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Abstract As a paradigm of data processing, granular

computation concerns processing complex data entities

called granules, which arise from data abstraction and

derivation of knowledge from data. This paper addresses

granular computation within the framework of interval

time series forecasting and evolving intelligent systems. It

develops a generalized interval evolving possibilistic fuzzy

modeling algorithm as an analytics tool capable to process

interval data stream and to produce interval forecasts. The

algorithm uses interval arithmetic in its processing steps,

employs the notion of data density to adapt the current

forecasting model as data are input, and computes

(dis)similarity between interval data using the Hausdorff

distance. Computational experiments include forecasting of

an interval time series data produced by a synthetic time-

varying model with parameter drift, and forecasting of

financial interval time series using actual daily minimum

and maximum values of the US and Brazilian main equity

indexes, S&P 500 and IBOVESPA, respectively. The

results suggest that the generalized interval evolving pos-

sibilistic fuzzy algorithm is highly effective to model and

forecast interval time series. It has comparable or better

performance than alternative evolving fuzzy and bench-

mark interval-based approaches.

Keywords Granular analytics � Evolving fuzzy

modeling � Interval time series � Forecasting

1 Introduction

Granular computation (GrC) is a broad-spectrum compu-

tational framework that allows different representations of

the same problem at different, yet consistent levels of

theoretical, methodological and technical details. It serves,

inter alia, as an infrastructure for knowledge discovery,

uncertainty management, data mining, data analytics,

decision making, and machine learning.

Granular computation introduces a paradigm to join

machine-centric mechanisms for knowledge and data pro-

cessing with human-centric approaches (Pedrycz 2007). It

offers a means to build computational models and algo-

rithms to handle large amount of complex data. Granular

computational models aim to process data such as classes,

clusters, subsets and intervals.

From the formal point of view, granular computing is

structured as a neighborhood system and the notion of

nearness (Chen 2009; Lin 2009). The triple structured

thinking, structured problem solving, and structured

information processing is the view of granular computing

from the philosophical, methodological and computational

perspective (Yao 2007). Semantical transformation of data

and information abstraction are the key issues in the pro-

cess of granulation and information verification in granular

computing models (Bargiela and Pedrycz 2006).

In many granular data processing applications, a piece

of data may be viewed as a collection of objects perceived
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as a single entity called granule. The objects of a granule

are elements of an universe put together by indistin-

guishability, similarity and functionality (Zadeh 1997).

Classes, clusters, subsets and intervals are common

examples of granules that appear in computational intelli-

gence and soft computing domains. In data processing and

system modeling, granulation of data is often achieved

through partition and covering, such as in clustering.

Highly adaptive and intelligent systems, denominated

evolving intelligent systems (EIS) (Angelov 2010), is a major

subject in contemporary adaptive system modeling and con-

trol. In EIS modeling, the model structure and its parameters

self-develop simultaneously from a stream of input data

coming from time-varying, dynamically changing environ-

ments. EIS embody recursive learning and one-pass incre-

mental algorithms that gradually change the model to

guarantee life-long learning, and self-organization of the

model structure and its parameters (Angelov and Zhou 2008).

Self-organization, evolution, and adaptation are important

features of complex systems that are largelymissing in current

studies of granular computation (Chen 2009).

Application of classic statistical methods in time series

forecasting often require certain assumptions on the under-

lying data (Hamilton 1994). Usually, these assumptions are

either unrealistic, or are approximations of the true features

of the data. In the world of massive, large amount of data

and data streams, precision may be expensive, eventually

unnecessary. Granular regression appears to be a useful

approach in so far traditional statistical regression. Recent

approaches include a heuristic method for overlapping

granular box regression (Peters 2011), and a generalization

of the least squares for granular, non-overlapping boxes

(Grzegorzewski 2013). In this context, boxes are vectors of a

multidimensional space. An example of box is a multidi-

mensional interval vector formed by the Cartesian product

of closed intervals (Jaulin 2001). The role of interval com-

putation as an important part of granular computation is

explained in Kreinovich (2008). A comprehensive coverage

on how to compute statistics under interval and fuzzy

uncertainty is given in Kreinovich (2012).

Prediction of asset prices in financial markets is the basis

for asset allocation, portfolio management, risk assessment,

and derivatives pricing (Pettenuzzo et al. 2014). The tem-

poral progress of assets, stock indices, and exchange rates

is observed as single-valued financial time series (Arroyo

et al. 2011). This is useful in many cases, but it may

insufficient in situations where several values are observed

at each time period. For instance, if only the opening (or

closing) asset price is measured daily, the resulting time

series will hide the intraday variability and important

information is missed. This limitation can be alleviated if

the highest and the lowest values of prices are measured at

each time period, what originates interval time series (ITS)

(Engleand Russel 2009). Variables of similar nature

include electricity prices (Weron 2014), power load and

generation, production rates, traffic flows, etc.

In particular, financial ITS modeling and forecasting

have received considerable attention in the recent litera-

ture.1 Analysis of large datasets, such as high frequency

data, based on the ITS is a new domain to study statistically

detectable patterns. It has attracted a large number of

researchers in economics and finance (Rodrigues and Sal-

ish 2014). In general, the literature addresses ITS using

extensions of classic data analytics and forecasting tech-

niques (Fiess and MacDonald 2002; Lima and Carvalho

2008). For instance, Rodrigues and Salish (2014) suggest a

univariate threshold model to predict S&P 500 index

interval time series independently forecasting the mid-

points and half-lengths of the intervals. The authors show

that the approach performs better than single-valued time

series approaches. Similarly, Arroyo et al. (2011) uses ITS

to forecast Dow Jones Index and Euro-Dollar exchange rate

using exponential smoothing and artificial neural networks.

Forecasts are produced using independent predictions of

the lower and upper bounds of intervals or, alternatively,

their midpoints and half-lengths. The ITS approach is

shown to outperform single-valued methods, specially in

exchange rate forecasting.

The vector error correction model (VEC) is a multi-

variate method Fiess and MacDonald (2002) to forecast

interval exchange rate using the lower and the upper

interval bounds. Using intraday data, Yang et al. (2014)

compares ARIMA, naive, and interval linear regression

models to forecast S&P 500, Dow Jones and Nasdaq

indexes. The authors claim that the interval-based

approaches are superior when compared against single-

valued time series models. Recently, Xiong et al. (2014)

developed a support vector machine model to simultane-

ously forecast the minimum and maximum values of the

S&P 500, FTSE 100, and Nikkei 225 interval indexes. The

results, when compared with classic econometric tech-

niques and interval neural networks, show the superior

potential of the interval-based model, especially in finan-

cial trading.

The finance and economics related literature has repor-

ted the use of evolving fuzzy rule-based models in various

areas such as value-at-risk (VaR) modeling and forecasting

(Ballini et al. 2009), sovereign bond modeling (Ballini

et al. 2009), exchange rate forecasting (McDonald and

McDonald 2010), fixed-income option pricing (Maciel

2011), term structure of interest rates (Maciel et al. 2012)

1 The literature has introduced several interval time series forecasting

methods. Examples include Lu et al. (2015), Froelichand Salmeron

(2014), Xiong et al. (2015) and Wang et al. (2013). The focus of this

paper is on financial interval time series forecasting.
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and financial volatility forecasting (Luna and Ballini 2012),

and stochastic volatility prediction (Luna and Ballini

2012). A recent development is the evolving possibilistic

fuzzy modeling approach of Maciel et al. (2015) which

gives potentially robust models against noise data and

outliers exploring possibilistic clustering (Pal et al. 2005).

The evolving possibilisitc approach also employs partici-

patory learning to adapt the model structure, and an utility

measure to evaluate its quality.

Despite the recent advances, current interval forecasting

approaches have some limitations. For instance: (1) they do

not process interval data as a granule. Interval forecasts are

produced from the independent forecasts of the intervals

bounds or midpoints and half-lengths, which often result in

lower performance (He and Hu 2008; 2) multivariate

models rely mostly on linear structures, which may not

reflect the nonlinear and complex nonstationary dynamics

of data properly such as in financial markets for example;

(3) they need high amount of data to estimate the param-

eters of the forecasting models, and are not suitable for

stream data processing; (4) data distribution must satisfy

certain statistical assumptions; and (5) the imprecise nature

of the data are neglected.

This paper addresses interval time series within the

framework of granular computation and evolving intelli-

gent systems, focusing on financial interval time series

forecasting applications. The aim is to lessen the limita-

tions that current ITS forecasting approaches have. It

suggests the generalized interval evolving possibilistic

fuzzy modeling (gPFM) as an analytics tool to process

interval input stream data and to produce corresponding

interval forecasts. More precisely, the paper develops a

generalized evolving Takagi–Sugeno (gTS) modeling

approach whose rule base and the parameters of the rule

consequents are updated as interval data are input. An

evolving possibilisitc fuzzy interval data clustering algo-

rithm and weighted recursive least squares (wRLS) com-

pose the two main components of the evolving possibilistic

fuzzy forecasting framework. Evolving gTS modeling

develops local granular models in fuzzy regions encapsu-

lated by fuzzy clusters with rule consequents as functions

of the interval inputs. Model complexity is captured

through the combination of local affine interval models of

the gTS multi-model structure. Differently from the current

financial ITS modeling approaches, approach uses interval

arithmetic (Moore et al. 2009; Hickey et al. 2001). As in

Maciel et al. (2015), gTS processes interval-valued stream

data, but uses an adaptation mechanism based on the notion

of potential instead of participatory learning, and the

Hausdorff distance to compute the (dis)similarity between

intervals instead of Euclidean distance. Computational

results are reported using a synthetic interval time series

data produced by a time-varying model with parameter

drift. Next, financial interval time series forecasting using

actual daily minimum and maximum values of the US and

Brazilian main equity indexes, S&P 500 and IBOVESPA,

respectively, are addressed. The interval time series are the

daily minimum and maximum values of the indexes. Per-

formance of the gPFM against ARMA, VEC, evolving

fuzzy, and neuro-fuzzy models is evaluated considering the

forecasting error of the interval bounds individually, and

intervals dissimilarity measure.

The paper proceeds as follows. Section 2 gives a brief

reminder of the interval arithmetic adopted in this work.

Section 3 details the generalized interval evolving possi-

bilistic fuzzy modeling algorithm. Computational results

and performance evaluation are summarized in Sect. 4.

Section 5 concludes the paper and suggests issues for

further development.

2 Interval arithmetic

In this paper an interval x is a closed bounded set of real

numbers:

x ¼ ½xL; xU� 2 I; ð1Þ

where I ¼ f½xL; xU� xL; xU 2 R; xL� xUg is the set of

closed intervals of the real line R, xL the lower bound, and

xU the upper bound of the interval. An m-dimensional

interval vector x is an ordered m-tuple of intervals

x ¼ ½x1; x2; . . .; xm�T , where xj ¼ ½xLj ; xUj � 2 I, j ¼ 1; . . .;m.

The midpoint of an interval x is:

mpðxÞ ¼ xL þ xU

2
: ð2Þ

An interval time series (ITS), fxtg, is a sequence of interval
vectors observed in successive time steps t ¼ 1; 2; . . .; T .

Interval arithmetic extends traditional arithmetic to

operate on intervals. This paper uses the arithmetic oper-

ations introduced by Moore et al. (2009):

xþ y ¼ ½xL þ yL; xU þ yU�;
x� y ¼ ½xL � yU; xU � yL�;

xy ¼ minfxLyL; xLyU; xUyL; xUyUg;
�

maxfxLyL; xLyU; xUyL; xUyUg
�
;

x=y ¼ x 1=yð Þ; with 1=y ¼ ½1=yU; 1=yL�:

ð3Þ

Interval arithmetic subsumes classic arithmetic. This means

that if an operation of interval arithmetic takes real num-

bers as operands, considering them as intervals of length

zero, then we obtain the same result as if the operation

were performed using traditional arithmetic.

The interval evolving possibilistic fuzzy model requires

a metric to measure distances and (dis)similarities between
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intervals. This paper uses the Hausdorff distance instead of

the Euclidean distance (Maciel et al. 2015). If x and y are

vectors of intervals, then the Hausdorff distance between x

and y, denoted by dðx; yÞ, is

dðx; yÞ ¼
Xm

j¼1
max jxLj � yLj j; jxUj � yUj j

n o� �
: ð4Þ

The next section addresses gPFM, the generalized interval

evolving possibilistic fuzzy modeling approach. It details its

two main components, the generalized evolving Takagi–

Sugeno (gTS), and the weighted recursive least squares

(wRLS).

3 Generalized interval evolving possibilistic fuzzy
modeling

3.1 Generalized Takagi–Sugeno fuzzy model

The generalized Takagi–Sugeno (gTS) fuzzy model with

affine interval consequents consists of a set of fuzzy

functional rules of the following form:

Ri : IF x is Ai THEN yi ¼ hi0 þ hi1x1 þ � � � þ himxm; ð5Þ

where Ri is the i-th fuzzy rule, i ¼ 1; 2; . . .; c, c is the

number of fuzzy rules in the rule base, x ¼ ½x1; x2; . . .; xm�T ,
xj 2 I, j ¼ 1; . . .;m, is the input, Ai is the fuzzy set of the

antecedent of the i-th fuzzy rule whose membership func-

tion is AiðxÞ : I! ½; �, yi 2 I is the output of the i-th rule,

and hi0 and hij 2 R, j ¼ 1; . . .;m, are real-valued parame-

ters of the consequent of the i-th rule.

Fuzzy inference using gTS rules (5) is similar to the

classic Takagi–Sugeno model counterpart except that the

arithmetic operations are the interval operations of Sect. 2

instead of the usual operations with real numbers. It is as

follows:

y ¼
Xc

i¼1

AiðxÞyiPc
j¼1AjðxÞ

 !

: ð6Þ

The expression (6) can be rewritten using normalized

degrees of activation:

y ¼
Xc

i¼1
kiyi ¼

Xc

i¼1
kix

T
e hi; ð7Þ

where

ki ¼
AiðxÞPc
j¼1AjðxÞ

; ð8Þ

is the normalized firing level of the i-th rule, hi ¼
½hi0; hi1; . . .; him�T is the vector of parameters, and xe ¼
½1 xT �T is the expanded input vector.

gTS modeling requires: (1) learning the antecedent part

of the model via an interval fuzzy clustering algorithm, and

(2) estimation of the parameters of the interval affine

consequents. The i-th fuzzy cluster defines Ai, the ante-

cedent of the i-th fuzzy rule. The cluster structure defines

the structure of the model itself because to each cluster

corresponds a fuzzy rule whose consequent is, as (5)

shows, an interval affine function, an affine local model.

3.2 Interval possibilistic fuzzy clustering

The interval possibilistic fuzzy clustering algorithm is a

translation of the possibilistic fuzzy c-means (Pal et al.

2005) to process interval data. Let xk ¼ ½x1k; x2k; . . .; xmk�T
be the input data at step k. A set of n inputs is denoted by

X ¼ fxkjk ¼ 1; 2; . . .; r; . . .; ng. The aim of clustering is to

partition the dataset X into c subsets called clusters.

A possibilistic fuzzy partition of the set X is a family

fAij1� i� cg. Each Ai characterized by membership

degrees and typicalities specified by the fuzzy and typi-

cality partition matrices U ¼ ½uik� 2 ½0; 1�c�n and

T ¼ ½tik� 2 ½0; 1�c�n, respectively. The entries of the i-th

row of matrix U (T) are the values of membership (typi-

calities) degrees of the data X in Ai.

The interval possibilistic fuzzy (iPFCM) clustering

algorithm produces c vectors of intervals that represent c

clusters centers in the interval data space. The iPFCM

algorithm may be formulated as the following optimization

problem:

min
U;T ;V

J ¼
Xn

k¼1

Xc

i¼1
ðaugfik þ bt

gp
ik Þdikðxk; viÞ þ

Xc

i¼1
ci
Xn

k¼1
ð1� tikÞgp

( )

;

ð9Þ

subject to

Xc

i¼1
uik ¼ 1 8 k;

0� uik; tik� 1:

ð10Þ

Here a[ 0, b[ 0, and gf ; gp [ 1, ci [ 0 are parameters

chosen by the user, and dð�; �Þ is a distance measure which,

similarly as in Carvalho et al. (2006), is the Hausdorff

distance given in (4). The constants a and b define the

relative importance of membership degrees and typicality

values in the objective function, respectively. V ¼
½v1; v2; . . .; vc�T is the matrix of cluster centers,

vi ¼ ½vi1; vi2; . . .; vim�T , vj 2 I, j ¼ 1; . . .;m, gf and gp are

parameters associated with membership degrees and typi-

calities (usually gf ¼ gp ¼ 2).

In this paper, membership degrees and typicalities are

found using:
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uik ¼
Xc

j¼1

dikðxk; viÞ
djkðxk; vjÞ

� �2=ðgf�1Þ
 !�1

; ð11Þ

tik ¼
1

1þ b
ci
d2ikðxk; viÞ

� �1=ðgp�1Þ ; ð12Þ

and the cluster centers approximated by:

vi ¼
Pn

k¼1 ðau
gf
ik þ bt

gp
ik ÞxkPn

k¼1 ðau
gf
ik þ bt

gp
ik Þ

: ð13Þ

Strictly speaking, cluster centers derived as a solution of

(9) requires computation of medians of intervals (Car-

valho and Pimentel 2012) which in turn, since the

median is nondecreasing, can be computed as the

medians of the lower and upper bounds of intervals.

Despite this fact, because a recursive expression to

compute the median is difficult to obtain, and we rely on

(13) as a heuristic approximation inspired in Kratschmer

(2002).

A way to choose ci is as follows (Pal et al. 2005):

ci ¼ K

Pn
k¼1 u

gf
ik dikðxk; viÞPn
k¼1 u

gf
ik

; 1� i� c; ð14Þ

where K[ 0 (usually K ¼ 1), and uik are entries of a ter-

minal FCM partition of X.

3.3 Recursive interval possibilistic fuzzy clustering

Generalized interval evolving possibilistic fuzzy modeling

relies on the recursive form of the possibilistic fuzzy

clustering for interval data (Maciel et al. 2015).2

Let vir ¼ ½v1;ir; v2;ir; . . .; vm;ir�T be the i-th cluster center

at step r, using the values of membership degrees and

typicality given by (11) and (11). The i-th cluster center at

step r þ 1 becomes:

vi;rþ1 ¼
Prþ1

k¼1 ðau
gf
ik þ bt

gp
ik ÞxkPrþ1

k¼1 ðau
gf
ik þ bt

gp
ik Þ

¼
Pr

k¼1 ðau
gf
ik þ bt

gp
ik Þxk þ ðau

gf
i;rþ1 þ bt

gp
i;rþ1Þxrþ1Pr

k¼1 ðau
gf
ik þ bt

gp
ik Þ þ ðau

gf
i;rþ1 þ bt

gp
i;rþ1Þ

:

ð15Þ

Denote the relation between the cluster center at step r and

the new one at step r þ 1 by:

vi;rþ1 ¼ vir þ Dvi;rþ1; ð16Þ

where Dvi;rþ1 is the variation in the cluster center due to

new input data xrþ1. According to Maciel et al. (2015),

using (15), expression (16) can be rewritten as follows:

vi;rþ1 ¼ vir þ
ðaugfi;rþ1 þ bt

gp
i;rþ1Þ xrþ1 � virð Þ

Pr
k¼1 ðau

gf
ik þ bt

gp
ik Þ þ ðau

gf
i;rþ1 þ bt

gp
i;rþ1Þ

:

ð17Þ

The increment of the i-th cluster center Dvi;rþ1 is:3

Dvi;rþ1 ¼
ðaugfi;rþ1 þ bt

gp
i;rþ1Þ xrþ1 � virð Þ

Pr
k¼1 ðau

gf
ik þ bt

gp
ik Þ þ ðau

gf
i;rþ1 þ bt

gp
i;rþ1Þ

: ð18Þ

The denominator of cluster centers increments (18) needs

the values of all past r data. In principle, the denominator

can also be computed recursively. However, in adaptive

modeling and non-stationary environments past data may

become obsolete and current data should be emphasized

because they carry more accurate information about the

current state. A suitable mechanism to tackle this situation

is to use exponential smoothing to weight past membership

and typicality degrees.

Let the sum of the memberships and typicalities up to

step r in the denominator of (18) be sik 2 R:

sir ¼
Xr

k¼1
ðaugfik þ bt

gp
ik Þ: ð19Þ

After new data is input at step r þ 1, the value of si;rþ1 can

be estimated using exponential smoothing as follows:

si;rþ1 ¼ cvsir þ au
gf
i;rþ1 þ bt

gp
i;rþ1: ð20Þ

The parameter cv, 0� cv� 1 is the forgetting factor that

weights past membership degrees. Thus Dvi;rþ1 can be

rewritten as:

Dvi;rþ1 ¼
ðaugfi;rþ1 þ bt

gp
i;rþ1Þ xrþ1 � virð Þ
si;rþ1

: ð21Þ

After computation of cluster centers, the values of the

membership degrees ui;rþ1 and typicalities ti;rþ1 of input

data xrþ1 at step r þ 1 are computed using (11) and (12),

that is:

ui;rþ1 ¼
Xc

j¼1

di;rþ1ðxrþ1; viÞ
dj;rþ1ðxrþ1; vjÞ

� �2=ðgf�1Þ
 !�1

; ð22Þ

ti;rþ1 ¼
1

1þ b
ci
d2i;rþ1ðxrþ1; viÞ

� �1=ðgp�1Þ : ð23Þ

2 Chuang et al. (2013) also suggests an interval fuzzy possibilistic

c-means clustering algorithm based on Hausdorff distance, but for

batch data processing only.

3 Detailed derivation of the recursive expression of cluster centers is

found in Maciel et al. (2015).

Granul. Comput. (2016) 1:213–224 217

123



3.4 Model structure adaptation

In this paper, the mechanism to adapt the rule-based model

uses the concept of recursive data density estimation.

Contrary to the participatory learning approach of Maciel

et al. (2015), recursive data density does not require choice

of threshold parameters. The density of data xk at step k,

DkðxkÞ, can be estimated using a Cauchy function:

Dk xkð Þ ¼
1

1þ 1
k�1
Pk�1

j¼1
Pm

l¼1 xk;l � xj;l
� 	2 : ð24Þ

Evolving systems need the density evaluated recursively to

accumulate the information about spatial distribution of all

data. The recursive calculation of data density is as follows

(Angelov 2010):

Dk xkð Þ ¼
k � 1

k � 1ð Þ
Pm

l¼1 x
2
k;l þ 1

� �
þ hk � 2

Pm
l¼1 xk;jpk;j

;

ð25Þ

where:

hk ¼ hk�1 þ
Xm

l¼1
ðxk�1;lÞ2; h1 ¼ 0;

pk;l ¼ pk�1;l þ xk�1;l; p1;l ¼ 0:

ð26Þ

Data with high density are potential candidates to be cluster

prototypes. If a data point is selected to be a cluster center,

then it becomes a focal point (25) and has the value of its

density stored. The density of cluster prototypes is updated

using:

Dk xi
�� 	
¼ k � 1

k � 1þ ðk � 2Þ 1
Dk�1 xi

�ð Þ � 1
� �

þ
Pm

l¼1 xi
�
l � xk;l

� 	 ;

ð27Þ

where D1 xi
�� 	
¼ 1 and i� denotes the centroid of the i-th

cluster.

New clusters may formed by data with high density

using the following condition (Angelov 2010):

IF Dk xkð Þ[ max
c

i¼1
Dk xi

�� 	
THEN xðcþ1Þ

�
 xk; c cþ 1:

ð28Þ

The quality of the cluster structure is monitored at each

step considering the utility measure suggested in Angelov

(2010). The utility measure is an indicator of the accu-

mulated relative firing level of a rule:

U ik ¼
Pk

l¼1 ki
k � Ii�

; ð29Þ

where Ii� is the step (time tag) that indicates when the

corresponding fuzzy rule i� was created. Once a cluster, or
equivalently, a rule is created, the utility indicates how

much the rule has been used so far. The quality measure

aims at avoiding unused clusters kept in the structure.

Clusters with corresponding low quality fuzzy rules can be

deleted. In other words, the following criterion is used to

delete a cluster/rule:

IF U ik\� THEN c c� 1; ð30Þ

where � 2 ½0:03; 0:1� is a threshold that controls the utility

level of each cluster (Angelov 2010). This principle guar-

antees high relevance cluster structures and local models.

Alternative quality measures such as age, support, zone of

influence and local density may be adopted.

3.5 Estimation of the model parameters

The parameters of the interval affine consequents of the

rule-based model (5) are estimated using weighted recur-

sive least squares algorithm (wRLS) (Ljung 1988). To take

advantage of the standard form of the wRLS algorithm, the

procedure uses the midpoint mpðxjÞ of the intervals as in

(2). Consider expression (7) rewritten as:

mpðyÞ ¼ KTH; ð31Þ

where K ¼ k1mpðxTe Þ; k2mpðxTe Þ; . . .; kcmpðxTe Þ
� �T

is the

fuzzily weighted extended input, mpðxeÞ ¼ 1 mpðxTÞ½ �T is

the expanded data vector, and H ¼ hT1 ; h
T
2 ; . . .; h

T
c

� �T
is the

parameter matrix, hi ¼ ½hi0; hi1; . . .; him�T .
Given that the actual output is known at each step, the

parameters of the consequents can be updated using the

weighted recursive least squares (wRLS) algorithm con-

sidering either local or global optimization. This paper

employs the locally optimal error criterion wRLS:

minEi
L ¼ min

Xn

k¼1
ki mpðykÞ �mpðxTekÞhik
� 	2

: ð32Þ

The parameters of the rule consequents are updated as

follows (Ljung 1988):

hi;kþ1 ¼ hik þ RikmpðxekÞkik mpðykÞ �mpðxTekÞhik
� 	

; hi0 ¼ 0;

ð33Þ

Ri;kþ1 ¼ Rik �
kikRikmpðxekÞmpðxTekÞRik

1þ kikmpðxTekÞRikmpðxekÞ
; Ri0 ¼ XI;

ð34Þ

where I is the ðmþ 1Þ identity matrix; X is a large number

(usually X ¼ 1000), and R is the dispersion matrix.

3.6 gPFM algorithm

The generalized interval evolving possibilistic fuzzy mod-

eling (gPFM) algorithm is summarized in this section. The

steps of the algorithm are non-iterative. The procedure
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revises an existing model whenever there is new information

in the input data. The recursive nature of gPFM turns it

particularly useful for on-line and real-time applications.

Assume that an initial dataset is available. The first step

of the algorithm is to partition the initial dataset using the

FCM clustering algorithm (step 1) to get ci and vi0. The

next step is to select the control parameters (step 2) and to

initialize si0 for the existing c rules (step 3). Next, gPFM

starts processing input data stream (step 4) and for each

existing rule, it computes the density of the input data (step

6) and updates the density of the focal points (step 7). If the

density of the current input data is higher than the maxi-

mum density of all existing focal points, then a new rule is

created (steps 8–10). Otherwise, the rule base remains the

same as in the previous step. Membership degrees and

typicality values are computed (steps 12 and 13) using the

distance from the current input data to all the existing

clusters centers (step 11). Next, the clusters centers are

updated accordingly (steps 14–16). The utility of the rule is

evaluated and if it is lower than the threshold, then it is

deleted from the rule base (steps 17–19). Once the cluster

structure is evaluated (steps 5–20), the parameters of rule

consequents are updated using wRLS (step 21) and the

model output is computed (step 22) using (7).

Generalized intervalar evolving possibilistic fuzzy modeling
1. get γi and vi0 from a terminal FCM partition
2. choose values for γv, a, b, ε
3. set si0 =

∑r
k=1 au

ηf

ik + bt
ηp

ik

4. for k = 1, 2, . . . do
5. for i = 1, 2, . . . c do
6. compute Dk (xk) = k−1

(k−1)(
∑m

l=1
x2

k,l
+1)+hk−2

∑m

l=1
xk,jpk,j

7. compute Dk xi∗)
= k−1

k−1+(k−2)

(
1

Dk−1(xi∗)
−1

)
+
∑m

l=1(x
i∗
l

−xk,l)

8. if Dk (xk) > maxc
i=1 Dk xi∗)

then create a new cluster
9. c ← c + 1
10. end if
11. compute dik(xk,vi) =

∑m
j=1 max

{|xL
j − yL

j |, |xU
j − yU

j |})
12. update uik =

(∑c
j=1

(
dik(xk,vi)
djk(xk,vj)

)2/(ηf−1)
)−1

13. update tik = 1

1+ b
γi

d2
ik

(xk,vi)
)1/(ηp−1)

14. compute sik = γvsi,k−1 + au
ηf

ik + bt
ηp

ik

15. compute Δvik = (au
ηf
ik

+bt
ηp
ik

)(xk−vi,k−1)
sik

16. update centers vik = vi,k−1 + Δvi,k

17. if Uik < ε then delete cluster i
18. c ← c − 1
19. end if
20. end for
21. update rule consequent parameters using wRLS
22. compute model output yk+1
23. end for

4 Computational experiments

The interval gPFM approach introduced in this paper is a

flexible modeling procedure useful for a variety of prob-

lems. This section illustrates interval time series

forecasting using gPFM to model synthetic data with

concept drift and actual financial interval data.

4.1 Data

First, gPFM is run to model a time-varying nonlinear process

whosemodel is an extension of the one suggested inNarendra

and Parthasarathy (1990). The process model produces a time

series with concept drift (TSCD) using the expression:

~ykþ1 ¼
d1~yk

1þ d2~y2k
þ d3~x

3
k ; ð35Þ

where ~xk ¼ sinð2pk=25Þ þ sinð2pk=10Þ, ~yk ¼ 0 for k� 0,

~y 2 R and ~x 2 R.

The goal is to develop a model f ð�Þ of the form:

~yk ¼ f ð~yk�1; ~yk�2; ~yk�3; ~yk�4Þ: ð36Þ

The values of the parameters d1, d2 and d3 change at k ¼
300 as follows (Narendra and Parthasarathy 1990):

d0 ¼ 0:5sinð0:2kÞ; ð37Þ

d1 ¼ d0 þ
1 if k\200

3:5 otherwise;



ð38Þ

d2 ¼ d0 þ
1 if k\200

0:8 otherwise;



ð39Þ

d3 ¼ d0 þ
1 if k\200

1:5 otherwise:



ð40Þ

Data consists of a stream of 440 samples, the first 240

samples for learning, and the remaining 200 for testing.

The interval time series (iTSCD) is formed by sub-

tracting and adding 20 % of TSCD to itself to produce the

lower (yLk ) and upper bounds (yUk ) at each step k of the

corresponding interval time series iTSCD as follows:

yLk ¼ ~yk � ð0:2~ykÞ; ð41Þ

yUk ¼ ~yk þ ð0:2~ykÞ: ð42Þ

Second, the gPFM is run to process financial interval time

series forecasting using themain US and Brazil equitymarket

indexes, S&P 500 and IBOVESPA, respectively. Daily

interval time series data are formed using the daily minimum

andmaximumvaluesof theS&P500 and IBOVESPAindexes

from January 3, 2000 to December 28, 2012.4 Each daily

interval datumhas the dailyminimum indexvalue as the lower

bound, and the daily maximum index value as the upper

bound. Time series data were split into two sets, the first for

learning, and the second for testing. Two different cut-off data

were considered to evaluate the performance of gPFM.

Learning dataset (I) refers to the ITS from January 3, 2000 to

4 The data provided by Bloomberg.
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December 31, 2007 whereas training dataset (II) refers to the

ITS from January 3, 2000 to December 31, 2008. Test dataset

(I) are the remaining data, that is, from January 2, 2008 to

December 28, 2012. Similarly, test dataset (II) is from January

2, 2009 to December 28, 2012.

4.2 Performance evaluation

The results of the generalized intervalar evolving possi-

bilistic fuzzy modeling (gPFM) are compared with evolv-

ing fuzzy and neuro-fuzzy modeling methodologies,

respectively, eTS, xTS, eTS?, ePL?, eFuMo and DEN-

FIS. The results of the financial ITS include comparisons

with the ARIMA and VEC models. VEC models are

benchmarks for financial ITS approaches because they are

multivariate methods that simultaneously estimate the

intervals bounds. We notice that all the remaining

approaches, except the interval gPFM, forecast intervals

bounds independently of each other. More precisely, they

forecast the lower and upper values of the intervals bounds

viewing them as independent, single-valued time series.

Forecast is one step ahead.5 Performance of the

approaches are evaluated and compared in terms of inter-

vals bounds accuracy and interval distance error. The

evaluation considers forecasts of the minimum (lower

bound) and maximum (upper bound) values of the ITS

using the root mean square error (RMSEL=U):

RMSEL=U ¼ 1

n

Xn

k¼1
ðdL=Uk � y

L=U
k Þ

2

 !1
2

; ð43Þ

where d
L=U
k is the actual lower/upper interval bound at k,

y
L=U
k is the forecast lower/upper interval bound at k, and

n is the sample size.

An important performance measure of ITS is to compute

the forecasting error as the distance between the actual

interval data and the forecast interval. This paper evaluates

forecast performance using the Euclidean mean distance

error (EMDE) Arroyo et al. (2011):

EMDE ¼ 1

n

Xn

k¼1
ðdLk � yLk Þ

2 þ ðdUk � yUk Þ
2

h i
 !1

2

; ð44Þ

where dk ¼ ½dLk ; dUk � and yk ¼ ½yLk ; yUk � are the actual and

forecasted interval data, respectively, at k.

The complexity of the models are evaluated in terms of

the average number of rules/nodes, and the (CPU) time

elapsed during test data processing. All algorithms were

implemented and run using Matlab� on a laptop with 4 GB

and Intel �i3CPU.

4.3 Forecasting interval time series with concept

drift iTSCD

Concerning the interval time series with concept drift,

simulations conducted to find the best performance sug-

gested the following control parameters for gPFM:

cv ¼ 0:93, a ¼ 1, b ¼ 3, and � ¼ 0:10. Initialization uses

the FCM algorithm to choose ci and vi0. Similarly, the best

control parameters of the alternative models were also

chosen by simulations.

Table 1 shows the RMSE and EMDE values of interval

iTSCD modeling achieved by gPFM and alternative

approaches using test data. The lowest values are

Table 1 Performance

evaluation for iTSCD forecast
Models RMSEL RMSEU EMDE # rules (aver.) Time (s)

eTS (Angelov and Filev 2004) 0.374 0.389 6.312 4.19 3.12

xTS (Angelov and Zhou 2008) 0.369 0.374 6.274 3.89 3.04

eTS? (Angelov 2010) 0.350 0.363 6.195 3.73 2.78

ePL? (Maciel et al. 2014) 0.358 0.369 6.316 4.08 2.89

eFuMo (Dovžan et al. 2012) 0.312 0.319 5.987 3.64 2.39

DENFIS (Kasabov and Song 2002) 0.362 0.377 6.414 8 41

gPFM 0.315 0.308 4.980 3.95 2.51

Bold values represent best results

5 gPFM is also able to perform forecasts for h steps ahead, i.e., to

produce forecasts for ytþh. The forecasting horizon depends on the

application and the user goals. In risk management, one step ahead

forecasting are more appealing because of the dynamics of risk

assessment. Fig. 1 Actual iTSCD data and the gPFM model output
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highlighted. In terms of RMSE considering the lower

(RMSEL) and upper (RMSEU) interval bounds, the results of

gPFM are similar or better when compared against the

eFuMo, eTS? and the remaining models. From the point of

view of the distance between intervals EMDE, gPFM gives

significant better results than all the approaches (Table 1).

eFuMo develops the smallest average number of rules

amongst all approaches (Table 1). Small number of rules

means smaller model complexity and better interpretability.

The models performed similarly in terms of processing time,

all of them qualifying to process granular stream data, except

DENFIS which requires much higher processing time.

Figure 1 shows the behavior of gPFM modeling of the

interval time series with concept drift (iTSCD). The fig-

ure depicts the actual data for the last 100 intervals from

test data and the output values of gPFM. Notice that the

gPFM modeling faithfully captures the nonlinear and time-

varying nature of the data.

4.4 Financial interval time series forecasting

Forecasting of S&P 500 and IBOVESPA indexes uses

control parameters chosen from simulations conducted to

find gPFM best performance, namely, cv ¼ 0:90, a ¼ 1,

b ¼ 2, and � ¼ 0:09 for S&P 500, and cv ¼ 0:94, a ¼ 2,

b ¼ 3, and � ¼ 0:10 for IBOVESPA. The parameters are

the same for both cut-off date sets. Initialization uses the

FCM algorithm to choose ci and vi0. Control parameters of

the alternative evolving fuzzy models were also selected

from simulation experiments.

Tables 2 and 3 show RMSE and EMDE values of ePFM

and alternative algorithms for S&P 500 indexes using test

dataset (I), i.e., from January 2, 2008 to December 28,

2012, and using test dataset (II), i.e., from January 2, 2009

to December 28, 2012, respectively. Best results are in

bold. Results are quite similar for both cut-off date sets,

since test dataset (II) essentially excludes the year of 2008

in comparison to test dataset (I). The high volatility period

of 2008 provoked by the recent financial crisis, implies in a

slight higher level of forecasting errors for the test dataset

(I) (Table 2) when compared with the test dataset (II)

(Table 3).

The RMSE of lower and upper bounds of S&P 500

index forecasted by gPFM show similar magnitudes when

compared with eTS?, eFuMo and remaining models

(Tables 2, 3). ARIMA and VEC achieve the lowest accu-

racy, but VEC performs better than ARIMA. From the

point of view of EMDE, gPFM gives significant better

results than all remaining methodologies. eFuMo develops

the smallest average number of rules amongst all compet-

ing models. The processing time off all approaches are

similar, except ARIMA, VEC and DENFIS, which require

higher time to process the test data.

Figure 2 illustrates the performance of gPFM for inter-

valar S&P 500 index forecasting. It depicts the actual data

and the output values by gPFM considering the last year of

data from test set (I).6 It is worth to note that the gPFM

modeling approach captures the dynamic of the financial

index, even in periods of higher volatility.

Concerning the IBOVESPA index, Tables 4 and 5

show RMSE and EMDE values of ePFM and alternatives

modeling of IBOVESPA index using test dataset (I), i.e.,

from January 2, 2008 to December 28, 2012, and using

test dataset (II), i.e., from January 2, 2009 to December

28, 2012, respectively. As for S&P 500, results for both

test data sets (I) and (II) are very similar, in which the

levels of errors for test dataset (II) (Table 5) are slight

small than fro test dataset (I) (Table 4). The gPFM model

achieves competitive results in terms of RMSE when

compared with eFuMo, DENFIS and the remaining

models (Tables 4, 5). The ARIMA and VEC models have

the lowest accuracy. The computational performance of

the approaches are similar for both, lower (RMSEL) and

upper (RMSEU) interval bounds, i.e., minimum and

Table 2 Performance

evaluation for interval S&P 500

index test dataset (I), from

January 2, 2008 to December

28, 2012

Models RMSEL RMSEU EMDE # rules (aver.) Time (s)

ARIMA 0.596 0.610 9.563 – 14

VEC 0.520 0.531 8.209 – 9

eTS (Angelov and Filev 2004) 0.432 0.437 6.892 5.48 2.43

xTS (Angelov and Zhou 2008) 0.427 0.440 6.917 6.11 2.28

eTS? (Angelov 2010) 0.415 0.418 6.432 5.70 2.87

ePL? (Maciel et al. 2014) 0.444 0.427 6.498 6.54 2.26

eFuMo (Dovžan et al. 2012) 0.391 0.407 6.132 5.09 2.39

DENFIS (Kasabov and Song 2002) 0.420 0.430 6.564 7 53

gPFM 0.399 0.398 5.877 5.37 2.44

Bold values represent best results

6 Due to the gPFM structure by processing streaming data, the results

for the last year of data are very similar for both test data sets (I) and

(II). Thus, for the better visual interpretation we kept only the results

from test dataset (I) for both S&P 500 and IBOVESPA.
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maximum values of IBOVESPA index, respectively.

eTS? develops the smallest average number of rules

amongst all approaches. Generally speaking, all approa-

ches are qualified to deal with financial interval bounds

forecasting. Tables 4 and 5 show IBOVESPA interval

time series EMDE values of gPFM and remaining

approaches. Clearly, gPFM achieves significant better

results than all remaining approaches. The classic

ARIMA and VEC econometric benchmarks perform

worst, but VEC model is more accurate than ARIMA.

Figure 3 shows the actual data and the forecast output

values of gPFM for IBOVESPA index for test dataset (I).

Again, one notice the higher performance of gPFM to

forecast thge IBOVESPA index.

Table 4 Performance

evaluation for interval

IBOVESPA index test dataset

(I), from January 2, 2008 to

December 28, 2012

Models RMSEL RMSEU EMDE # rules (aver.) Time (s)

ARIMA 0.690 0.709 8.970 – 19

VEC 0.607 0.631 7.316 – 13

eTS (Angelov and Filev 2004) 0.557 0.577 7.015 6.23 2.60

xTS (Angelov and Zhou 2008) 0.542 0.568 7.129 6.40 2.67

eTS? (Angelov 2010) 0.539 0.553 6.651 5.89 2.71

ePL? (Maciel et al. 2014) 0.558 0.560 6.762 7.17 2.69

eFuMo (Dovžan et al. 2012) 0.491 0.497 6.401 6.19 2.44

DENFIS (Kasabov and Song 2002) 0.511 0.521 6.445 10 70

gPFM 0.459 0.503 5.476 7.44 2.61

Bold values represent best results

Table 3 Performance

evaluation for interval S&P 500

index test dataset (II), from

January 2, 2009 to December

28, 2012

Models RMSEL RMSEU EMDE # rules (aver.) Time (s)

ARIMA 0.605 0.598 9.328 – 13

VEC 0.534 0.516 8.009 – 8

eTS (Angelov and Filev 2004) 0.429 0.428 6.754 5.10 2.01

xTS (Angelov and Zhou 2008) 0.419 0.422 6.832 5.78 2.08

eTS? (Angelov 2010) 0.420 0.408 6.264 5.45 2.45

ePL? (Maciel et al. 2014) 0.430 0.414 6.387 6.32 2.02

eFuMo (Dovžan et al. 2012) 0.387 0.389 5.980 4.76 2.07

DENFIS (Kasabov and Song 2002) 0.398 0.422 6.336 7 49

gPFM 0.386 0.374 5.654 5.19 2.14

Bold values represent best results

Table 5 Performance

evaluation for interval

IBOVESPA index test dataset

(II), from January 2, 2009 to

December 28, 2012

Models RMSEL RMSEU EMDE # rules (aver.) Time (s)

ARIMA 0.612 0.684 8.648 - 18

VEC 0.576 0.601 7.122 - 11

eTS (Angelov and Filev 2004) 0.509 0.547 6.873 6.09 2.32

xTS (Angelov and Zhou 2008) 0.529 0.539 6.932 6.25 2.56

eTS? (Angelov 2010) 0.513 0.524 6.352 5.74 2.54

ePL? (Maciel et al. 2014) 0.509 0.530 6.498 6.80 2.49

eFuMo (Dovžan et al. 2012) 0.456 0.476 6.296 5.78 2.21

DENFIS (Kasabov and Song 2002) 0.498 0.498 6.207 10 69

gPFM 0.438 0.480 5.113 7.20 2.33

Bold values represent best results
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5 Conclusion

This paper has suggested a generalized evolving possibil-

isitc fuzzy modeling algorithm as an analytic tool for

interval time series forecasting. The approach extends the

evolving possibilistic fuzzy modeling methods to processes

interval data granules. The performance of gPFM was

evaluated using a synthetic interval time series with con-

cept drift, and using actual data of the S&P 500 and

IBOVESPA, the main US and Brazilian equity market

indexes, respectively. The results show that the gPFM

produces better forecasts than the individuals bounds

forecasts of ARIMA, VEC, and state of the art evolving

fuzzy and neuro-fuzzy approaches. Future work shall

evaluate how gPFM perform in high dimensional spaces,

and to compare gPFM with existing granular box regres-

sion models.
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