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Abstract Two important ideas at the core of Zadeh’s

seminal contributions to fuzzy logic and approximate rea-

soning are the notions of granulation and that of possi-

bilistic uncertainty. In this paper, elaborating on the basis

of some formal analogy, recently laid bare by the authors,

between possibility theory and formal concept analysis, we

suggest other bridges between theories for which the con-

cept of granulation is central. We highlight the common

features between the notion of extensional fuzzy set with

respect to a similarity relation and the notion of formal

concept. We also discuss the case of fuzzy rough sets.

Thus, we point out some fruitful cross-fertilizations

between the possibilistic representation of information and

several views of granulation emphasizing the idea of

clusters of points that can be identified respectively on the

basis of their closeness, or of their common labeling in

terms of properties.

Keywords Possibility theory � Formal concept analysis �
Extensional fuzzy set � Rough set � Granulation

1 Introduction

The issue of how to describe items is at the basis of any

representation framework and naturally involves notions of

similarity and uncertainty. Similarity is instrumental for

grouping items having close or common features on the

one hand. On the other hand, there is a need for coping with

the fact that information may be incomplete or not precise

enough, which is a source of uncertainty. In the non-

Boolean setting these notions can be couched in the setting

of fuzzy sets (Zadeh 1965). It has been already emphasized

in Dubois and Prade (1997) that fuzzy set membership

functions can be interpreted diversely, in terms of simi-

larity (Bellman et al. 1966; Zadeh 1971), uncertainty

(Zadeh 1978, 2005) and even preferences (Bellman and

Zadeh 1970). These different views have generally led to

distinct families of important developments in data analysis

and learning, in approximate reasoning, and in decision

making, respectively.

The idea of granulation is at the heart of any knowledge

representation system, as it points out that mathematical

universes of discourse must be partitioned in agreement

with the limitations of human perception. Generally we

work with more or less well-defined partitions of idealized

measurement scales; for instance the real line is too refined

for human limited perception of closeness. Zadeh (1997)

has emphasized the importance of granulation and granular

computing and the need to cast them in a non-Boolean

setting, introducing the idea of a fuzzy granules: indeed

indistinguishability between two quantities gradually takes

place when they get closer to each other, so that the

threshold under which they become indistinguishable is

fuzzy. Moreover, he makes it clear that uncertainty due to

granular descriptions is possibilistic rather than proba-

bilistic, generally.

This discussion paper intends to illustrate the idea that

some links can be established at the theoretical level

between different concerns related to granular computing,

on the basis of formal analogies that can be laid bare

between the corresponding formal settings. In the follow-

ing, we successively consider four settings: possibility

theory (Zadeh 1978; Dubois and Prade 1988), formal

concept analysis (FCA) (Ganter and Wille 1999),
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extensional fuzzy sets (Höhle 1988) and rough sets (Pawlak

1991).

The first one, possibility theory, aims at providing a

representation setting for epistemic uncertainty where

partial ignorance can be encoded, and where a distinction

can be made between what is somewhat certain and what is

just possible to some extent. Possibility theory uses maxi-

mum and minimum operations rather than addition and

product like probability theory and involves 4 set functions

according to whether, for each event, one focuses on the

maximum possibility value reflecting the event or its

opposite, or yet the minimum possibility value.

The other three settings, sometimes apparently very

different and developed completely independently, are

concerned with the ideas of grouping items either because

they can be gathered under the umbrella of the same formal

concept, or because they are geometrically close enough to

constitute fuzzy singletons, or yet because they share the

same description in a database. The connection between

extensional fuzzy sets and FCA was already discussed by

Bělohlávek (2002), and the connection between exten-

sional fuzzy sets and fuzzy rough sets was noticed by

Boixader et al. (2000) (see also the monograph by Recas-

sens (2010)).

Here, we first illustrate the interest of the parallel

between possibility theory and formal concept analysis that

we initiated in Dubois et al. (2007) and further developed

in Djouadi et al. (2010), Dubois and Prade (2012). We

recall the links between FCA and the formalism of rough

sets in the special case of equivalence relations. Then, we

indicate that this worth-noticing parallel carries over to the

theory of extensional fuzzy sets and fuzzy rough sets,

relying on previous technical studies. Interestingly enough,

such links echo concerns often expressed by Zadeh in the

last decade about the need for developing the ideas of

granulation and granular computing in the setting of fuzzy

sets (Zadeh 1997). The aim of this position paper is to

encourage cooperation between schools of research that

handle similar notions in various fields around the idea of

granular computing.

The paper is organized as follows. Section 2 considers

possibility theory and formal concept analysis in the crisp

case. It shows that the four set functions naturally associ-

ated with the possibility theory setting have counterparts in

the formal concept analysis framework. The benefit of

introducing more operators in the latter theory is exem-

plified by recalling a connection, not considered in standard

formal concept analysis, which granulates a formal context

into independent formal sub-contexts. Finally, the bridge

with rough sets is obtained by restricting to relations

between objects, and it shows the formal analogy between

concepts and clusters, independent subcontexts and gran-

ules. Then, Sect. 3 considers the non-Boolean case. It

recalls the theory of extensional fuzzy sets and the repre-

sentation of fuzzy extensions of equivalence relations.

Then it parallels two views of granulation, namely the one

at work in formal concept analysis and the one underlying

the theory of extensional fuzzy sets. Finally, we bring

fuzzy rough sets into the picture.

2 From formal concept analysis to possibility
theory

Formal concept analysis associates any considered object

with the set of its properties, via a formal context modeled

by a binary relation R, a subset of the Cartesian product of

the set of objects O and the set of properties P.

An object is denoted by x, or xi in case we consider

several ones at the same time. It is interesting to notice that

in fact, an object may either refer to a particular, unique

item, or to a generic item representative of a class of items

sharing the same description. A subset of objects will be

denoted by a capital letter X, and we shall write

X ¼ fx1; . . .; xi; . . .; xmg. A set of objects associated with

their respective sets of properties defines a formal context

R � O� P (Ganter and Wille 1999). An object x is

associated with its description, denoted by oðxÞ. In the

following, we only consider simple descriptions, express-

ible in terms of a subset Y of properties yj, namely,

Y ¼ fy1; . . .; yj; . . .; yng. Let RðxÞ ¼ fy 2 Pjðx; yÞ 2 Rg be

the set of properties of object x, and R�1ðyÞ ¼ fx 2
Ojðx; yÞ 2 Rg is the set of objects having property y. In

such a case, we shall write oðxÞ ¼ RðxÞ ¼ Y .

The classical setting of formal concept analysis defined

from a formal context relies on a single operator RM that

associates a subset of objects with the set of properties they

share.

RMðXÞ ¼ fy 2 PjR�1ðyÞ � Xg ¼ \x2XRðxÞ: ð1Þ

RMðXÞ is a partial conceptual characterization of objects in

X. Objects in X have all properties in RMðXÞ, but they may

have some others (that are not shared by all objects in X).

Conversely, R�1MðYÞ ¼ fx 2 OjRðxÞ � Yg ¼ \y2YR
�1ðyÞ

is the set X of objects having all properties in Y.

In the setting of FCA, a formal concept (Ganter and

Wille 1999) is defined as a pair ðX; YÞ 2 O � P such that

RMðXÞ ¼ Y and R�1MðYÞ ¼ X: ð2Þ

In this case Y is also the maximal set of properties shared

by all objects in X. It forms a Galois connection, and we

have:
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Proposition 1 (Ganter and Wille 1999) The following

properties of pairs (X, Y) are equivalent

1. RMðXÞ ¼ Y and R�1MðYÞ ¼ X

2. (X, Y) is maximal such that X � Y � R

A formal concept (X, Y) is, thus, a maximal sub-rect-

angle in the formal context R. Let R� be the set union of all

formal concepts extracted from R. Then R� ¼ R, by

construction.

2.1 Describing imprecise objects using possibility

distributions

In contrast with formal contexts, a useful kind of structured

description of objects is in terms of attributes (Pawlak

1981). Let a, and A ¼ fa1; . . .; ak; . . .; arg, respectively

denote an attribute, and a set of attributes. The value of

attribute a for x is denoted by aðxÞ ¼ u, where u belongs

to the attribute domain Ua. In this case, we shall write

oðxÞ ¼ ða1ðxÞ; . . .; akðxÞ; . . .; arðxÞÞ ¼ ðu1; . . .; uk; . . .; urÞ.
This corresponds to a completely informed situation where

all the considered attribute values are known for x. When

this is not the case, the precise value akðxÞ will be replaced

by the possibility distribution pakðxÞ. Such a possibility

distribution (Zadeh 1978) is a mapping from Uak to [0, 1],

or more generally any linearly ordered scale. Then

pakðxÞðuÞ 2 ½0; 1� estimates to what extent it is possible that

the value of ak for x is u. 0 means impossibility; several

distinct values may be fully possible (i.e., at degree 1). The

characteristic function of an ordinary subset is a particular

case of a possibility distribution. Precise information cor-

responds to the characteristic function of singletons.

An elementary property y can then be viewed as a subset

Ay of a single attribute domain Ua, i.e., y � Ua. Note that

while Y is a conjunctive set of properties (for instance an

object possesses all properties in Y), property y, is a dis-

junctive set Ay of mutually exclusive values, one of which

is the value of a single-valued attribute that is ill-known for

some object x.

Four set functions in possibility theory are now recalled

(Dubois and Prade 1998a), emphasizing the symmetrical

roles played by the object x and the attribute value u, a

point of view unusual in possibility theory, but echoing the

symmetrical role played by objects and properties in formal

concept analysis. See Dubois and Prade (2015) for a more

complete introduction to the use of the four set functions in

possibility theory.

2.2 Set functions in possibility theory

Let paðxÞðuÞ denote the possibility that object x has value

u 2 U according to attribute a. For simplicity, we only

consider the single-valued attribute case here (the actual

value of x is not a set). The function pað�Þð�Þ defines a fuzzy

set over O� U (objects vs. attribute domain). We assume

that pa is bi-normalized: 8x 2 O; 9u 2 U; paðxÞðuÞ ¼ 1 and

8u 2 U; 9x 2 O; paðxÞðuÞ ¼ 1. This means that for any

object x, there is some fully possible value for attribute a,

and that for any value u there is an object x that takes this

value. Let X be a set of objects, and y � U be a property.

Then, one can define four set functions, each defined in two

domains, respectively, the set of objects and the attribute

domain:

1. Possibility measures (Zadeh 1978), denoted by P:

PuðXÞ ¼max
x2X

paðxÞðuÞ

PxðyÞ ¼max
u2y

paðxÞðuÞ:

PuðXÞ estimates to what extent it is possible that there

is an object in X having value u, while PxðyÞ is the

possibility that object x has property y. Function P is

an indicator of non-empty intersection of the fuzzy set,

whose membership function is the possibility distri-

bution, with an ordinary subset. They are measures of

‘‘potential possibility’’. Clearly, P is max-decompos-

able with respect to set union.

2. The dual measures of necessity N (or ‘‘actual neces-

sity’’) (Dubois and Prade 1980):

NuðXÞ ¼min
x 62X

1 � paðxÞðuÞ

NxðyÞ ¼min
u62y

1 � paðxÞðuÞ:

NuðXÞ estimates to what extent it is certain (necessarily

true) that all objects that have value u lie in X, while

NxðyÞ is the certainty that object x has property y. Note

that NxðyÞ ¼ 1 �PxðyÞ where y ¼ Uny. Function

N may be viewed as an indicator of inclusion of the

fuzzy set whose membership function is the possibility

distribution into an ordinary subset. And N is min-

decomposable with respect to set intersection.

3. The measures of ‘‘actual (or guaranteed) possibility’’

(Dubois and Prade 1992)

DuðXÞ ¼min
x2X

paðxÞðuÞ

DxðyÞ ¼min
u2y

paðxÞðuÞ

DuðXÞ estimates to what extent it is possible that all

objects in X have value u, while DxðyÞ estimates the

possibility that object x may take any value in y. D may

be viewed as a degree of inclusion of an ordinary

subset into the fuzzy set whose membership function is

the possibility distribution. D is min-decomposable

with respect to set union.
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4. The dual measures of ‘‘potential necessity or certainty’’

(Dubois and Prade 1992)

ruðXÞ ¼1 � min
x 62X

paðxÞðuÞ

rxðyÞ ¼1 � min
u62y

paðxÞðuÞ

ruðXÞ estimates to what extent there exists at least one

object outside X that has a low degree of possibility of

having value u, while rxðyÞ is the degree to which

there is an impossible value for aðxÞ outside y. Note

that rxðyÞ ¼ 1 � DxðyÞ. r is an indicator of non-full

coverage of the considered universe by the fuzzy set

whose membership function is the possibility distri-

bution together with an ordinary subset. r is max-

decomposable with respect to set intersection.

2.3 Application to the formal context setting

In Dubois et al. (2007), the setting of formal concept

analysis has been enlarged with the introduction of three

other operators. We now recall these four operators. They

are counterpart, in the setting of a formal context, of the

above set functions from possibility theory.

Namely, let R be the formal context (viewed as a Boo-

lean table). Then knowing only that an object x has some

property y, the set R�1ðyÞ ¼ fx 2 Ojðx; yÞ 2 Rg is the set

of possible objects pointed out by the elementary piece of

knowledge ‘‘the object has property y’’ (in the context R).

This suggests a possibilistic reading of formal concept

analysis: a formal counterpart of possibility theory set

functions can be laid bare in this framework.Then, four

remarkable sets can be associated with a subset X of objects

(the notations have been chosen here in order to emphasize

the parallel with possibility theory) (Dubois et al. 2007;

Dubois and Prade 2009):

• The set RPðXÞ of properties that are possessed by at

least one object in X:

RPðXÞ ¼ fy 2 PjR�1ðyÞ \ X 6¼ ;g ¼ [x2XRðxÞ:

Clearly, we have RPðX1 [ X2Þ ¼ RPðX1Þ [ RPðX2Þ:
• The set RNðXÞ of properties s. t. any object that satisfies

one of them is necessarily in X:

RNðXÞ ¼ fy 2 PjR�1ðyÞ � Xg ¼ \x 62XRðxÞ;

where the overbar denotes complementation. In other

words, possessing any property in RNðXÞ is a sufficient

condition for belonging to X. Moreover, we have

RNðX1 \X2Þ¼RNðX1Þ\RNðX2Þ and RNðXÞ¼RPXÞ¼
PnRPðXÞ.

• The set RMðXÞ of properties shared by all objects in X:

RMðXÞ ¼ fy 2 PjR�1ðyÞ � Xg ¼ \x2XRðxÞ:

In other words, satisfying all properties in RMðXÞ is a

necessary condition for an object to belong to X.

Clearly, RMðX1 [ X2Þ ¼ RMðX1Þ \ RMðX2Þ:
• The set RrðXÞ of properties that are not satisfied by at

least one object in X.

R5ðXÞ ¼ fy 2 PjR�1ðyÞ [ X 6¼ Og ¼ [x 62XRðxÞ:

Note that R5ðXÞ ¼ RMðXÞ ¼ PnRMðXÞ. In other

words, in context R, for any property in R5ðXÞ, there

exists at least one object outside X that misses it.

Moreover, we have R5ðX1 \ X2Þ ¼ R5ðX1Þ [ R5ðX2Þ:
A number of remarks are worth noticing:

• In negative similarity to RMðXÞ, RPðXÞ provides a

negative conceptual characterization of objects in

X since it gathers all the properties that are never

satisfied by any object in X.

• RNðXÞ \ RMðXÞ is the set of properties possessed by all

objects in X and only by them.

• RPðXÞ and RNðXÞ are isonotonic (they become larger

when X increases), while RMðXÞ and R5ðXÞ are

antitonic (they become smaller when X increases).

The four subsets RPðXÞ, RNðXÞ, RMðXÞ, and R5ðXÞ have

been considered (with different notations) without any

mention of possibility theory by different authors. The

standard operator in FCA is RM. Düntsch et al. (1999, 2003)

calls RM a sufficiency operator, and its representation

capabilities are studied in the theory of Boolean algebras.

Taking inspiration as the previous authors from rough sets

Pawlak (1991), Yao (2004, 2006) also consider these four

subsets. In both cases, the four operators were introduced.

See also (Popescu 2004; Georgescu and Popescu 2004).

The interest of the bridge between possibility theory and

FCA is that it enables a systematic investigation of alter-

native connections between objects and properties to be

carried out; they differ from the standard Galois connection

of FCA.

2.4 Application to formal context decomposition

It can be checked that R5 defines the same Galois con-

nection as the one defined from RM, while RN (or equiva-

lently RP) induces another kind of connection, which is

now described.

The connection defined from RN proceeds in a similar

formal way as when defining formal concepts (Dubois and

Prade 2009; Djouadi et al. 2010). Namely, let us consider

pairs (X, Y) s.t. RNðXÞ ¼ Y and R�1NðYÞ ¼ X. We can

show these pairs also satisfy RPðXÞ ¼ Y and R�1PðYÞ ¼ X.
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Moreover, the pairs (X, Y) s.t. RNðXÞ ¼ Y and R�1NðYÞ ¼
X allow us to characterize independent sub-contexts (i.e.,

that have no common objects and no common properties),

and are thus of interest for the decomposition of a formal

context into smaller independent ones. These results are

expressed through the following:

Proposition 2 (Dubois and Prade 2012) The following

properties of pairs (X, Y) are equivalent

1. RNðXÞ ¼ Y and R�1NðYÞ ¼ X

2. RNðXÞ ¼ Y and R�1NðYÞ ¼ X

3. RPðXÞ ¼ Y and R�1PðYÞ ¼ X

4. R � ðX � YÞ [ ðX � YÞ

Thus, (X, Y) and ðX; YÞ are two independent sub-con-

texts in R, in the sense that there is no object/property pair

(x, y) from context R in X � Y nor in X � Y . There is no

minimality requirement in the inclusion property 4 of the

above proposition. In particular, the pair ðO;PÞ trivially

satisfies it. However, this result leads to a decomposition of

R into a disjoint union of minimal independent sub-con-

texts. Indeed, suppose two pairs ðX1; Y1Þ, ðX2; Y2Þ satisfy

the above proposition. It implies that for instance, the pair

ðX1 \ X2; Y1 \ Y2Þ satisfies it (it can be checked that

RNðX1 \ X2Þ ¼ Y1 \ Y2Þ, and likewise with any element of

the partition refining both partitions ðX1;X1Þ and ðX2;X2Þ.
Due to point 4 of the proposition, it yields

R � ððX1 � Y1Þ [ ðX1 � Y1ÞÞ \ ððX2 � Y2Þ [ ðX2 � Y2ÞÞ;
ð3Þ

where the intersection on the right-hand side comes down

to the union of subcontexts ðX1 \ X2Þ � ðY1 \ Y2Þ,
ðX1 \ X2Þ � ðY1 \ Y2Þ, ðX1 \ X2Þ � ðY1 \ Y2Þ, ðX1 \ X2Þ�
ðY1 \ Y2Þ. The decomposition of R into minimal subcon-

texts is achieved by taking the following intersection

(Dubois and Prade 2012)

R� ¼
\

ðX;YÞ:RNðXÞ¼Y ;R�1N ðYÞ¼X

ðX � YÞ [ ðX � YÞ: ð4Þ

In general, R 	 R�.

Example (Dubois and Prade 2009). Figure 1 presents a

formal context. Pairs ðf6; 7; 8g; fc; d; egÞ, ðf5; 6; 7; 8g;
fd; egÞ, ðf2; 3; 4g; fg; hgÞ are examples of formal con-

cepts, while pairs ðf5; 6; 7; 8g; fa; b; c; d; egÞ, ðf2; 3; 4g;
ðff ; g; hgÞ, ðf1g; figÞ are minimal subcontexts. And it can

be checked that

R 	 f5; 6; 7; 8g � fa; b; c; d; eg [ f2; 3; 4g � ff ; g; hg [ f1g � fig:

The connection ðRP;R�1PÞ has been originally intro-

duced by Georgescu and Popescu (2004) and studied in the

framework of multivalued data tables with entries in a

residuated lattice, but its practical significance for Boolean

data tables was not really discussed. These authors call a

pair of operators (f, g), where f : 2Obj ! 2Prop; g : 2Prop !
2Obj relating the subsets of objects and properties, a con-

jugated pair of operators if and only if

X \ gðYÞ ¼ ; () f ðXÞ \ Y ¼ ;:

It is easy to see that ðRP;R�1PÞ is a conjugated pair

of operators. To see it note that RPðXÞ \ Y ¼ ; also

writes [x2XðRðxÞ \ YÞ ¼ ;. It holds if and only if

R \ ðX � YÞ ¼ ;. So, by symmetry, it is equivalent to

R�1PðYÞ \ X ¼ ;:
In terms of the dual operator N, the conjugation property

reads Y � RNðXÞ () X � R�1NðYÞ. However, this con-

nection is not a Galois connection. One reason is that

iterating RN and R�1N does not yield an idempotent oper-

ation. Of course the same holds for R�1PðRPðXÞÞ,
RPðR�1PðYÞÞ, RNðR�1NðYÞÞ. For instance, on the data

table of Fig. 1, R�1Nðfa; c; d; egÞ ¼ f7; 8g, RNðf7; 8gÞ ¼
fag and R�1NðfagÞ ¼ ;.

Through the notions of formal sub-contexts and of formal

concepts, one sees two aspects of granulation at work.

Namely, on the one hand independent sub-contexts are

separated granules, while inside each sub-context, formal

concepts (X, Y) are identified where each object in X is

associated with each property in Y, which can be viewed as a

cluster. Note that in the special case when a formal context

can be decomposed into independent formal concepts (i.e.,

each minimal sub-context is a formal concept), we have a

perfect granulation: two objects are either identical in terms

of properties, or they do not have any property in common.

However, in the general case, objects in the extension of a

formal concept may not be fully similar since they may also

possess properties outside the intension of the concept. They

are only similar with respect to the properties associated to

objects
p 1 2 3 4 5 6 7 8
r a ×
o b × ×
p c × × ×
e d × × × ×
r e × × × ×
t f × ×
i g × × ×
e h × × ×
s i ×

Fig. 1 Formal concepts and sub-contexts
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the formal concept. In practice, it may be interesting to

introduce some tolerance in the definition of formal sub-

contexts and concepts (Dubois and Prade 2012; Gaume et al.

2010), leading to a more permissive and approximate view

of granules or clusters.

Besides, the above results can be also expressed in terms

of bipartite graph clustering, where

• There are two kinds of nodes corresponding to objects

and properties.

• Formal concepts correspond to sets of object nodes

connected to all nodes in subsets of property nodes.

• The decomposition into independent subcontexts cor-

responds to connected components of the bipartite

graph (each node of one set being related to at least one

node of another set of the opposite type).

One can then take advantage of this exact parallel between

formal concept analysis and bipartite graph analysis

(Gaume et al. 2010).

2.5 From formal concept analysis to rough sets

The concept of granulation is even more central in rough

set theory (Pawlak 1991). Rough set theory focuses on the

impossibility to precisely describe any set of objects when

the properties used to describe them are not enough dis-

criminant. One connection between FCA and rough sets is

that the latter also start from a data table like a formal

context (we assume Boolean attributes in the following).

Let Xy be the set of objects satisfying the property y. Then

there exists a partition generated on O by the family of

subsets fXy : y 2 Pg, each element of which is an inter-

pretation of the propositional language induced by prop-

erties in P, i.e. it is of the form �y2PX
ey
y , ey 2 f�1; 1g,

with X
ey
y ¼ Xy if ey ¼ 1, and X

ey
y ¼ Xy if ey ¼ �1. If R is

the formal context, then two objects x and x0 are said to be

indiscernible (they are in the same element of the partition)

if they share the same properties (which writes

RðxÞ ¼ Rðx0Þ). It enables the data table to be reduced to the

case where no two lines in R are equal.

The rough set approach considers the above partition of

the universe O of objects, say X1; . . .;Xk induced by the

properties via the equivalence relation E defined by

Eðx; x0Þ ¼ 1 if and only if RðxÞ ¼ Rðx0Þ and 0 otherwise.

So, all that is known about any object in O is which subset

of the partition it belongs to. So each subset X of objects is

only known in terms of its upper and lower approxima-

tions, a pair ðX�;X
�Þ such that

X� ¼
[

fXi;Xi \ X 6¼ ;g and X� ¼
[

fXi;Xi � Xg: ð5Þ

It is clear that ðA \ BÞ� � A� \ B� and A� [ B� � ðA [ BÞ�.
Note that an equivalence class of relation E corresponds to

a specialization of both a formal concept and a formal

independent subcontext.

To summarize the links between rough sets and FCA, a

formal concept can be viewed as a 2-dimensional extension

of an equivalence class. A formal context is a 2-dimen-

sional extension of equivalence relation if it can be

decomposed into a disjoint union of elementary sub-con-

texts, each of which forms a single formal concept. In that

case, the context we start with is the perfect extension of

the equivalence relation to the 2-dimensional setting.

Another way of putting together FCA and rough sets

consist in putting both on a cube of oppositions, whereby

their connections to possibility theory functions can be

highlighted; see Ciucci et al. (2014).

2.6 Clusters and granules

Assume now a general relation S between objects, that is

S � O�O. It can be viewed as a directed graph whose

nodes form the set O. We assume the relation is serial, that

is 8x 2 O; SðxÞ 6¼ ;, and its converse S�1 is serial too; we

say that S is biserial. The definition of a formal concept then

is a maximal Cartesian product A� B � O�O contained

in S. We can still define it as satisfying the two equalities

SMðAÞ ¼ B and S�1MðBÞ ¼ A. Suppose the relation S is

symmetrical, in order to capture some idea of proximity.

Then, the maximal Cartesian products A� B contained in S

are of the form C � C � S, i.e., they are maximal cliques in

the non-directed graph associated to S: the two equalities

defining formal concepts then boil down to a single one:

SMðCÞ ¼ \x2CSðxÞ ¼ C; ð6Þ

which expresses the fact that each node in C is related to all

nodes in C, and corresponds to one major feature of a

cluster. We call the set C a tight cluster, because each

element in C is close to all other elements in C. Note that S

must be reflexive (an element is close to itself), otherwise

there is no such tight cluster. Then it is enough to require

that C � SMðCÞ since the other inclusion trivially holds.

Alternatively we can consider minimal Cartesian prod-

ucts A� B such that S � ðA� BÞ [ ðA� BÞ, which satisfy

the two equalities SPðAÞ ¼ B and S�1PðBÞ ¼ A. If the

relation S is symmetrical, it corresponds to the minimal

Cartesian products B� B such that S � ðB� BÞ [ ðB� BÞ.
They satisfy the equality

SPðBÞ ¼ [x2BSðxÞ ¼ B; ð7Þ

This is because the identity (7) is equivalent to

S � ðB� BÞ [ ðB� BÞ: ð8Þ

If S is reflexive, it is enough to require that SPðAÞ � A

instead of (7) since the other inclusion trivially holds.
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Minimal subsets G that satisfy (8) are such that each

element of G is related to at least one element of B and to

none outside G. This is the other expected property of a

cluster, but we can call it a loose granule. Loose granules

of S form the set GðSÞ and correspond to maximal con-

nected components in the non-directed graph associated to

S. Note that tight clusters can only be found inside loose

granules: for any tight cluster A, there exists a loose

granule containing it. Tight clusters and loose granules

cannot be told apart if the relation S is moreover transitive.

Proposition 3 Consider a symmetric serial relation S.

Then S ¼ E is an equivalence relation if and only if its

loose granules and tight clusters coincide.

Proof If S ¼ E is an equivalence relation, it is easy to

check that loose granules and tight clusters coincide.

Conversely, if loose granules and tight clusters in S coin-

cide, then an element in a loose granule is connected to all

elements in this granule and to none outside. So S corre-

sponds to a partition, and is an equivalence relation. h

It is also clear that the relation S� ¼ \G2GðSÞðG� GÞ [
ðG� GÞ is transitive, and is actually the transitive closure

cl(S) of S. As the transitive closure of S is reflexive, it is

thus be an equivalence relation. So loose granules form a

partition of O. More precisely:

Proposition 4 Consider a symmetric serial relation S.

The tight clusters of cl(S) are the loose granules of S.

Proof Let B be a loose granule of S. Since the graph with

nodes in B is connected, all nodes in B will be related to all

nodes in B in the graph of the transitive closure of S, but

not to any node outside B. Hence B is a tight cluster of

cl(S). If B is not contained in a loose granule of S, then it is

made of more than one connected component, hence they

remain disconnected via transitive closure. So, B will not

be a loose granule of cl(S), a fortiori not a tight one. h

So it can be seen that a reflexive and symmetric relation

represents a partition of separated loose granules, each

possibly containing several tight clusters (that may over-

lap), which makes it very similar to a formal context.

3 Extensional fuzzy sets and fuzzy contexts

The concept of extensional fuzzy set with respect to a fuzzy

equality, proposed in Höhle (1988), Valverde (1985), fur-

ther developed by Boixader et al. (2000), Klawonn (2000),

and Recassens (2010) also embeds ideas of granulation. It

is a multivalued extension of the decomposition of a rela-

tion into tight clusters and loose granules recalled above.

This approach has mathematical roots in category theory

and Heyting algebras (Higgs 1973), whereby a multivalued

notion of equality is used. As we are going to see, although

defined in a different algebraic setting and on the basis of a

completely different intuition, it is also closely related to

the gradual version of formal concept analysis (Bělohlávek

1999, 2002; Popescu 2004; Georgescu and Popescu 2004).

3.1 Fuzzy singletons and extensional hulls

Let E be a fuzzy similarity relation defined on a universe U.

For simplicity, we assume the use of the scale 0; 1½ �. E is

supposed to be

• reflexive (Eðu; uÞ ¼ 1),

• symmetric (Eðu; vÞ ¼ Eðv; uÞ),
• �-transitive (Eðu; vÞ � Eðv;wÞ
Eðu;wÞ),
where � is a triangular norm (Klement et al. 2000) (i.e., � is

increasing in the broad sense, associative, commutative and

such that 0 � 0 ¼ 0, 1 � a ¼ a). It was first proposed by

Zadeh (1971) when � ¼ min.

Such a fuzzy relation models a form of proximity

between elements of the set U. Relation E is sometimes

also called ‘‘fuzzy equivalence’’ (Boixader et al. 2000),

‘‘(fuzzy) equality relation’’ (Klawonn 2000), or ‘‘(fuzzy)

indistinguishability relation’’ (Valverde 1985), or yet

‘‘indiscernibility relation’’ (Pawlak 1991). Note that the

terms ‘‘indistinguishability’’ and ‘‘equality’’ refer to quite

different intuitions, only the former being naturally

understood as the weak version of an equivalence relation

(Dubois and Prade 1998b). Indeed, one may argue that the

1-cut of a fuzzy equality should be the standard equality

(i.e. Eðu; vÞ 6¼ 1 if u 6¼ v), i.e., separability holds. On the

contrary, the name indistinguishability relation is denying

separability. In the following, we do not require

separability.

Interesting choices for operation � are min, product or

the Łukasiewicz t-norm a �Ł b ¼ maxð0; aþ b� 1Þ. Fuzzy

similarity relation are the negative of distances or metrics

(Boixader et al. 2000; Recassens 2010). The min-transi-

tivity makes a fuzzy similarity closely related to an ultra-

metric. The �Ł-transitivity corresponds to the triangular

inequality.

A fuzzy set F is said to be extensional with respect to E

(Höhle 1988; Klawonn 2000) iff

8u; v;FðuÞ � Eðu; vÞ
FðvÞ ð9Þ

Let F �E be obtained as F �EðvÞ¼maxu2U FðuÞ �Eðu;vÞ.
It is clear that due to the properties of E, it always holds

that F�F �E. Moreover F �E can be written as EPðFÞ as

it is the fuzzy set contains all elements in the vicinity of F.

So, Eq. (9) can be written as F �EðvÞ¼F. Equation (9)

generalizes the condition SPðBÞ¼B in Eq. (7), so that we

can also write it as EPðBÞ¼B.
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Consider now the implication connective ! associated

to � by residuation, i.e., we assume a � b
 c , a
 b ! c.

The extensionality of F is obviously equivalent to

8u; v;FðuÞ $ FðvÞ�Eðu; vÞ ð10Þ

where a $ b ¼ minða ! b; b ! aÞ, using residuation and

the symmetry of E. Equation (10) generalizes the property

(8) S � ðB� BÞ [ ðB� BÞ to multivalued relations.

The extensional hull F̂ of a fuzzy set F (w.r.t. E) is then

defined as

F̂ ¼ inffGjF � G and G is extensional w.r.t. Eg:

It is obvious that F � E is extensional (EPðF � EÞ ¼
ðF � EÞ � E ¼ F � ðE � EÞ ¼ F � E, since E is �-transitive)

and is the extensional hull of F.

An important example of extensional fuzzy set is

obtained by considering an element u and the fuzzy set Fu

of elements similar to it, that is FuðvÞ ¼ Eðu; vÞ (it is a line

of matrix E). Fu is clearly the extensional hull of the sin-

gleton fug. Note that FvðuÞ ¼ FuðvÞ, and that if FvðuÞ ¼ 1

then Fv ¼ Fu. Fu is the fuzzy counterpart of an equivalence

class. Klawonn (2000) calls it a ‘‘fuzzy point’’, understood

as the largest cluster of indiscernible entities around u, as

per the fuzzy similarity relation E.

Each fuzzy set Fv can be seen as a fuzzy loose granule.

It is an atomic entity inside U that cannot be split, if an

observer whose myopic eyesight is modeled by the fuzzy

similarity E. If E is an equivalence relation (for instance,

the 1-cut of a fuzzy similarity is clearly an equivalence

relation), Fu is just the equivalence class of u. The exten-

sional hull of a crisp subset A � U is the union of exten-

sional hulls of all elements in the set:

lÂðuÞ ¼ sup
v2A

Eðu; vÞ ð11Þ

An interesting question whether any extensional fuzzy set

takes this form. An extensional fuzzy set would then

always consist of the fuzzy union of fuzzy extensional hulls

of singletons, as in the crisp case. It would hold if an

extensional fuzzy set coincides with the extensional hull of

its core. But the latter property is not true. For instance,

consider a fuzzy set F containing strictly Fu but with the

same core A. Clearly, its extensional hull EPðFÞ strictly

contains Fu but also has the same core A (an equivalence

class of the 1-cut of E). Hence it is not of the form [u2AFu.

Höhle and Klawonn call a fuzzy singleton F (w.r.t. E) a

non-empty fuzzy set (i.e., maxu FðuÞ ¼ 1) such that

FðuÞ � FðvÞ
Eðu; vÞ ð12Þ

In particular we equivalently have FðuÞ
FðvÞ ! Eðu; vÞ;
8v 2 U, that is,

FðuÞ
 min
v2U

FðvÞ ! Eðu; vÞ:

Considering maximal fuzzy singletons, we generalize the

FCA operator: they are such that F ¼ EDðFÞ, since the

composition on the right-hand side of the above inequality

extends operation D. Clearly, the union of two such fuzzy

singletons is not a fuzzy singleton. In fact, a fuzzy sin-

gleton is a greatest fuzzy set satisfying (12). Maximal

fuzzy singletons are the multivalued version of the notion

of tight cluster, i.e., the specialization of a formal concept

to relations over a set.1

Using a �-transitive similarity relation we can prove that

extensional hulls of singletons are maximal fuzzy

singletons.

Proposition 5 If E is a �-transitive similarity relation,

and w 2 U a singleton, then FwðuÞ � FwðvÞ
Eðu; vÞ:

Proof Note that letting F ¼ Fw in (12), we again get

the expression of the transitivity of E. Hence Fw satisfies

(12). h

What this result shows is that fuzzy versions of tight

clusters and loose granules in the sense of a fuzzy simi-

larity relation coincide with equivalence classes Fu, just

like in the classical case for equivalence relations. Due

to �-transitivity, it holds that EDðFuÞ ¼ EPðFuÞ ¼ Fu;

8u 2 U. One question to be solved is whether there are

other fuzzy sets that are at the same time extensional and

are fuzzy singletons, that is whether EDðFÞ ¼ EPðFÞ ¼ F

implies that F is just the extensional hull of a singleton (a

fuzzy similarity class). Note that extensional hulls of crisp

subsets other than singletons do not qualify as candidates

as EDðAÞ ¼ \u2AE
DðfugÞ and EPðAÞ ¼ [u2AE

PðfugÞ.
Valverde (1985) (see also Boixader et al. 2000; Kla-

wonn 2000; Recassens 2010) considers the converse

problem of generating a fuzzy relation from a family of

subsets. Given a family F of fuzzy sets F the coarsest

equivalence relation EF such that all fuzzy sets F 2 F are

extensional is

EF ðu; vÞ ¼
^

F2F
FðuÞ $ FðvÞ: ð13Þ

In the crisp case, take F as fAi : yi 2 Pg. Then it simply

says that two elements are related if and only if they belong

to the same sets Ai (they share the same properties). This

equation is extended to the case where the properties are

more or less important by Bělohlávek (2002).

While the coarsest fuzzy similarity relation EF such that

all fuzzy sets F 2 F are extensional is provided above by

Valverde result (13), the finest such fuzzy similarity rela-

tion EF is of the form

1 The term ‘‘singleton’’ here means that fuzzy singletons are atomic

entities as per the indistinguishability relation E.
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EF ðu; vÞ ¼1 if u ¼ v

¼
_

F2F
FðuÞ � FðvÞ otherwise. ð14Þ

Moreover, Klawonn (2000) addresses the case when a

collection of normalized fuzzy sets can be viewed as

forming a family of fuzzy points. If 8Fi 2 F ; 9ui; such that

FiðuiÞ ¼ 1, then the fact that F is a family of fuzzy points

with respect to E is equivalent to the following inequality:

8Fi;Fj 2 F ,
_

u2U
FiðuÞ � FjðuÞ


^

v2U
FiðvÞ $ FjðvÞ ð15Þ

This condition is a fuzzy counterpart of the fact that

equivalence classes (here generalized to fuzzy points) are

disjoint.

3.2 Extensional fuzzy sets and FCA: analogies

In the Boolean case, the mathematical expressions (6) and

(7) are special cases of formal concept analysis expres-

sions. Similarly, in the multivalued case, we can generalize

identities (9, 10, 12) to the setting of FCA. First, the

counterpart to (9) using a formal multivalued context is:

8x; y;
XðxÞ � Rðx; yÞ
 YðyÞ

YðyÞ � R�1ðy; xÞ
XðxÞ
ð16Þ

It is the multivalued version of the third point of Proposi-

tion 2 that operates a decomposition into disjoint subcon-

texts. It is equivalent to the counterpart of (10) and point 4

of Proposition 2 from Sect. 2.4), namely:

8x; y;XðxÞ $ YðyÞ�Rðx; yÞ ð17Þ

As already said, in the fuzzy similarity setting, there is only

one Eq. (9) instead of two in FCA because the fuzzy

similarity relation is symmetric. This indicates that the idea

of extensional fuzzy set bears a strong analogy with the

notion of formal sub-context Indeed, (16) expresses that if

an object x of X has property y then this property is in Y,

and conversely if a property y of Y applies to an object x

then this object is in X, i.e., (X, Y) is an independent sub-

context; so an independent subcontext is extensional.

Moreover, we can deal with a fuzzy extension of the notion

of formal sub-context (Dubois and Prade 2009) since

Eqs. (16) and (17) make sense in 0; 1½ �, and not only in

f0; 1g.

In fact, the decomposition of R into minimal contexts

(forming relation R� in Eq. (4) above the example of Sect.

2.4) corresponds to the construction of the coarsest fuzzy

similarity relation induced by a family of fuzzy sets as per

Eq. (13). To see it, just consider instead of the family F the

set of conjugated pairs obtained from the context R. More

generally, a fuzzy relation R on U generates a family FðRÞ
of fuzzy sets Fu such that FuðvÞ ¼ Rðu; vÞ; 8u 2 U. Con-

sidering the coarsest fuzzy similarity relation EFðRÞ, it is

clear that R � EFðRÞ just like R � R� in the context

decomposition framework.

Likewise, multivalued counterparts of formal concepts,

as per Proposition 1 can be defined:

XðxÞ � YðyÞ
Rðx; yÞ; ð18Þ

which is equivalent to Bělohlávek (1999, 2002) 8x; y,

XðxÞ ! Rðx; yÞ� YðyÞ
YðyÞ ! R�1ðy; xÞ�XðxÞ:

ð19Þ

one can see a parallel between the idea of a fuzzy point [a

maximal fuzzy singleton in the sense of (12)] and the

notion of formal concept. Indeed, Eq. (19) expresses that if

a property y is in Y, any object x of X should possess it, and

conversely if an object x is in X, any property y in Y should

be possessed by it. And Eq. (12) of fuzzy singletons can

also be expressed as FðuÞ
Eðu; vÞ ! FðvÞ, from residu-

ation, so that we do have that F ¼ EDðFÞ and a pair of

fuzzy points (F, F) is like a formal concept. So a concept

(X, Y) is similar to a fuzzy point. Equations (18) and (19) in

fact provide a fuzzy extension of the notion of formal

concept in the sense developed in Bělohlávek (1999, 2002),

whose similarity with the extensional fuzzy set construc-

tion is thus laid bare.

It is clear that forming the union of fuzzy formal con-

cepts in a context R yields a relation R� � R (with equality

in the crisp case). It is the counterpart of the finest fuzzy

similarity relation in Eq. (14) induced by a family of fuzzy

sets, while decomposing R into formal contexts yields a

relation R�, defined by Eq. (4), that contains R, and reminds

us of the coarsest relation induced by a family of fuzzy sets

(13). The obvious inclusion R� � R� is clearly the coun-

terpart of Eq. (15).

Thus, we have exhibited a formal resemblance between

two quite different views of a granulation process. There is

a big difference between them, though. One is induced by

an approximate equality relation, while the other is based

on a binary relation defined on the Cartesian product of two

different sets. In the former case, due to the properties of

the fuzzy similarity relation what corresponds to concepts

in FCA, and what corresponds to minimal independent sub-

contexts are the same (they are fuzzy points). Moreover,

the fuzzy extensionality problem is to derive a fuzzy sim-

ilarity relation from any family of fuzzy sets, while in FCA

the issue is to find ‘‘maximal singletons’’ and minimal

independent subrelations induced by any binary relation.

However the common algebraic setting for both problems

is a building block of fuzzy FCA as developed by
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Bělohlávek (2002). This algebraic setting, also used by

Klawonn (2000) in his approach to extensional fuzzy sets,

is the one of residuated lattices.

Lastly, the first part of expression (16) and the expres-

sion (18) are also the starting points respectively of the

implication-based and of the conjunction-based views of a

fuzzy rule ‘‘if x is in ~X then y is in ~Y’’ (Dubois and Prade

1996). Fuzzy rules defined via these two equations indeed

correspond to two different ways of granulating a relation

or function defined from the universe containing the

(fuzzy) subset ~X to the universe containing the (fuzzy)

subset ~Y . Klawonn (2000) shows that the counterpart to

inequality (15) is instrumental in the solution of fuzzy

relational equations induced by the specification of fuzzy

rules, especially if the fuzzy relation must be constructed

using the conjunction-based view. In some sense the

modeling of fuzzy rules and fuzzy formal concept analysis

rely on the same basic algebraic setting and the same basic

equations but have opposite programs. While fuzzy FCA

tries to extract concepts from fuzzy relations modeling

many-valued contexts, with a view to derive inter-

pretable association rules, the other program is to synthe-

size fuzzy relations between input to output spaces from

fuzzy rules expressed in natural language. The formal

relations between the two areas are thus worth studying

further. For instance, Bělohlávek (2009) tries to derive

implicative rules from fuzzy formal contexts, using the

same equation (inf ! composition) as the one that turns a

set of implicative rules into a fuzzy relation (Dubois and

Prade 1996).

3.3 Fuzzy rough sets and similarity relations

Rough sets can be extended by replacing an equivalence

relation by a fuzzy similarity relation (Dubois and Prade

1990), thus introducing degrees of possibility and necessity

that an element belongs to a given crisp set, due to the

fuzzy granulation of the referential. There is an extensive

literature on fuzzy rough sets (Radzikowska and Kerre

2002) that seems to be unrelated to the Höhle–Klawonn

view of extensional fuzzy sets recalled above, that also

relies on similarity relations, and induces a form of gran-

ulation of the referential. The bridge between fuzzy rough

sets and extensional fuzzy sets is however made in

Recassens (2010).

The notion of extensional fuzzy set with respect to a

similarity relation clearly generalizes the notion of exact

set in rough set theory, that is formed by the union of

equivalence classes. The so-called extensional hull of a

fuzzy set, viewed as the smallest extensional fuzzy set

containing it, is formally the same as the upper approxi-

mation of this fuzzy set by means of the partition formed

by the fuzzy singletons. In particular the extensional hull X̂

of a set X [of the form (11)] does coincide with the upper

fuzzy approximation of set A in the sense of fuzzy rough

sets (Dubois and Prade 1990). In the theory of extensional

fuzzy sets, the lower approximation of a fuzzy set F takes

the following form Boixader et al. (2000), Recassens

(2010):

FEðuÞ ¼ inf
u2U

Eðu; vÞ ! FðvÞ ð20Þ

with a residuated implication ! with respect to a t-norm �.

FE is the largest extensional fuzzy set included in F,

namely it is such that FEðuÞ � Eðu; vÞ
FðvÞ; 8u 2 U. In

other words, FE is of the form ENðFÞ in the sense of

necessity functions. However, we do not have that FE ¼
F � E in general, which suggests that such approximation

pairs may fail to have all properties of usual rough sets.

This approach thus differs from Dubois and Prade (1990)

where the chosen implication in (20) is Kleene’s, so that

the lower approximation is precisely defined by F � E,

respecting the duality between upper and lower approxi-

mations, but possibly failing the extensionality property.

The connection between extensionality and rough sets has

been very recently discussed by Chakraborty (2011) in the

setting originally described by Higgs (1973), that inspired

Höhle and Klawonn, and in the fuzzy set setting in

Recassens (2010), Chapter 3.

So, pairs ðF � E;FEÞ can be viewed as fuzzy rough sets.

They provide the approximate description of fuzzy sets by

means of fuzzy points in the sense of a fuzzy similarity

relation, just like rough sets in the more elementary setting

of a crisp equivalence relation. In Ruspini (1991), and the

literature on similarity-based reasoning (Godo and Rodri-

guez 2008), a fuzzy set is always understood as the

extensional hull of a crisp set. The connections and dif-

ference of points of view between fuzzy rough sets and

similarity-based reasoning after Ruspini, have already been

emphasised (Dubois and Prade 1998b). While rough sets

and granulation insist on the idea that elements of the

referential cannot be distinguished, the idea of similarity,

often then termed fuzzy equality, and viewed as the neg-

ative of a distance, insists on making a difference between

elements however close they can be. If obeying separa-

bility, fuzzy similarity relations are then more tailored to

interpolation purposes (Dubois et al. 1997; Perfilieva et al.

2012) than to classification.

4 Concluding remarks

The idea of granulation Zadeh (1997) is based on the

notion of cluster whereby
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1. any pair of members of a cluster should be closely

related in some sense;

2. any member of a cluster should be sufficiently

separated from any member from outside the cluster.

The paper has provided a discussion of several areas, where

the idea of granulation is central, and notions of closeness

and separation can be defined. On this ground, similarities

between different settings like possibility theory, formal

concept analysis, extensional fuzzy sets, and rough sets

have been laid bare. Similar structures were found to be at

work in such settings. This kind of attempt may lead to

mutual enrichments between theories, as in the parallel

between possibility theory and formal concept analysis.

It is clear that such formal links should be further

investigated in more general representation frameworks

such as pattern structures (Ganter and Kuznetsov 2001;

Assaghir et al. 2010), but also using algebraic structures

beyond residuated lattices exploited in Bělohlávek (2002).

Indeed, the many-valued FCA suffers from two limitations.

First, one may object to the fact that most of the time, the

negation in residuated lattice is not involutive, which may

make the decomposition of fuzzy contexts into independent

subcontexts more difficult: it may be difficult to write

Eq. (17) in the form of Point 4 of Proposition 2. One way to

do so is to interpret implication as a ! b ¼ nða � nðbÞÞ in

(17) for an involutive negation n. But then the underlying

conjunction associated to ! through residuation will no

longer be associative nor commutative (Dubois and Prade

1984; Fodor 1991). A study of multivalued FCA using non-

associative, non-commutative conjunctions is carried out

by Medina et al. (2009), using so-called multi-adjoint

concept lattices. Lastly, it seems to be idealistic to assume

that the degrees of satisfaction of all properties of objects

can be measured on the same non-Boolean scale. This

assumption may be problematic when processing real non-

Boolean data. This issue is taken up at the theoretical level

by Medina and Ojeda-Aciego (2012) using multi-adjoint

concept lattices.
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