutely inconsistent.

Using Item 3 of Lemma 4, it can be easily seen that if a

decision table ðU;C [ D;V ; f Þ is absolutely inconsistent iff

there exists Ci 2 C� such that

IðCi;DjÞ	 0:5; 8 Dj 2 D�; ð55Þ

or equivalently,

Ci \ POS
b
CðD�Þ ¼ ;; 8 b 2 ð0:5; 1�: ð56Þ

A decision table which is not absolutely inconsistent will be

referred to as weakly consistent. More precisely, a decision

table ðU;C [ D;V ; f Þ is weakly consistent iff for each Ci 2
C� there exists (one and only one) Dj 2 D� with

IðCi;DjÞ[ 0:5. The greatest value of b which makes

ðU;C [ D;V ; f Þ consistent will be referred to as consistency

threshold; hence, by Theorem 2, we obtain the following:

Theorem 3 Given a weakly consistent decision table

ðU;C [ D;V ; f Þ, and the notation g defined in (32), we have

POS
b
CðD�Þ ¼ POS

g
CðD�Þ ¼ U; 8 b 2 ð0:5; g�: ð57Þ

According to Theorem 3 and (22), we have immediate

consequences as follows.

Corollary 1 Given a weakly consistent decision table

ðU;C [ D;V ; f Þ, and the notations g, k, f defined in (32),

we have

POS
b
CðD�Þ ¼ U ¼

[

Dj2D�
C
bðDjÞ; 8 b 2 ð0:5; f�: ð58Þ

Example 3 From Example 1, we have

POS
b
CðD�Þ ¼ U; 8 b 2 0:5;

2

3

� �

:

7 Concluding remarks

We have shown a close relationship between b-approxi-

mation degree of dependency and b-belief function of a

given decision table. We further characterized a decision

table by its positive regions with certain thresholds. We

indicated how one finds a threshold for weakly discernable

decision tables. In particular, positive regions with some

thresholds provide a clear description for a weakly con-

sistent decision table. By finding inclusion degrees, we are

able to find thresholds and give rise to the characterization

of decision tables. Our examples have demonstrated some

good understandings of our theory in small scales. In fact,

the approximation degree plays an interesting role in upper

and lower approximations. This paper also showed the

relationships between approximation degrees and dis-

cernibility thresholds. We have extended and improved

other’s results (Ziarko 1993). It is anticipated to derive

some algorithms for a large decision table. It would be

interesting to connect with mutual entropy and Bayesian

considerations (Düntsch and Gediga 2015) which may give

rise to some algorithm to determine an approximately

optimal set of predicting attributes. Future applications of

our theory will include incorporating the inclusion degree

in analyzing inconsistent decision tables on a Hadoop-

based distributed platform.
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