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Abstract Clustering is one of the most relevant data

mining tasks. Its goal is to group similar objects in one

cluster while dissimilar objects should belong to different

clusters. Many extensions have been developed based on

traditional cluster algorithms. Recently, approaches for

dynamic as well as for granular clustering have been of

particular interest. This paper provides a framework, DCC-

Dynamic Clustering Cube, to categorize existing dynamic

granular clustering algorithms. Furthermore, the DCC-

Framework can be used as a research map and starting

point for new developments in this area.

Keywords Dynamic clustering � Granular clustering �
Granular computing

1 Introduction

The amount of data collected, their accessibility as well as

the computational and methodological capabilities to ana-

lyze them have significantly increased in the past years.

The term Big Data subsumes this trend and is often

regarded as one of the key factors that determine an

enterprise’s competitiveness. According to the information

technology research and advisory company Gartner (2011)

Big Data is characterized by the following three Vs: vol-

ume, variety, and velocity.

In the context of our paper, velocity is of special inter-

est. A high velocity of incoming data requires strategies to

dynamically adapt the analytic system to cope with the

changing behavior of the respective data structures.

Furthermore, due to the sheer amount of data, Big Data

requires procedures to develop cost-efficient solutions that

are simplified but still acceptable representations of the

underlying complex patterns. As they are intended to

address human decision-makers, they should be descrip-

tively presented in human centered ways without jeopar-

dizing too much of the content of the original data. These

requirements are very similar to those that Yao (2005)

postulates for granular computing (see Sect. 2.2).

Last but not least, one of the most popular methods in

data mining and Big Data is clustering (Jain et al. 1999).

The goal of clustering is to group similar objects into a

cluster while dissimilar objects should be separated by

assigning them to different clusters.

Putting these three keywords, dynamic, granular com-

puting, and clustering, together we get dynamic granular

clustering. The objective of the paper is to address these

three keywords holistically by developing a framework for

dynamic granular clustering: DCC—Dynamic Clustering

Cube. Our framework helps to categorize established

dynamic granular cluster approaches and discloses

methodical gaps that should be considered to be filled. We

study various approaches of granular computing for clus-

tering rather than focussing on a particular granular clus-

tering method.

The remainder is organized as follows. The next section,

gives a brief introduction to the characteristics of dynamic
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data, granular computing, and cluster analysis. In Sect. 3,

we propose our DCC-Framework and discuss its three

dimensions. In Sect. 4, we present selected dynamic

granular clustering methods showing how each one fits into

the DCC-Framework. In Sect. 5, we review selected

application areas where dynamic granular clustering offers

particular advantages. Section 6 concludes this paper and

hints at future developments.

2 Dynamic data, granular computing, and cluster
analysis

2.1 Dynamic data

Data to be analyzed can be dynamic in different ways, e.g.,

with respect to location or time, etc. For the purpose of this

article, we understand dynamic data as any kind of data

that take only time-dependent aspects into account and

refrain from any other dynamic phenomena, like geo-

graphical movements and others.

Following Joentgen et al. (1999), we can distinguish

two cases regarding time-dependent aspects: (1) objects

whose feature vectors contain just values at a certain

moment of time, i.e., snapshots of feature values and (2)

objects that contain functions of feature values over time,

i.e., feature trajectories. An example for the first case is a

feature vector describing a certain customer with its current

attribute values, such as, age and income, as used, e.g., for

customer segmentation in the retail industry. An example

for the second case is a feature vector describing a certain

patient’s blood pressure and heart rate during the past

hours, as used for patient monitoring in health care.

Another important issue is whether observations can be

identified over time or not. If objects are identifiable over

time, their respective profile constitutes dynamic data, e.g.,

customers’ buying behavior over time (see, e.g., Berkhin

2006). In the opposite case, i.e., objects are not identifiable,

dynamic data provides information on the behavior of the

entire set of analyzed objects, e.g., changing buying

behavior of all customers from a customer base. In both

cases, i.e., identifiable or non-identifiable objects, it is

necessary to store a time stamp along with each newly

generated feature value.

2.2 Granular computing

In the past decades, granular computing (Bargiela and

Pedrycz 2003; Pedrycz 2007; Pedrycz et al. 2008) has

emerged as a new archetype to simplify problems by

dealing with information granules derived from underlying

true but complex data. Granular computing is motivated by

human problem solving strategies which are often based on

information granules rather than on precise data (Pedrycz

2013). If one takes the present state of evolution of man-

kind, such a strategy seems to be more successful than

alternative strategies that are directly based on the under-

lying real data.1

The original idea of granular computing goes back to the

nineties of the last century. For example, Zadeh (1997)

wrote: ‘‘Fuzzy information granulation underlies the

remarkable human ability to make rational decisions in an

environment of imprecision, partial knowledge, partial

certainty and partial truth.’’ In 2004, Yao (2004) stated that

‘‘the consideration of granularity is motivated by the

practical needs for simplification, clarity, low cost,

approximation, and the tolerance of uncertainty’’; in 2005,

Yao (2005) concluded that granular computing should be

‘‘1) Truthful representation of the real world [...] 2) Con-

sistent with human thinking and problem solving [...] 3)

Simplification of problems [...] 4) Economic and low cost

solutions.’’

Bell et al. (1988) mentioned descriptive, normative, and

prescriptive interactions that people are having when they

are taking decisions. The descriptive analysis is of special

importance in the context of our paper. It identifies ways

and habits how people take decisions, putting special

emphasis on decomposition of complex problems, cost-

benefit analysis instead of optimal solutions, and simplifi-

cation in case of uncertainties present in the environment.

This underlines the importance of granular computing

when it comes to develop systems for decision support in

human-centric situations.

As can be seen, granular computing is not method, but

goal-driven. Any method that helps to reach these goals

should be considered as a substantial component of gran-

ular computing. This goal-driven definition of granular

computing also implies that its techniques are not neces-

sarily developed for granular computing. It also subsumes

methods that were proposed long before the term granular

computing itself was introduced (Yao 2008a, b). Bargiela

and Pedrycz (2003) identify set theory and interval analysis

(Kreinovich 2008), fuzzy (Zadeh 1965), rough (Pawlak

1982), and shadowed sets (Pedrycz 1998), probabilistic sets

and probability-based granular constructs, and higher-level

granular constructs as important methods within the port-

folio of granular computing.

These techniques are used to aggregate detailed data

towards information granules by applying different aggre-

gation characteristics: e.g., probabilistic approaches use

probabilities and fuzzy sets similarities as granulation

1 Of course, one could also argue that evolution will strengthen the

human ability to analyze complex data in the future. In this case,

information granules are presently needed due to the underdeveloped

state in human development.
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criteria for building information granules. See Fig. 1 for an

illustrative example for a three-step granulation.

2.3 Cluster analysis

Besides methods as discussed above, e.g., data mining

techniques are needed to generate information granules.

Clustering is one of the most popular techniques in data

mining with a virtually unmanageable number of algo-

rithms. See, e.g., Jain et al. (1999) or Xu and Wunsch

(2005) for surveys on cluster analysis.

The goal of clustering is to group similar objects into the

same cluster, while dissimilar objects should belong to

different clusters. The degree of similarity of objects is

calculated based on their respective feature values (see,

e.g., Berkhin 2006).

In terms of granular computing, a cluster can be inter-

preted as an information granule that presents its objects on

a coarser and more granular level (Gacek and Pedrycz

2015). Two important areas in clustering are hierarchical

(Li et al. 2011) and partitive approaches (Xu and Wunsch

2005).

Hierarchical clustering is divided into divisive and

agglomerative methods. In hierarchical divisive clustering,

one starts with one cluster for all data. By splitting clusters,

the representation of the data gets finer and finer until each

object forms its own cluster. In hierarchical agglomerative

clustering, one starts with each object forming its own

cluster and move upwards merging clusters until all objects

belong to the same cluster.

In partitive clustering, the objects are assigned to a (pre-

defined) number of clusters based on similarities. The most

popular partitive cluster approach is probably k-means

(MacQueen 1967) and its extensions and derivatives

(Peters et al. 2013). In the context of our paper, clustering

algorithms based on soft computing approaches are of

particular importance, such as, e.g., fuzzy c-means (Bezdek

1981), possibilistic c-means (Krishnapuram and Keller

1993), rough k-means (Lingras and West 2004; Peters

2014), and granular clustering (Pedrycz 2005).

The obtained clustering results can also be used to assign

new observations to the established clusters. We call the first

phase of clustering classifier design and the second phase

classification.2 Obviously, the structure of the data used for

classifier design has to be at least similar, at best identical to

the structure of the new data that are sent on the classifier to

obtain reasonable results. Figure 2 shows the two phases of

clustering enriched by an optional preprocessing phase.

3 The dynamic clustering cube

3.1 Foundations of the DCC-Framework

Static data characteristics are rather the exception than the

rule in many real-life applications. Hence, dynamic

approaches to clustering have become of rapidly increasing

importance recently. They address the need to constantly

adapt the clustering process to changes in the analyzed data

domain.

To categorize algorithms in the field of dynamic gran-

ular clustering, we propose the DCC-Framework that

consists of the three crucial dimensions of dynamic clus-

tering (Fig. 3), i.e.,

– Characteristics of change,

– Types of granulation,

– Clustering processes.

While the two dimensions Characteristics of Change and

Clustering Processes are of general nature, the third

dimension, the Types of dimension can be specified con-

text-dependently. In our paper, we deal with Types of

Granulation; alternatively it could be, e.g., Types of

Uncertainty according to Zadeh’s Generalized Theory of

Uncertainty (Zadeh 2006), or possibly a further

characteristic.

2 Classification, not to be confused with the common distinction

between unsupervised learning (clustering) and supervised learning

(classification or regression).

Fig. 1 Granulation of objects

Pre-Processing

Classifier Design

Classification

Fig. 2 Phases of clustering
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3.2 Dimensions of DCC

3.2.1 DCC: characteristics of change

DCC’s Characteristics of Change dimension addresses

kinds of change in the data domain to be analyzed. As

already discussed above, Characteristics of Change can be

observed in several circumstances, e.g., in spatial envi-

ronment or regarding time, beside others.

We do not further investigate changes in spatial envi-

ronment, etc., but concentrate on changes due to time only.

We identify three different cases and examine them in

greater detail. They are:

– No change,

– Cluster movements, and

– Changes in cluster structures.

No change. Obviously, the simplest situation to deal with,

is when the data do not change at all (see Fig. 4, where the

black arrows indicate time steps between the diagrams). In

these cases, static cluster algorithms perform well. There is

no need to implement components into the algorithms that

address changing characteristics of the data domain.

Note, that static data domains are often considered in

real-life projects even when data structures change over

time. Reasons for neglecting changes include, e.g., that

users are not aware of changing data structures. Users

might also just ignore them since they do not have the

resources to adapt their systems to the changes, or they

consider them as marginal. Obviously, only the last reason,

marginal changes, is acceptable while the first and second

reasons may lead to misinformation and, therefore, con-

tradict the objectives of cluster analysis.

Cluster movements. In the second case, cluster move-

ments, we identify the following subcategories: seasonal

changes, trend changes, and random movements.

(a) Seasonal changes. Seasonal changes are character-

ized by a sequence of distinct patterns that repeat-

edly occur: Season 1 ! Season 2 ! Season 3 !
Season 4 ! Season 1 ! and so on (see Fig. 5).

Seasonal patterns can be observed frequently. The

four seasons of a year are prominent examples. Note,

that the four seasons of a year are not crisply

separated homogeneous seasons, but steadily moving

patterns from winter-like, to spring-like, to summer-

like to fall-like weather conditions. They include

features like temperatures, rainfall, and others (see,

e.g., the average monthly temperature of Berlin in

Fig. 6). So, the four weather seasons (winter, spring,

summer, and fall) can be interpreted as information

granules that help to reduce complexity in the

definition of our environment.

Further seasonal changes are, e.g., induced by

cultural habits, for example religious seasons like

Christmas or Eastern, or sport seasons, like, e.g.,

sport activities assigned to the Summer Olympics

contrasting winter sports. Identifying and/or antici-

pating such seasonal changes provides benefits, e.g.,

for customer segmentation where some provider

Fig. 3 The dynamic clustering cube

Fig. 4 No changes in the data domain Fig. 5 Seasonal changes
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(e.g., retail, tourist industry) can offer the right

product at the right time for a changing customer

segment.

When we assume that each season is characterized

by a stable data domain, we do not need to apply

dynamic cluster algorithms again. In case we can

identify the seasons, seasonal changes can be treated

like a sequence of stable data domains. Then it is

only of interest to detect deviations from the

presumably stable seasonal changes.

(b) Trend changes. Trend changes are often of proba-

bilistic nature, e.g., the means and/or the variances of

data sets follow trends. For example, GDP (gross

domestic product) or inflation may follow certain

trends in some periods of time.

See, for example, Fig. 7 for trend movements of two

clusters. The left cluster (squares) moves upwards

while the second cluster (circles) moves downwards

over time. In general, a trend can be non-linear. The

oscillation of the temperature over a year could also

follow a trend.

(c) Random movements. Different to the cluster move-

ments discussed above, random movements of

clusters are not predicable. Any new data must be

tested for structural changes. If the changes are

below a threshold they can be neglected, otherwise

the cluster model has to be adapted to the new data.

In general, different effects (seasonal, trend, and random

movements) can occur simultaneously. Such combinations,

however, go beyond the scope of our paper.

Changes in cluster structure. In contrast to the cases

discussed so far, we now investigate changes in the cluster

structure itself. Crespo and Weber (2005) identified two

such cases:

– Emerging clusters and

– Dying clusters.

So far, we have assumed that clusters move over time, but

the number of clusters remains unchanged. However, in

general, new clusters may emerge and existing clusters

may disappear over time.

In the upper part of Fig. 8, we observe that a new cluster

emerges. The two clusters (squares and circles) of the

original data set are accompanied by new separated data

(diamonds) that eventually form a new cluster.

The lower part of Fig. 8 shows an example for a dying

cluster. While two clusters, the diamonds cluster and the

circles cluster, are refreshed by new objects, the number of

objects in the squares cluster remains unchanged over time.

Due to its decreasing relative importance, it can be

Fig. 6 Seasonal patterns: average temperature of Berlin (Klimata-

belle 2015)

Fig. 7 Trend changes Fig. 8 Emerging and dying clusters
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considered as dying. In the long run, it is a possible can-

didate for removal from the data set. The reader is referred

to Crespo and Weber (2005), Peters and Weber (2012), and

Peters et al. (2012) for a more detailed discussion on

possible criteria to identify emerging and dying clusters.

3.2.2 DCC: types of granulation

As already mentioned in Sect. 2.2, granular computing is a

general concept for information processing rather than a

specific method or algorithm. For the purpose of this paper,

however, we concentrate on its use for clustering objects

that are described by features. Since clustering can be

considered as one step within the KDD (Knowledge Dis-

covery in Databases) process (Fayyad et al. 1996), we

follow the respective methodology and discuss the Types of

Granulation dimension for the following three elements

separately: input data, preprocessing, and cluster approach.

Input data. On the one hand, numeric input values can

be treated as crisp numbers, e.g., a customer’s age is

23 years, which corresponds to a medium degree of gran-

ulation; a finer one would be, e.g., 23 years, 2 months,

5 days, and 10 h. Information granules with a higher

degree of granulation are, e.g., intervals of real-valued

components of a feature vector (continuing our example:

the customer is a twen). On the other hand, numeric

information can also be granularized by, for example,

fuzzy or rough concepts. If input information is not

numeric, as is the case, e.g., with text, the subsequent

preprocessing steps convert this non-numeric information

into numeric values.

Preprocessing. Following the before-mentioned KDD

process, input data should be preprocessed. Here, we

concentrate on preprocessing that generates information

granules, instead of analyzing all relevant techniques in

this step. The least degree of granulation is simply to

refrain from any kind of preprocessing. If we have an input

vector with real-valued attributes, intervals could be built,

such as range of age or range of income as is often the case

in polls. Another technique to pre-process numeric feature

values is principal component analysis (PCA) (Jolliffe

2002), which is used to compress original information in

higher aggregated information granules, so-called principal

components [or factors in the case of factor analysis

(Mulaik 2009)]. If, however, input is non-numeric, we

often use transformations to represent the original infor-

mation by vectors of numeric-valued features. Exemplar-

ily, we would like to mention the case of text mining,

where text is transformed into real-valued feature vectors

using the TFIDF transformation (Salton and McGill 1986)

and the so-called vector space model; see Kroha et al.

(2006). The same idea has been applied to clustering of

images, music, web pages, among others.

Cluster approach. Finally, the cluster approach itself

exhibits different Types of Granulation. Crisp clustering,

i.e., constructing clusters without modeling uncertainty as

part of the cluster result, is already one way of aggregating

information contained in a set of feature vectors, thus

establishing information granules (Gacek and Pedrycz

2015). Other types of granulation can be obtained by

considering different types of uncertainty modeling,

arriving at, e.g., probabilistic clustering, fuzzy clustering,

possibilistic clustering, or rough clustering, etc. (Pedrycz

and Bargiela 2012).

Figure 9 depicts the granulation steps from input data

via preprocessing techniques to clustering that eventually

ends with the definition of linguistic variables.

Generally, in any of these steps granular objects could

be observed, i.e., the input data can be information granules

already, as suggested, e.g., by Gacek and Pedrycz (2015),

who propose clustering of granular data and its application

to time series clustering. In each single step, representa-

tions of the data on higher levels of granulation are pos-

sible, e.g., a cluster can be considered as granular

representation of its members (Pedrycz 2013).

Any combination of ‘input data’, ‘preprocessing’, and

‘cluster approach’ is potentially possible as an instantiation

of the dimension Types of Granulation of the proposed

DCC-Framework. An example is crisp clustering of crisp

input data without preprocessing; another example would

be rough clustering of documents (e.g., newspaper articles)

containing text that has been preprocessed using TFIDF

and the vector space model.

Last but not least, please note, that the DCC-Framework

itself can be regarded as a kind of granular categorization

of clustering algorithms.

3.2.3 DCC: clustering processes

In the Clustering Processes dimension, different types of

algorithmic structures are identified and categorized. For

example, the classic k-means and its derivatives and

extensions form a family of clustering algorithms

Linguistic Variable

Labeling (Step 3)

Clustering (Step 2)

Pre-Processing (Step 1)

Data

G
ra

nu
la

tio
n

Fig. 9 Granulation steps of clustering
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addressing static data sets. The basic structure is similar for

all k-means-like algorithms, including classic k-means,

fuzzy c-means, rough k-means, among others and contains

basically the following four steps:

1. Initialization,

2. Calculation of the means,

3. Assignment of objects to clusters, and

4. Termination or going back to step 2.

In the dynamic case, the process of clustering is determined

by several dimensions that may depend on each other. In

the context of our paper, we propose the following

dimensions that are discussed in more detail in the next

paragraphs.

– Type of cluster algorithm,

– Flow of data, and

– Implemented dynamics.

Type of cluster algorithm. Most cluster algorithms can be

categorized into partitive and hierarchical approaches.

Although both have the objective of grouping similar objects in

the samecluster anddissimilar objects in different clusters, their

philosophies are different. Algorithmically, this leads to very

different cluster processes. Even within, e.g., partitive cluster-

ing a diverse range of approaches can be observed. For exam-

ple, one direction is the classic k-means family of algorithms, as

another partitive approach support vector clustering has

emerged (see Ben-Hur et al. 2001). Both directions have

motivated the development of different types of cluster algo-

rithms: see Peters et al. (2013) for a survey on soft k-means

clustering and Saltos and Weber (2015) for a rough-fuzzy

version of support vector clustering that detects outliers based

on the information granules generated during clustering.

Flow of data. Data sent on a classifier can be treated

object by object. Alternatively, they can be received in sets

of objects, so-called batches. Hence, the dynamic classifier

process is different when it is updated for each new object

or after a certain number of objects arrived.

Implemented dynamics. When a dynamic component is

required, two different implementations are possible. On the

one hand, the static clustering algorithm remains unchanged.

It is nested into a shell that monitors dynamic changes within

the arriving data and triggers the static clustering algorithm

to update its classifierwhen significant changes are observed.

On the other hand, the dynamic component can be imple-

mented in the core of the clustering algorithm itself.

4 Selected methods

The DCC-Framework provides a scheme to present exist-

ing techniques in a structured way. At the same time, it is a

rich starting point to stimulate the development of new

methods for dynamic granular clustering. In this section,

we present exemplarily some already existing methods that

belong to particular cells of the DCC, i.e., dynamic fuzzy

c-means and rough k-means, evolving DDAA clustering,

functional fuzzy c-means, and CluStream.

4.1 Dynamic fuzzy c-means and dynamic rough

k-means

Since dynamic fuzzy c-means (Crespo and Weber 2005)

and dynamic rough k-means (Peters et al. 2012) are similar

in many of the cube’s dimensions, they will be discussed

together. We only hint at differences where these are

relevant.

Dimension 1: Characteristics of change. After new data

have been received, both methods first identify if the cur-

rent cluster solution has to be modified or not. In the

affirmative case, the respective base algorithm’s parame-

ters are updated. Among these parameters is the cluster

number which allows to detect newly emerging or dying

clusters. Applying the base algorithm (fuzzy c-means or

rough k-means, respectively) provides the new cluster

structure. In the case of dynamic rough k-means, Fig. 10

shows the respective clustering cycle; dynamic fuzzy

c-means (Crespo and Weber 2005) has a similar structure.

Dimension 2: Types of granulation. As will be shown

next, no advanced structure of input data or sophisticated

preprocessing approaches are required.

– Input data. Input data are real-valued components of

feature vectors as is the case of, e.g., traditional

k-means.

– Preprocessing. No particular preprocessing is neces-

sary in order to granularize the input data. Of course,

some other kinds of preprocessing, such as normaliza-

tion could be applied, that are not in the focus of this

paper.

– Cluster approach. The cluster approach employs fuzzy

or rough clustering, respectively.

Subsequently, labels, i.e., linguistic variables, are

assigned to the clusters found. This goes along with the

human-centric nature of granular computing as discussed

in Sect. 2.2.

Dimension 3: Clustering processes. Both methods work

with generalized versions of classical k-means and do not

require specific clustering approaches.

– Type of cluster algorithm. We use an extension of

k-means clustering; fuzzy c-means or rough k-means,

respectively.

– Flow of data. New data arrive in batches where the

periodicity or batch size can be determined given the

data’s structure or have to be set context-dependently.

Granul. Comput. (2016) 1:1–11 7
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– Implemented dynamics. The respective base algorithm

is nested into an overall updating scheme, as shown,

e.g., in Fig. 10.

A main advantage of both, dynamic fuzzy c-means as

well as dynamic rough k-means, is that they are very

flexible and do not require additional concepts that would

go far beyond basic k-means. In both cases, the respective

classic version, i.e., fuzzy c-means and rough k-means, are

nested into a dynamic shell.

4.2 Evolving DDAA clustering

Despite its name, Dynamic Data Assigning Assessment

(DDAA) (Georgieva and Klawonn 2008) has been pro-

posed to cluster static data sets. Its dynamism corresponds

to the process how clusters are found in such static data

sets. An enhancement, the evolving DDAA clustering

method, however, has been proposed for dynamic data sets.

Its categorization into the DCC is described next.

Dimension 1: Characteristics of change. The proposed

evolving DDAA clustering algorithm can detect the fol-

lowing changes in streaming data:

– Movement of existing clusters,

– Creation of new clusters, and

– Merger of clusters.

Dimension 2: Types of granulation With respect to this

dimension, we obtain the following details.

– Input data. In general, numeric input data are used that

allow calculating distances.

– Preprocessing. No particular preprocessing for granu-

lation purposes is performed.

– Cluster approach. Crisp or fuzzy clustering has been

proposed by Georgieva and Klawonn (2008).

Dimension 3: Clustering processes. Incoming data streams

are treated with a crisp, respectively, a fuzzy clustering

method.

– Type of cluster algorithm. The static version of the

DDAA clustering algorithm is based on a crisp,

respectively, fuzzy objective function, similar to the

corresponding version of the c-means algorithm. The

difference, however, is that for the given number of

clusters (denoted c) only c� 1 are used to detect ‘good’

clusters while the final cluster candidate contains so-

called ‘noise points’.

– Flow of data. The evolving DDAA clustering algo-

rithms treat incoming data streams, i.e., single newly

arriving data points.

– Implemented dynamics. Both static versions, crisp as

well as fuzzy DDAA clustering algorithm are nested

into an evolving clustering procedure where the

respective model parameters are iteratively updated.

4.3 Functional fuzzy c-means

Joentgen et al. (1999) proposed functional fuzzy c-means

(FFCM) to cluster trajectories of feature values, i.e., the

dynamism is considered via feature functions instead of

feature values. Such feature functions describe the devel-

opment of a feature’s value during a ‘relevant’ past. It has

to be decided context-dependently what ‘relevant’ means

in a particular application.

Dimension 1: Characteristics of change. Functional

fuzzy c-means is a clustering algorithm that is built to

cluster a data set where each object is described by feature

trajectories rather than feature values. Data are acquired

once, i.e., no newly arriving data are considered. Changes

that might have occurred prior to data acquisition could be

identified by analyzing the respective trajectories.

Dimension 2: Types of granulation. Clustering feature

trajectories rather than feature vectors has several conse-

quences for granulation.

– Input data. Same as in fuzzy c-means, functional fuzzy

c-means needs numeric input values for each object-

describing feature. The difference, however, is that it

does not only take the most recent snapshot data, but

Fig. 10 Dynamic rough clustering cycle (Peters et al. 2012)
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the trajectory of each feature value over the relevant

past.

– Preprocessing. Granulation takes place during prepro-

cessing where similarities of trajectories are established

by the corresponding fuzzy sets that determine how

similar two trajectories are.

– Cluster approach. Based on the before-mentioned

similarity measure a distance is calculated that is used

in FFCM to cluster objects that are described by

trajectories. Each cluster is characterized by its center

which again is a vector of feature trajectories instead of

feature values.

Dimension 3: Clustering processes. Similar to Dimen-

sion 2, having trajectories as observations requires also

specific characteristics of the clustering process as will be

shown next.

– Type of cluster algorithm. The cluster algorithm is

inspired by standard fuzzy c-means, but applied to

feature trajectories instead of feature values.

– Flow of data. FFCM takes a static set of objects as

input. In its basic version no newly arriving data are

considered.

– Implemented dynamics. The way how dynamic ele-

ments are treated in FFCM is via trajectories of feature

values instead of static snapshots. This is treated

explicitly in the above described preprocessing step

where a fuzzy set determines similarity among

trajectories.

4.4 CluStream

CluStream (Aggarwal et al. 2003) is an extension of the

BIRCH algorithm (Gama 2012) which has been designed

to cluster data streams. It stores the relevant information in

so-called cluster features (CF) or micro-cluster, which are

compact representations of a set of points.

Dimension 1: Characteristics of change. CluStream

recognizes changes in data streams by comparing incoming

data points (observations) with a solution that has initially

been determined using k-means. Based on the distances to

the respective centroids of existing CF, a new data point is

absorbed by already established CF or builds a new micro-

cluster.

Dimension 2: Types of granulation. The second

dimension of DCC addresses the types of granulation. For

CluStream we identify the following characteristics.

– Input data. CluStream receives numerical inputs via

streaming data.

– Preprocessing. Granulation is defined by the user who

determines the time intervals for updating the stored

information regarding a particular solution.

– Cluster approach. The distances between a new object

and centroids of existing micro-clusters are calculated

efficiently based on the particular tree structure used to

store the relevant information.

Dimension 3: Clustering processes. Finally, we address

DCC’s third dimension, the clustering processes.

– Type of cluster algorithm. The cluster algorithm is

based on standard k-means and uses a tree structure to

store and manage incoming data efficiently.

– Flow of data. The algorithm has been developed

especially to treat data streams where single observa-

tions arrive with very high velocity.

– Implemented dynamics. CluStream applies an efficient

tree structure to administer incoming observations.

Despite the fact, that CluStream does not use any particular

method from granular computing, it offers various oppor-

tunities to apply some of the respective techniques to create

information granules. Examples are the determination of

the time intervals used and/or the decision to update a

given solution which is based on distances to the centroids

of existing micro-cluster.

The examples above show that there already exists a

considerable number of methods for dynamic granular

clustering. The proposed DCC-Framework helps to detect

gaps and, therefore, has the potential to support researchers

working in this area.

5 Selected areas of application

In this section, we present selected applications of dynamic

granular clustering that have been reported in literature.

5.1 Dynamic clustering of supermarket transactions

An ever increasing, tough competition in the retail industry

calls for anticipation of customers’ needs and requirements.

Clustering the respective transactions provides important

insights into consumer behavior (Lingras et al. 2003;

Peters et al. 2012). While static analyses can often explain

past purchases, dynamic clustering has the potential to

uncover changing demand pattern which lead to modified

purchase pattern. If, e.g., in a supermarket customer

behavior changes during a day, data gathered at the point-

of-sales system (POS) reflect these drifts. An initial solu-

tion obtained, e.g., based on transactions during the

morning hours could be updated as new transactions occur

during the day. Changes in a cluster solution, such as

moving, emerging, or dying clusters reveal modified con-

sumer preferences and thus give hints on how to adapt

advertisements dynamically in order to provide customers

Granul. Comput. (2016) 1:1–11 9

123



with the most suited information in each moment. Exper-

iments with real-life retail transactions have underlined this

potential for the case of supermarkets (Lingras et al. 2003;

Peters et al. 2012).

5.2 Clustering messages in social media

Social media generate continuously new data, e.g., in short

text messages which reflect what certain community

members are concerned about: e.g., Papadopoulos et al.

(2012) propose methods to analyze such messages in the

context of marketing or crime detection, to name just a

few. While these analyses are mostly static, it can be

interesting to apply dynamic concepts as presented in the

DCC-Framework. In such cases, messages need to be

transformed from text to numeric vectors which represent

the respective information granules. Then clustering can be

applied to group similar messages together. Updating the

identified clusters can provide important information to the

respective decision-makers, such as changing consumer

behavior in marketing applications or ‘dynamic hot-spots’

(Herrmann 2015) in crime analytics.

5.3 Clustering gene expression data

Information from genes can be employed to synthesize a

functional gene product, e.g., a protein. The process by

which such information is used for a synthesis is called

gene expression. The respective data sets are character-

ized by typically few observations and many attributes.

Ben-Hur and Guyon (2003) suggested to cluster such

genes after feature extraction via principal component

analysis which constitute the information granules. They

have shown that posterior clustering provides important

insights to better understand the information describing

the respective genes. While this application has been

performed on a static data set, applying the appropriate

cluster methods on dynamic gene expression data can

capture evolving phenomena.

6 Conclusion

Dynamic aspects and granular information processing have

received a lot of attention recently, both in the scientific

community as well as in industry. Clustering is one of the

most important tasks in data mining with a long and suc-

cessful record of real-life applications. Today, clustering

comprises of many different methods and extensions.

Consequently, dynamic methods, granular computing, and

clustering constitute important techniques in data mining.

What was still missing, however, was a structured pre-

sentation of existing approaches in the area that merges

these three aspects of data mining, i.e., dynamic granular

clustering.

To fill this gap, we proposed the DCC-Framework. The

Dynamic Clustering Cube can be regarded as an informa-

tion granule itself that helps to make dynamic granular

clustering more accessible and transparent by categorizing

this field in an illustrative way. The analysis of the cube’s

three dimensions—(1) Characteristics of Change, (2)

Types of Granulation, and (3) Clustering Processes—pro-

vides valuable insights into the corresponding phenomena.

The DCC-Framework is not only a scheme for presenting

and structuring already existing dynamic granular cluster-

ing approaches. Even more importantly, it helps to identify

‘white spots’ in research in the area of dynamic granular

clustering that need to be filled.

Our analysis of selected methods and the discussion of

exemplary applications underline the increasing potential

of dynamic granular clustering. The DCC-Framework may

support to further methodically enhance this field and may

also motivate to use dynamic granular clustering in new

application areas.
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