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Abstract
In recent years, significant progress has been made in developing supervised Machine Learning (ML) systems like Con-
volutional Neural Networks. However, it’s crucial to recognize that the performance of these systems heavily relies on the
quality of labeled training data. To address this, we propose a shift in focus towards developing sustainable methods of
acquiring such data instead of solely building new classifiers in the ever-evolving ML field. Specifically, in the geospatial
domain, the process of generating training data for ML systems has been largely neglected in research. Traditionally, experts
have been burdened with the laborious task of labeling, which is not only time-consuming but also inefficient. In our system
for the semantic interpretation of Airborne Laser Scanning point clouds, we break with this convention and completely
remove labeling obligations from domain experts who have completed special training in geosciences and instead adopt
a hybrid intelligence approach. This involves active and iterative collaboration between the ML model and humans through
Active Learning, which identifies the most critical samples justifying manual inspection. Only these samples (typically
� 1% of Passive Learning training points) are subject to human annotation. To carry out this annotation, we choose to
outsource the task to a large group of non-specialists, referred to as the crowd, which comes with the inherent challenge of
guiding those inexperienced annotators (i.e., “short-term employees”) to still produce labels of sufficient quality. However,
we acknowledge that attracting enough volunteers for crowdsourcing campaigns can be challenging due to the tedious
nature of labeling tasks. To address this, we propose employing paid crowdsourcing and providing monetary incentives to
crowdworkers. This approach ensures access to a vast pool of prospective workers through respective platforms, ensuring
timely completion of jobs. Effectively, crowdworkers become human processing units in our hybrid intelligence system
mirroring the functionality of electronic processing units.

Keywords Active Learning · Paid Crowdsourcing · Hybrid Intelligence System · 3D Point Clouds · Semantic
Segmentation

1 Introduction

Over the past thirty years, there has been a significant surge
of interest in Machine Learning (ML) systems, encom-
passing both feature-driven and data-driven methods, with
Convolutional Neural Networks (CNNs) emerging as the
most prominent representative. Notably, these systems have
reached a remarkable level of performance, even surpass-
ing human capabilities (Russakovsky et al. 2015a). Con-
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sequently, ML has become an integral part of our daily
lives, from autonomous driving and speech recognition to
personalized recommendations on streaming platforms and
shopping suggestions. However, the success of these ML
models hinges heavily on diverse and well-annotated train-
ing data they learn from. Simply fine-tuning the architecture
of ML models as tools to extract patterns from data would
have limited success if the underlying training data is of
suboptimal quality. For instance, training sets that are too
specific or poorly labeled can hinder proper generalization.
Therefore, recent advice from Ng (2021) emphasizes the
importance of data-centric approaches, rather than solely
focusing on model-centric methodologies. This approach
gives companies specializing in data collection, such as
Google, a distinct advantage in developing successful ML
systems. However, since such companies often do not allow
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public access to their data pools, there have been efforts to
build large-scale and freely available training data sets, like
ImageNet (Deng et al. 2009; Russakovsky et al. 2015a).

Typically, the process of generating training data and
teaching an ML model based on that data are considered
separate and isolated steps. The focus in research has pre-
dominantly been on developing new ML models, often
overlooking the supposedly straightforward but tedious an-
notation process involved in generating training data. How-
ever, there exists a significant untapped potential in treating
these two processes as interconnected and mutually bene-
ficial. This envisioned synergy arises from the machine’s
ability to analyze vast amounts of data and identify crucial
samples that play a pivotal role in establishing a robust sepa-
ration between different classes. By allowing the machine to
communicate with the labeling engine, the annotation effort
can be concentrated on those highly informative samples
that genuinely enhance the machine’s learning process. As
a result, this approach holds the promise of significantly re-
ducing the number of required labels. The essential link be-
tween the ML model and the labeling engine, the so-called
oracle, is facilitated through Active Learning (AL) (Settles
2009). This iterative learning scheme precisely entails an
active interaction between the two parties, contrasting the
traditional Passive Learning (PL) concept, where a static
training set is assumed to be sufficient for the task at hand,
possibly lacking critical examples while containing redun-
dant information.

Although AL is a valuable approach to enhance the
efficiency of ML models, it still relies on human operators
acting as oracles to provide labels to the machine. Typically,
these operators are domain experts with knowledge of the
data under consideration (Waldhauser et al. 2014). Despite
AL’s ability to reduce their labeling burden, a substantial
amount of effort is still required from them. To create a scal-
able solution, we propose breaking down the labeling task
into numerous subtasks that can be quickly completed in
parallel by a diverse group of annotators. Each of these in-
dividual annotators becomes a human processing unit, func-
tioning similarly to the electronic processing units used for
the ML component (Gingold et al. 2012). By connecting
these electronic and human processing units through AL,
we establish a hybrid intelligence system (Vaughan 2018).
In this system, both parties play to their strengths—the
unparalleled interpretation capabilities of humans and the
machine’s proficiency in rapidly processing well-defined,
repetitive tasks for exploring extensive data sets (Wald-
hauser et al. 2014; Russakovsky et al. 2015b).

However, implementing such an expert-driven system
practically becomes unfeasible due to the unlikely partici-
pation of enough experts in the designated field. As the ulti-
mate objective is to relieve experts from the burden of data
annotation entirely, an alternative approach involving a po-

tentially larger audience becomes necessary. In this regard,
we turn to the crowd of internet users, already engaged
in non-expert data annotation through activities like re-
CAPTCHAs (von Ahn et al. 2008). Apart from unconscious
participation in such tasks, we can explicitly offer labeling
tasks to the crowd on a voluntary basis. However, in vol-
unteered crowdsourcing scenarios, a lack of participants is
likely, especially for tedious labeling tasks that do not have
the appeal of citizen science projects such as the Galaxy
Zoo project (Lintott et al. 2008) where plenty of astronomy
enthusiasts participate driven by their desire to contribute to
the scientific advances in astronomy. But for more special
use cases without a society-wide desire to solve the respec-
tive problem (such as the one discussed in our work) it is
unlikely to find a pool of contributors that is large enough
to complete all required tasks, also in a timely fashion. To
address this challenge, paid crowdsourcing is a viable so-
lution, where tasks are outsourced to potential contributors
through an open call, offering them payment as an extrinsic
incentive. By leveraging respective online platforms, we
can reach millions of workers acting as short-term employ-
ees for the duration of a particular campaign, so that costs
can be saved both through cheap crowdwork and by avoid-
ing idle time when only a few projects need to be worked
on that do not justify hiring full-time staff. By building the
AL oracle on such a paid crowdsourcing system, we can es-
tablish a practical hybrid intelligence system that operates
in a fully automated manner from the system operator’s
viewpoint. Despite human beings, i.e., crowdworkers, be-
ing integral to this system, they behave akin to electronic
processing units, delivering prompt results due to the vast
pool of available workers on the internet, ensuring ample
participants to reliably complete even extensive campaigns
that would otherwise occupy a large number of experts.

One of the primary challenges in such hybrid intelli-
gence systems is effectively integrating non-deterministic
components, namely human processing units. This requires
special attention to the human aspect regarding automated
quality control (Waldhauser et al. 2014; Ye et al. 2017). The
complexity of this issue is further increased when dealing
with non-experts, represented by the crowd, who have never
completed any training in geosciences and also will not be
trained in this regard, as individual workers will most likely
only participate in one specific labeling campaign due to the
dynamic nature of paid crowdsourcing platforms with mil-
lions of registered users. Essentially, we aim to hire and
guide our crowdworkers to generate a set of labels with
a quality level sufficient (but most likely worse compared to
an expert’s labels) for training ML models requiring special
measures in this regard as, to them, specialized geospatial
data typically presents an unfamiliar perspective of actu-
ally known environments. Moreover, in the case of (col-
orized) 3D Airborne Laser Scanning (ALS) point clouds,
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Fig. 1 From any given point cloud (top), we aim to derive a semantic
segmentation (bottom) with a limited number of point-wise training
samples (middle), which are generated without the involvement of an
expert in labeling. This is achieved in context of a hybrid intelligence
system constituted by linking the crowd with an ML model by means
of AL

crowdworkers are additionally expected to possess an inter-
pretation capability of 3D data, which may not be the case.
But given the scarcity of open, large-scale, and fine-grained
labeled data sets in this domain with only few available
representatives (Niemeyer et al. 2014; Actueel Hoogtebe-
stand Nederland 2021; Zolanvari et al. 2019; Varney et al.
2020; Ye et al. 2020; Kölle et al. 2021a), geospatial 3D
data presents an ideal application domain for a hybrid in-
telligence system to fully unleash the potential of modern
ML systems.

1.1 Objectives

Within this work, our primary goal is to establish a hy-
brid intelligence system built for the automated semantic
segmentation of ALS point clouds, as illustrated in Fig. 1.
To achieve this, we develop a comprehensive framework
that can effectively enrich any given point cloud (cf. Fig. 1,
top) with valuable semantic information (cf. Fig. 1, bot-
tom) using ML models. The framework’s key objectives
are twofold: first, to significantly reduce the demand for la-
beled data, thereby requiring only a small fraction of train-
ing points (cf. Fig. 1, middle). Second, to completely elim-
inate the need for expert involvement in any labeling task.
To achieve this, we combine two research fields, in which
we identify our contributions as follows:

1.1.1 Active Learning for 3D Point Cloud Semantic
Segmentation

� We aim to explore the potential of AL in the context of
3D point cloud semantic segmentation to substantially di-
minish the amount of labeled training data required and

seek to uncover insights not only on the effectiveness of
AL, but also as to why it works (Kölle et al. 2021a).

� For the key component of our AL system, i.e., identifying
most informative points, we attempt to exploit the nature
of our geospatial data to develop sampling methods that
not only optimize the machine’s performance but also
ease the labeling process for human operators, specifi-
cally the crowd. Evaluation of resulting AL loops is done
with both a feature-driven and data-driven model. This
allows us to give a recommendation on the more efficient
classifier in our AL context (Kölle et al. 2021a).

� In contrast to most research in AL, we challenge the as-
sumption of an error-free oracle always providing accu-
rate labels for the machine’s queries, as this is a com-
pletely unrealistic assumption for real-world scenarios
where humans, regardless of their expertise, are responsi-
ble for labeling (Marcus and Parameswaran 2015). Thus,
on one hand, we simulate different error behaviors of
the oracle to gain a realistic estimation of theoretically
reachable accuracies. On the other hand, we refrain from
any simulated offline labeling engine and instead employ
a real human crowd as a viable alternative, leading us to
our second research branch (Kölle et al. 2021a,b).

1.1.2 Paid Crowdsourcing for the Interpretation of
3D Geospatial Data

� In AL scenarios involving (paid) crowdworkers as ora-
cles, an essential yet often neglected challenge is the cre-
ation of user-friendly labeling tools for non-experts, as
highlighted by Kittur et al. (2008). Dealing with 3D data
further complicates this issue since a significant number
of workers may lack experience in this domain. Conse-
quently, when developing appropriate tools for crowd-
sourced 3D data annotation, we venture into relatively
unexplored territory.

� Given the inherent issue of data quality inhomogeneity
in crowdsourced data collection, addressing this concern
is of utmost importance. While one option could involve
manual inspection of crowdworkers’ results by an oper-
ator, this approach would significantly reduce the appeal
of crowdsourcing. Therefore, an effective quality control
system must operate automatically, eliminating the need
for manual intervention. To achieve this, we adopt a dual
strategy for quality control, both on task designing and
in post-processing, with the latter leveraging the concept
of the Wisdom of Crowds (Howe 2006) to obtain high-
quality labels (Kölle et al. 2021b).

Please note that the work presented here is a significantly
enhanced version of our previous contribution (Koelle et al.
2023) differing mainly in a more comprehensive methodol-
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ogy section and adding further experiments incorporating
real crowdworkers instead of just simulating such a crowd
oracle.

2 RelatedWork

Before actually setting-up the envisioned hybrid intelli-
gence system, we start with reviewing related literature with
respect to its individual components. Firstly, this involves
building a robust human processing unit that should oper-
ate with minimal errors as it is intended for teaching the
machine (Sect. 2.1). Subsequently, the second part of the
system is implementing an ML scheme capable of accessing
the crowd engine selectively (Sect. 2.2), ultimately leading
to the development of a powerful model for 3D point cloud
classification.

2.1 Crowdsourcing Geospatial Information

The advent of Web 2.0 brought significant changes in the
way we work, including the introduction of innovative con-
cepts like crowdsourcing. This entails delegating tasks orig-
inally handled by individuals or single institutions to a large
group of people, known as the crowd (Howe 2006). Within
this context, solutions are typically built by a vast number of
crowdworkers collaborating, each contributing to the over-
all objective by completing assigned subtasks (i.e., micro-
tasks). A notable application of this approach is found in cit-
izen science, where individuals interested in research offer
their assistance (e.g., see the work of Korpela et al. (2001)
and Okolloh (2009)). The generation of geodata through
such a scheme has been termed Volunteered Geographic
Information (VGI) by Goodchild (2007), with Open Street
Map (OSM) being its most prominent representative.

2.1.1 Quality Control in Crowdsourcing

However, the primary concern surrounding crowdsourced
(geospatial) data revolves around its quality (Goodchild and
Li 2012; Fan et al. 2014; Senaratne et al. 2016). The crowd
is a diverse mix of individuals from various cultural back-
grounds, age groups, and educational histories (Kittur et al.
2008), consequently leading to heterogeneous data qual-
ity (Howe 2006; Goodchild 2007; Haklay and Weber 2008;
Shaw et al. 2011; Dorn et al. 2015; Fonte et al. 2017; Chan-
dler and Paolacci 2017; Chandler and Kapelner 2013). This
is primarily because crowdworkers often lack familiarity
with specific data concepts, such as geodata (Hashemi and
Abbaspour 2015), and acquisition standards are often ne-
glected to avoid discouraging enthusiastic participants (An-
toniou and Skopeliti 2015). Furthermore, there is a risk
of having inattentive crowdworkers (Fleischer et al. 2015)

or even malicious ones deliberately providing false infor-
mation (Hirth et al. 2013; Welinder et al. 2010; Whitehill
et al. 2009). Zhang et al. (2016) propose distinguishing be-
tween two aspects to ensure the quality of crowdsourced
data: quality control on task designing and quality improve-
ment after data collection. An overview of various meth-
ods addressing these issues can also be found in the work
of Chandler et al. (2013).

Quality control on task designing can be effectively
achieved by presenting tasks in a clear and understandable
manner for non-experts. This includes providing concise
information about the data they will be working with
and specifying the required actions (Sorokin and Forsyth
2008). Sorokin and Forsyth (2008) and Allahbakhsh et al.
(2013) advocate for cheat-proof task design and propose fil-
tering participating groups based on employer criteria. Vari-
ous measures are commonly employed to guarantee quality.
These include implementing qualification tests (Patterson
et al. 2014; Estes et al. 2016; Endres et al. 2010), incorpo-
rating a pre-task training stage, and including tasks where
true answers are already known (Sorokin and Forsyth 2008;
Estes et al. 2016; Gebru et al. 2017; See et al. 2013; Hirth
et al. 2013; Zhou et al. 2014; Salk et al. 2015; Marcus and
Parameswaran 2015; Vondrick et al. 2012). Moreover, an
intrinsic quality measure is presenting certain data points
multiple times to the same crowdworker to assess result
consistency (See et al. 2013).

A simple realization of the second principle, quality im-
provement after data collection, is reviewing already sub-
mitted tasks either by an expert (e.g., the employer) or other
crowdworkers (Liu et al. 2018; Russell et al. 2007). More
advanced methods draw inspiration from the concept known
as the Wisdom of the Crowds (Galton 1907; Surowiecki
2004). This idea suggests that a group of independent in-
dividuals can produce results of similar, if not superior,
quality compared to any single expert within that group.
Translating the Wisdom of the Crowds paradigm into a rule
of action for crowdsourced data acquisition entails dupli-
cating a given task, assigning it to multiple crowdworkers,
and aggregating their contributions, which can lead to high-
quality results (Sorokin and Forsyth 2008). For labeling
tasks, the simplest aggregation approach is majority vot-
ing (Parhami 1994). However, a drawback of this approach
is the increased cost associated with assigning the same
task to multiple crowdworkers. Recent research is focused
on determining the optimal number of repetitions needed
for Wisdom of the Crowds to take effect (van Dijk et al.
2020; Walter et al. 2022).

2.1.2 Motivating the Crowd to Contribute

In the previously mentioned crowdsourcing projects, indi-
viduals are incentivized to participate by intrinsic factors,
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Fig. 2 General concept of paid crowdsourcing

such as the opportunity to create tools that are useful in ev-
eryday life, as seen in the case of Open Street Map (OSM).
However, this raises the question of how to effectively har-
ness human computing capacity of crowdworkers for tasks
that may not be inherently appealing, like data labeling.
To address this issue, the concept of paid crowdsourcing
(see Fig. 2) was introduced, offering easy access and mo-
tivation of crowdworkers through monetary compensation.
To simplify the technical overhead of the employer, ded-
icated crowdsourcing platforms like Amazon Mechanical
Turk (MTurk) (Chandler et al. 2013) and microWorkers
(MW) (Hirth et al. 2011) were established, acting as me-
diators between employers and the crowd.

Relying on such platforms, the employer posts cam-
paigns as an open invitation, allowing crowdworkers to de-
cide whether they wish to participate. The employer sets
essential parameters, such as the payment amount and may
also apply certain criteria to limit the targeted group of par-
ticipants (e.g., requiring a specific reputation score). Once
crowdworkers submit their completed tasks, the employer
can approve the work and prompt payment through the plat-
form if satisfied (as illustrated by the dashed red arrows
in Fig. 2). Additionally, the employer has the option to
award boni to crowdworkers (Geiger et al. 2011). Typically,
crowdworkers receive a remuneration amounting to a few
cents per task, with the median payment on the MTurk plat-
form being approximately 1.38$=h (Haralabopoulos et al.
2019).

Compared to voluntary crowdsourcing projects, the im-
portance of quality control is even greater when using paid
crowdworking. While paid crowdworkers may strive to at-
tain or maintain a reasonable reputation score (Mao et al.
2013), they are often found to be less reliable than their vol-
unteered counterparts (Redi and Povoa 2014). In the paid
crowdsourcing domain, these crowdworkers are commonly
referred to as satisficers, as they tend to exert minimal
effort (Chandler et al. 2013; Marcus and Parameswaran

2015) while aiming to maximize their income (Gingold
et al. 2012). For instance, research conducted by Kittur
et al. (2008) revealed that up to 30% of submissions in paid
crowdsourcing projects might suffer from low quality.

2.1.3 Crowdsourcing as Part of Hybrid Intelligence Systems

Data labeling itself plays a crucial role in advancing modern
ML methods and provides ample justification for the ex-
istence of paid crowdsourcing platforms (Vaughan 2018).
However, the significance of such platforms extends be-
yond this. As emphasized by Jeff Bezos, these platforms
are designed for a wide range of tasks that are simple for
humans to solve but exceedingly challenging for machines:
“Normally, a human makes a request of a computer, and
the computer does the computation of the task. But artifi-
cial artificial intelligences like Mechanical Turk invert all
that. The computer has a task that is easy for a human but
extraordinarily hard for the computer. So instead of calling
a computer service to perform the function, it calls a hu-
man.” (Bezos 2007).

The vision presented here centers around collaborative
work between machines and humans (Allahbakhsh et al.
2013), leading to the concept of hybrid intelligence sys-
tems (Vaughan 2018). These systems encompass algorithms
where certain subroutines are not handled by machines but
are delegated to human processors, allowing each party to
perform the parts of the processing chain in which they
perform best. For example, human interpretation capabili-
ties may complement the automatic performance of repeti-
tive, easily formulated tasks. To realize such systems, paid
crowdsourcing platforms are crucial to ensure the avail-
ability of a sufficient number of crowdworkers (proces-
sors) on demand, enabling scalability. However, a potential
challenge arises when non-deterministic humans (or “semi-
qualified workers”) who possibly lack a comprehensive un-
derstanding of errors harmful for ML systems (Endres et al.
2010), become integrated into such an algorithm (Ye et al.
2017; Endres et al. 2010).

Although paid crowdsourcing systems and ML models
fueled by or operating in conjunction with crowdsourced
data are commonplace in the Computer Vision community,
these techniques are still in their infancy in the geospa-
tial domain where commonly fully annotated training sets
are expected. Nonetheless, ongoing research is already di-
rected towards developing a robust human component that
could potentially serve as a basis for a corresponding ma-
chine component to learn from (Li and Zipf 2022). How-
ever, dedicated campaigns to build data for geospatial scene
interpretation are only scarcely conducted. Most studies in
this area deal with employing a paid (Walter and Soergel
2018) or unpaid crowd for annotating and interpreting aerial
images (Salk et al. 2015; Estes et al. 2016; Juni and Eck-
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stein 2017) or street view scenes (Hara et al. 2015; Hecht
et al. 2018; Maddalena et al. 2020). But 3D point clouds
as the data of interest are very rarely considered, and, to
the best of our knowledge, are limited to the contributions
of Herfort et al. (2018); Walter et al. (2020) and Walter
et al. (2021).

2.2 Active Learning (AL)

Hybrid intelligence systems, as discussed in the preced-
ing section, often leverage the concept of AL (Settles 2009;
Kovashka et al. 2016). Besides connecting human and elec-
tronic processing units, the fundamental idea of AL, partic-
ularly in the context of semantic segmentation tasks, is to
concentrate labeling efforts on only a subset of the avail-
able instances. In contrast to the conventional ML approach
of PL, where a fixed training data set is used, AL actively
involves the classifier in setting up the training data set.
Starting from an initial (suboptimal) training set, the objec-
tive is to iteratively enhance it (and thus the ML model) by
labeling those samples from the unlabeled data set the clas-
sifier is currently the most uncertain about in its prediction,
which ultimately reduces the epistemic uncertainty of the
ML model (Gal et al. 2017). In essence, the goal of AL is
to enable a given classifier to achieve top performance with
minimal labeling effort.

AL can be considered as a system of four main com-
ponents: (i) the base classifier for the task at hand, (ii) the
query function for the selection of instances to be labeled
(Sect. 2.2.1), (iii) the so-called oracle, e.g., a human op-
erator (Sect. 2.2.2) and (iv) an abortion criterion for the
iteration (Sect. 2.2.3).

2.2.1 Querying Samples in AL

As the performance of an AL system is heavily influenced
by the design of its query function, naturally, this is also
the main focus in literature. Solutions stem from various
methodologies, such as uncertainty sampling, query-by-
committee strategies, and representativeness sampling.

Initially, uncertainty sampling was closely linked to Sup-
port Vector Machines (SVMs) (Cortes and Vapnik 1995),
where decisions are solely based on support vectors, regard-
less the size of the labeled data set. As a result, labeling the
remaining instances is actually superfluous, also provid-
ing insight why AL is so effective. In this regard, Ertekin
et al. (2007) proposed sampling only those points situ-
ated closest to the current decision border of the classifier.
The primary aim of uncertainty sampling is to select sam-
ples that the current classifier considers most uncertain in
terms of inter-class similarity (Settles 2009). To measure
this uncertainty, typical query functions, such as least cer-
tainty sampling (Lewis and Gale 1994), breaking ties sam-

pling (Scheffer et al. 2001), or entropy sampling (Shannon
1948), operate directly on the posterior probability.

On the other hand, Query-by-committee is specifically
designed to accurately estimate epistemic uncertainty, but
it requires the presence of a committee or an ensemble of
classifiers. The sampling strategies employed in this ap-
proach aim to select instances from regions of the feature
space that have not been well-represented so far, where
the ensemble members, all trained using the same data set,
disagree. This disagreement is typically assessed by vote
entropy (Argamon-Engelson and Dagan 1999), Kullback-
Leibler divergence (McCallum and Nigam 1998), or mutual
information between model predictions and model param-
eters, as employed in context of Bayesian Active Learning
by Disagreement (BALD) (Houlsby et al. 2011).

Representativeness-based sampling strategies aim to
query a subset of points that is as representative as possible
for the entire data set. For instance, this can be accom-
plished by solving a core-set-selection-problem (Sener and
Savarese 2018) or by computing a hierarchical clustering
of all data to enable gradual sampling of points follow-
ing this hierarchical structure (Dasgupta and Hsu 2008).
In the Deep Learning (DL) era, representativeness-based
sampling can, for instance, be realized with VAAL (Sinha
et al. 2019). The core idea is to jointly learn a latent feature
space from both labeled and unlabeled instances using
a variational autoencoder, while an adversarial discrimina-
tor is trained to distinguish whether a sample is from the
labeled or unlabeled data set, so that those new points can
be sampled that, according to the discriminator, are likely
to come from the unlabeled set.

Although the aforementioned sampling heuristics were
developed in the pre-DL era, theoretically, CNNs could be
employed out-of-the-box as they also output (pseudo) pos-
terior probabilities. However, CNNs are notorious for over-
estimating their confidence when extrapolating in regions
of the feature space not represented in training (Gal and
Ghahramani 2016), i.e., they lack awareness of epistemic
uncertainty. To obtain more sensitive uncertainty measures,
the authors propose approximating Bayesian CNNs using
Monte Carlo dropout ensembles (Gal et al. 2017). An al-
ternative approximation for Bayesian CNNs are deep en-
sembles, which, according to Beluch et al. (2018) and Feng
et al. (2019), often outperform Monte Carlo dropout en-
sembles due to higher capacity and greater independence
among ensemble members. However, this advantage comes
with the drawback of higher computational cost, as it in-
volves training multiple networks. For a comprehensive re-
view of both the challenges and solutions of Deep AL, refer
to the work of Ren et al. (2022).

Independent of the chosen heuristic, all sampling strate-
gies are meant to query points based on the current state
of a classifier. As the inclusion of any additional training
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samples may alter the model’s current beliefs, these meth-
ods perform best when selecting one instance per iteration
step. However, this approach leads to re-training the ML
model after adding only one single sample, which can be
considered statistically unreasonable and computationally
infeasible, especially when employing CNNs as base clas-
sifiers (Sener and Savarese 2018; Kirsch et al. 2019). Con-
sequently, a common practice is to sample a larger batch
of points in each iteration step. However, when multiple
points with the highest scores are selected, often respective
instances are too similar to one another, essentially leading
to labeling quasi-duplicates. As a result, labeling resources
may be wasted on non-most-informative instances. To ad-
dress this issue, methods that yield a diverse batch of infor-
mative samples are often employed. Achieving such diver-
sity can be accomplished through score-weighted k-means
clustering of feature space, where k corresponds to the num-
ber of points to be sampled (Zhdanov 2019; Ash et al. 2019;
Prabhu et al. 2021).

2.2.2 Oracles in AL

In addition to determining the most suitable data points for
the ML process, careful attention must also be given to
the oracle when creating an AL scheme. In many cases,
a Ground Truth (GT) oracle is assumed, i.e., an oracle that
consistently provides perfectly accurate answers to label
queries. While this assumption can be useful for evaluat-
ing the theoretical performance of simulated AL runs, it is
unrealistic to expect such results when working with hu-
man annotators, especially crowdworkers, as the obtained
results might contain both random and systematic labeling
errors (Chandler et al. 2013; Lockhart et al. 2020).

Moreover, it is essential to acknowledge the presence
of samples that are inherently more challenging and er-
ror-prone to label compared to others, thus also incurring
higher costs due to the need of assigning them to multiple
crowdworkers to achieve a consensus (Deng et al. 2009).
An alternative approach is adapting the sampling strategy
to balance informativeness for the machine with feasibil-
ity for human labeling, i.e., selecting samples that remain
as informative as possible while being suited for human
oracles to label. For instance, Mackowiak et al. (2018) pro-
pose a method that combines a common AL informative-
ness measure with a learned estimate of the required label-
ing effort, creating a final score function that balances both
factors. Similarly, Vijayanarasimhan and Grauman (2009)
train an SVM classifier to predict labeling costs based on
image features along with annotation times collected from
real MTurk crowdworkers.

2.2.3 Terminating AL Loops

To ensure effective termination of an AL iteration, a suit-
able stopping criterion must be defined striking a balance
between running the AL loop long enough to achieve stable
performance and minimizing unnecessary iteration steps to
reduce costs (Settles 2009). While the easiest way is to
measure performance on a large representative test set, this
approach defeats the purpose of AL, which aims to restrict
labeling to only a few samples. An alternative solution is
to assess the similarity between newly queried samples and
those already included in the training set (Vlachos 2008).
In the same spirit, a SVM-specific stopping criterion is to
terminate the iteration as soon as no support vectors are
available anymore (Ertekin et al. 2007). Other approaches
measure the stability of the predictions of the current classi-
fier on a large unlabeled data set, focusing on the classifier’s
confidence in its predictions (Vlachos 2008), or the agree-
ment between the current and previous predictions (Blood-
good and Vijay-Shanker 2009). If an ensemble classifier is
used, stopping can be based on comparing the classification
disagreement of the ensemble members for the remaining
unlabeled pool with that of an independent and unlabeled
validation set (Olsson and Tomanek 2009).

2.2.4 AL in Remote Sensing and Semantic 3D Point Cloud
Segmentation

In the remote sensing community, AL has also been ex-
plored, with a primary focus on minimizing labeling effort,
such as reducing visual inspection of data or conducting
field surveys. The main application lies in semantic segmen-
tation of aerial imagery, where well-known AL concepts, as
discussed previously, are applied (Tuia et al. 2011; Craw-
ford et al. 2013). Dealing with spatially meaningful data
introduces both challenges and opportunities, as summa-
rized by Crawford et al. (2013). One challenge arises in
modifying conventional sample selection strategies when
field surveys are necessary for labeling. In such cases, the
selection of samples (i.e., locations) should consider the
traveling distance between queried locations. On the other
hand, spatial information can be leveraged to diversify the
selection of the most informative samples. Thoreau et al.
(2022) recently conducted a comparison of sampling strate-
gies for a state-of-the-art CNN classifier in remote sensing.
Among this research, the work of Tuia and Munoz-Mari
(2013) is noteworthy as, to the best of our knowledge, it is
the only one that acknowledges an imperfect oracle, conse-
quently tailoring the query of points to its needs, i.e., avoid-
ing samples that most likely are too complex/ambiguous for
labeling.

While the application of AL for semantic segmentation
of 2D images has been extensively studied, its utilization
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for the semantic segmentation of 3D point clouds, particu-
larly ALS point clouds, has been explored only to a limited
extent.

To the best of our knowledge, the first work addressing
this issue is the pipeline presented by Luo et al. (2018) for
the semantic segmentation of high-resolution Mobile Laser
Scanning (MLS) point clouds based on a pair-wise Con-
ditional Random Field model built upon a Random Forest
(RF) classifier operating on supervoxels. Mainly for the
classification of terrestrial point clouds, also CNN-based
approaches were proposed (Wu et al. 2021; Shi et al. 2021;
Shao et al. 2022). They follow a similar pattern of first
computing superpoint regions as AL units instead of single
point, each with its distinctive selection strategy. For the
sake of completeness, another AL approach operating on
MLS scans worth to be mentioned, is proposed by Feng
et al. (2019). Although designed for object detection, this
method also exploits Monte Carlo dropout ensembles and
deep ensembles for entropy-based uncertainty estimation.

As previously mentioned, AL approaches for semantic
segmentation of ALS point clouds are rare. In one such
study, Hui et al. (2019) handle the generation of a Digital
Terrain Model (DTM), i.e., the filtering of ground points, as
a classification problem. The authors employ a SVM and
use AL to iteratively refine the filtering process and thus
the resulting terrain model. In each iteration step, a sig-
moid function scores the distance of points to the current
DTM level which, together with the SVM prediction, is
used to automatically assign a point to the Ground/Non-
Ground class. A similar understanding of an oracle can be
found in the work of Li and Pfeifer (2019), who design
a semi-supervised AL pipeline for 3D point cloud classi-
fication where labels of an initially provided (suboptimal)
training data set are propagated each to the point in an op-
timal neighborhood that incorporates the highest breaking
ties score to gradually improve an RF classifier.

Supervised AL for large-scale point cloud classification
is conducted by Lin et al. (2020b,a). The authors work with
a regularly tiled point cloud as input and employ AL to
minimize the required training data by selecting only the
most informative tiles. However, the authors expect that
the selected tiles receive full point-wise labeling, which,
from an economic point of view, does not fully exploit the
potential of AL to reduce costs by minimizing required
labels. For sampling, classic point-wise entropy, segment-
wise entropy and mutual information based on a Monte
Carlo dropout ensemble are compared to each other.

3 Methodology

As explained earlier, the integration of the individual com-
ponents of our hybrid intelligence system is achieved by

means of AL, which is the primary focus of our methodol-
ogy and is described in detail in Sects. 3.1–3.4. This is fol-
lowed by a discussion of considerations for both our human
processing units (Sect. 3.5) and electronic ones (Sect. 3.6),
to allow the machine to learn from annotations supplied by
the crowd.

3.1 An Outline of the Proposed Hybrid Intelligence
System

To initiate the process, as shown schematically in Fig. 3,
an unlabeled ALS point cloud U is given to an annota-
tion engine O, that can be either a simulated GT oracle or
a realistic crowd oracle (cf. Sect. 3.5). In an ideal scenario,
we would be capable of attracting and motivating a sub-
stantial pool of crowdworkers to willingly engage in our
labeling campaigns. However, promoting such a campaign
and then recruiting crowdworkers is a time-intensive and
often fruitless venture, particularly when dealing with te-
dious data annotation tasks. To overcome these recruitment
challenges, we turn to paid crowdsourcing. By leveraging
appropriate platforms (in our case MW), the campaigns can
be published as open calls to all crowdworkers that are reg-
istered on the particular platform, which greatly facilitates
the recruitment aspect.

Our crowd’s first task is generating an initialization data
set of samples for each class defined by an operator, that
can then be leveraged to train an ML model for semantic
segmentation of 3D point clouds (cf. Fig. 3). Subsequently,
we can derive a prediction for all remaining unlabeled data
points (cf. Fig. 3). As this already yields a complete annota-
tion of the originally given point cloud U , the pipeline could
theoretically already be stopped at this point. But since it
is unlikely that a model built solely on such a sparse ini-
tialization data set would produce satisfactory results, a re-
finement of the model and the derived annotation is now
sought.

Continuing the workflow is based upon the assumption
that the classifier is able to detect the samples in the remain-
ing pool of unlabeled data U with the highest predictive
uncertainty, and that inclusion of these points in the train-
ing data set would result in a more powerful model (i.e., we
consider a pool-based AL setting). In order to identify the
few most informative points (cf. Fig. 3), an adequate query
function is used to compute individual sampling scores.
The selected n+ points are then fed to the oracle O, which
is again responsible for labeling. Relying on the training
pool augmented with the current batch of training samples,
the next training cycle of this iterative procedure can com-
mence and the loop is repeated until the labeling budget
is depleted or, preferably, until convergence, where a more
extensive labeling effort will only lead to marginal perfor-
mance improvements.
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Fig. 3 An overview of our
crowd-based pipeline for se-
mantic segmentation of 3D point
clouds

We reason that the entire AL loop, involving the crowd,
can be regarded as a completely automated workflow. Al-
though humans are part of such a hybrid intelligence sys-
tem, they can be considered as human processing units that
cooperate with electronic processing units and behave in
the same way as the electronic units.

3.2 Exploringwhy AL is a Viable Alternative to PL

Prior to discussing the details of the AL working principle
and the employment of crowdworkers in this approach, we
give some insight as to why learning with just a few sam-
ples is a well-founded procedure. Besides being an achieve-
ment of AL, the idea of building a classifier on the basis
of only a few samples is also implemented in the well-
known SVM classifier. To train such a classifier, a fully la-
beled training set is often utilized, but eventually to train
an SVM is to identify the so-called support vectors. In the
end, the partitioning of the feature space using hyperplanes
is based solely on these support vectors. We also illustrate
this concept in Fig. 4, where we trained an SVM classi-

Fig. 4 Comparison of the labeled V3D training data set (a) and the derived support vectors (b). The support vectors are mainly located at the class
borders, so that outlines can be clearly identified. Class color coding is depicted in Fig. 5

fier on the basis of both geometric and radiometric features
for the V3D benchmark data set (cf. Sects. 3.6 and 4). We
can conclude that the training procedure is equivalent to
a filtering step, where only points describing object bound-
aries are preserved, as the point cloud of support vectors
in Fig. 4b is akin to a map showing the demarcations or
outlines of individual buildings and properties. Therefore,
we anticipate that such points will be the most informative
for the purpose of classification.

It seems that if one of the top classifiers of the pre-DL
era, namely an SVM, can get by with so few samples, other
classifiers ought to be able to do likewise. The significance
of this finding lies in the tremendous potential to save la-
beling effort. For example, our SVM classifier retains only
21.68% of the training points provided and infers its pre-
dictions only from these, so labeling the remaining points
is needless, actually.

So if we can figure out a way to directly and automati-
cally identify the points that have the strongest impact on
the final model without knowing their labels, we could re-
ally save the cost of labeling the rest of the points, which
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Fig. 5 Embedding feature vec-
tors from V3D into 2D space
through t-SNE along with ex-
emplary regions from which AL
points are drawn (blue circles).
For each region shown, a rep-
resentative is traced into object
space and displayed in blue.
While points (a) and (f) were
selected by crowdworkers in the
initialization step, the remaining
examples were actively queried
during the AL loop

is where AL comes in. Given an initial training data set,
we assess the uncertainty of the model at predicting unla-
beled data points and retrieve those for which the model
is most uncertain. If this sampling is achieved by an effi-
cient query strategy, we often need to label even a smaller
number of points than an SVM would find support vec-
tors (Mackowiak et al. 2018; Kellenberger et al. 2019).
The reason for this is the SVM’s utilization of the entire
vicinity of the decision border. Thus, many informative but
often alike points, quasi-duplicates, are involved. AL seeks
to circumvent this by using specially tailored query func-
tions (cf. Sect. 3.3). In our later experiments, up to 81.21%
of the sampled points are in fact support vectors. The im-
plication is that there are also non-support vectors in the
training set, sampled primarily in early iteration steps in
which the most challenging regions cannot yet be identified
due to suboptimal estimation of the separation hypothesis
at this stage (Tuia et al. 2011). However, as the iteration
progresses, the separating hyperplanes approach an optimal
position as the training set gradually increases, allowing for
more accurate queries (of support vectors).

For further insight into how AL works, we aim to visu-
alize the regions that AL focuses on in both feature space
and object space. While classifiers operate in a high-dimen-
sional feature space, humans tend to analyze the distribution
of selected points in object space. However, the selection of
AL points is only a result of effects in feature space, so we
opt to focus on that as well. In the interest of interpretabil-
ity, though, we map the high-dimensional feature space to
2D using t-SNE (van der Maaten and Hinton 2008). This is
done for the training set of V3D, using the same features
as in the SVM classification.

Fig. 5 exemplarily depicts regions of the training set
from which AL draws its points in the (reduced) feature
space, and also traces these selections into object space.

We differentiate between those regions from which sam-
ples are drawn in the initialization step (examples a and f)
and regions visited during the iteration (examples b, c, d
and e). In the initialization step, crowdworkers, of course
operating in object space, can freely select representatives
of all classes. They naturally tend to selecting points that
are as easy to label as possible, i.e., they would simply
pick a point in the middle of the object in question, far
away from the class borders (see Fig. 5 object space snip-
pets). Indeed, this agrees well with the illustration in the
t-SNE plot, where we can see rather homogeneous regions.
However, active sampling within the AL loop happens in
feature space and primarily favors heterogeneous regions
where there is a mixture of different classes. Tracing ex-
emplary points of such regions back into object space, we
notice that such points are not only close to the decision
borders in feature space, but also close to the class bor-
ders in object space. This leaves only the question of how
to identify these most informative instances in the high-
dimensional feature space, which is the focus of the next
section.

3.3 Querying Points in the AL Loop

Effective AL sampling strategies usually take into account
the predictive uncertainty of the classifier given its current
state. Uncertainty-based sampling strategies directly rely on
the posterior probability p.cjx/ that the point x belongs to
class c. Because we deal with multi-class settings where
we wish to reflect the predicted score for all n˝ classes, we
use entropy E (Shannon 1948) to assess this uncertainty. By
theory, this metric evaluates aleatoric uncertainty, i.e., sam-
ples are drawn from near the current decision border when
the posterior probability is given by a single classification
model (though in early iteration steps epistemic uncertainty
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Fig. 6 Comparison of different sampling strategies to select most informative points. Transparent points represent the current training data defining
the decision border. Yellow border lines indicate samples with highest scores. a Entropy sampling—emphasizing aleatoric uncertainty, but also
epistemic uncertainty (especially in early iteration steps), b Batch-mode AL with batch size 3 in combination with entropy sampling. Except for
the point closest to the decision border, 2 quasi-duplicates get selected, c Batch-mode AL with batch size 3 in combination with entropy sampling
and applied diversity criterion. Dotted lines represent formed k-means clusters

Fig. 7 Entropy evaluated in the
course of the iteration for the
first (a) and the last (b) itera-
tion step for the V3D data set.
Overall, the classifier gets more
confident in its predictions, well
corresponding to an improve-
ment of predicted class labels (c
vs. d), but class borders remain
most challenging. Class color
coding is depicted in Fig. 5

may dominate the scores). Yet, we can also measure epis-
temic uncertainty if, for example, the averaged posterior
probability of several models, e.g., from a deep ensemble,
is used. Either way, samples are drawn according to:

x+
E = argmax

x2U

 
−

nX̋
i=1

p.ci jx/ � log2p.ci jx/

!
(1)

Fig. 6a provides a visual interpretation of entropy sam-
pling. For a two-class setting, the entropy-based sampling
strategy corresponds to selecting the point closest to the

current decision border of the model as learned from train-
ing points that are already available. Fig. 7a and b displays
an exemplary evaluation of the entropy scores for the V3D
data set for different stages of the iteration. While the clas-
sifier becomes more confident as the iteration progresses,
we can note that throughout the loop, points located on or
near the class borders are the most uncertain for the clas-
sifier to categorize, as they may reveal ambiguous feature
vectors, but also provide the most helpful hints for refining
the decision borders. Ultimately, we prioritize sampling of
support vectors (cf. Sect. 3.2) to incrementally improve the
current separation hypothesis.
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Fig. 8 Entropy sampled points
(depicted in cyan) of two exem-
plary iteration steps of a batch-
mode AL loop. Class color
coding is depicted in Fig. 5

3.3.1 Fostering an Equally Class-Distributed Training Set

In the case point selection is based exclusively on entropy
scores, it is likely that classes that are underrepresented
in the data set will also be underrepresented in our point
queries, assuming that the relative number of points near the
class borders is equal to that of the entire data set. Thus,
if points of smaller classes remain undrawn, refinement of
the decision border(s) to effectively separate such under-
represented classes is unlikely to be prioritized and could
only be done implicitly by improving other class borders.
Therefore, moving the decision border(s) in feature space
to a cluster representing such an underrepresented class is
also not prioritized, and if points of such a class are not
adjacent to the class border, they may never be sampled.

Consequently, dedicated measures to give more prior-
ity to underrepresented classes are advisable. This can be
accomplished by introducing a dynamic weighting factor
wc.i/ for each class c at each iteration step i , by taking
into account the ratio between the total number of sam-
ples currently contained in the training dataset nL and the
number of samples for a given class nc :

wc.i/ =
nL.i/

nc.i/
(2)

Those weights are then multiplied with the predicted
score of each class, normalized and inserted into the en-
tropy formula. That way, the class score of the rarest class
is always increased compared to the other classes. The op-
erating principle of the weighting scheme is twofold. While
we aim to increase the sampling scores of points from rare
classes, at the same time we aim to decrease the scores
of well-represented classes in order to “free up” sampling
capacity for samples from such rare classes.

3.3.2 Guaranteeing Diversity in Sampled Batches

In terms of optimal point selection, the classification rule
should be updated with each new training sample (selected
using the above procedure) to obtain the best possible esti-

mate of the next point to be labeled. However, one sample
per iteration step is statistically questionable and simply not
efficient for most classifiers. Therefore, a batch of points
is usually selected at once. The simplest approach to this
would be to pick the n+ points with the highest sampling
score. When this is done based on entropy, the selected
samples can be fairly similar to one another (in terms of
their representation in both feature and object space), as
can be seen in Fig. 6b and Fig. 8. In other words, with
the exception of the sample closest to the decision border,
quasi-duplicates are picked that may not provide signifi-
cant value to refine the separation hypothesis. Statistical
significance is thus addressed, but efficiency remains an is-
sue. To boost the convergence of the AL loop, the most
informative and diverse set of points should be selected. To
achieve the latter, a feature space clustering algorithm can
be used to obtain n+ clusters, where we would like to select
only one point per cluster so that all points in the set are
sufficiently diverse. This can be realized by the k-means
algorithm (Lloyd 1982), which sets k cluster centers (in
our case k = n+) such that the Euclidean distance between
each data point in U and the distributed cluster centers �

is minimal.

X
xi2U

n+X
j=1

si
��xi − �j

�� ! min (3)

Note that we also introduce an individual weighting for
each data point, given by the sampling score s (i.e., E or
its weighted variant wE) of each point (Zhdanov 2019). In
a pure k-means sampling, the focus would be solely on the
diversity criterion, but clusters would likely populate high-
density class concentrations with low score values. Conse-
quently, only an insignificant improvement in current clas-
sification beliefs can be expected when picking points from
these clusters. Including the sampling score in the opti-
mization process, can ensure that most clusters are close to
the decision borders, but still we group most similar points
into the same clusters, thus avoiding sampling duplicates.
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Fig. 9 Operating principle of
our RIU technique for reducing
label ambiguities for the oracle,
shown for two different scenes.
Instead of the actual queried
point (cyan), an alternative point
within a certain radius (1.5m for
yellow and 4m for magenta),
which is intended to be easier
for human interpretation, is sent
to the oracle for labeling. The
color coding of the classes is
shown in Fig. 5

Fig. 6c demonstrates the improvement in terms of batch
diversity when relying on feature space clustering (pure
k-means clustering is shown for simplicity). After cluster-
ing, we select the point with the highest sampling score
from each cluster and refer to this method as Diversity in
Feature Space (DiFS).

3.3.3 Addressing Imperfect Oracles in AL

While entropy sampling together with its addition to ensure
diversity (DiFS) aimed at the best selection of points from
the machine’s point of view, we conclude this section by
also addressing the fact that, unlike many AL-related pub-
lications (Marcus and Parameswaran 2015), we are dealing
with a realistic, imperfect crowd oracle. Thus, to obtain cor-
rect answers from crowdworkers, we may have to sacrifice
informativeness. The idea is to consider the choice, i.e., the
score of the machine, only as a prior for the final point
selection.

As discussed in Sect. 3.2 and evident from Fig. 7, clas-
sifiers tend to select points located at the class borders in
object space. There we have the highest informativeness
values because points contain features of multiple classes.
But we assume that interpretability for the machine is also
related to interpretability for humans, so the points where
the ML algorithm is not confident in its decision are also
challenging for crowdworkers. Therefore, we argue that in-
creasing the distance to class borders is related to Reduc-
ing Interpretation Uncertainty (RIU), and thus refer to this
method as such. More specifically, we consider a point cho-
sen by the machine as the seed point, but instead query
a certain other point within a certain radius dRIU around
this point. In the end, the point with the lowest score in this
region, and thus hopefully with the highest interpretability,
is selected.

Fig. 9 visualizes this modification in point querying. Like
expected, the classifier selects points at class borders where
it might be difficult to decide which class to choose. For ex-
ample, the points at the borders between the classes Façade
and Roof in Fig. 9a may very well be assigned to either

class, depending on personal understanding of class mem-
bership. When we move away from the class borders, such
ambiguities disappear, and a human operator can safely and
quickly decide on a particular class. However, if the dis-
tance of the point from the class border becomes excessive,
the label may end up being of no use for training the ML
model (cf. Fig. 9). Thus, we are faced with a trade-off be-
tween human interpretability and information content for
the ML model.

3.4 Stopping the Loop

As highlighted earlier, our objective is to establish an auto-
mated hybrid intelligence system with the primary goal of
minimizing human involvement and associated expenses to
the greatest extent possible. In the pursuit of both automa-
tion and cost reduction, the significance of an efficient stop-
ping criterion for the AL loop becomes evident. One rel-
atively straightforward approach would involve a scenario
wherein a limited labeling budget dictates the permissible
number of labels, subsequently determining the number of
iteration steps (with a known batch size n+). A more so-
phisticated termination criterion, on the other hand, proves
valuable in situations where the labeling budget is substan-
tial and the aim is to continue the loop for a sufficient num-
ber of iteration steps to achieve stable performance while
avoiding unnecessary expenses. In essence, we aspire to
determine the optimal point where further iteration steps
would only slightly impact results.

The inherent difficulty in defining a stopping crite-
rion is that we cannot assume to have a representative
labeled test data set on which we could evaluate our clas-
sifier—otherwise, the AL idea of avoiding such a necessity
would be violated. Nonetheless, it is feasible to generate
predictions for a sufficiently extensive and representative
point cloud. This could encompass either the remaining
unlabeled training data set denoted as U or an independent
unlabeled test data set. By this, we can assess the agree-
ment between predictions from two successive iterations.
If a notable disparity exists between the present predic-
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tion and that from dstop iteration steps earlier, it’s likely
beneficial to continue the iteration. Drawing inspiration
from the methodology proposed by Bloodgood and Vijay-
Shanker (2009), we compute the overall congruence Co

through a straightforward comparison of predicted labels.
Furthermore, we derive an additional measure, Cac, which
is sensitive towards underrepresented classes. To this end,
for each class, a unique congruence value is computed by
evaluating whether all points currently designated as that
specific class were assigned to the same class in a specific
prior iteration step. Subsequently, an average value across
all class-specific congruence values is computed to yield
a class-aware indicator. Terminating the loop is based on
comparing the standard deviation of congruence values
(either Co or Cac) computed over the most recent nstop

iteration steps (which can be interpreted as the derivative
of congruence values) against a user-defined threshold tstop.
This avoids the necessity of specifying an absolute con-
gruence value, a parameter prone to considerable variation
depending on the task and data specifics. The threshold’s
definition governs the stringency of the stopping criterion,
thereby determining whether the loop should stop at the
earliest iteration step where minimal change is anticipated
or continue until convergence can be confidently presumed.

3.5 The Crowd as AL Oracle

While the previous sections discussed AL as backbone of
our hybrid intelligence system, we will now focus on the
human component, in our case the crowd. Before doing so,
we briefly review different oracle types in an AL setting for
semantic segmentation (Sect. 3.5.1) and afterwards focus on
means to minimize labeling errors, which can be achieved
either by easy-to-use tools (Sect. 3.5.2) or measures for
automated quality control (Sect. 3.5.3).

3.5.1 Oracle Types in AL

In the end, the performance of our AL pipeline is deter-
mined by the quality of labels provided by the oracle for the
selected points. While in literature, often an all-knowing GT
oracle OO is assumed, this idealization falls short in real-
world scenarios where human annotators are entrusted with
point labeling. Consequently, labeling errors should also
be incorporated into oracle simulations. These errors can
manifest either as entirely random or can exhibit system-
atic tendencies (Lockhart et al. 2020). In the case of a noisy
oracle ON , a fraction of points is consistently assigned to
classes other than the correct one. However, more signifi-
cantly, a confused oracle adheres to distinct mapping func-
tions (e.g., systematically labeling façades as class Roof),
a phenomenon that can have a significant negative impact
on classifiers (Kölle et al. 2021a). This issue is particularly

pronounced in AL, as point sampling occurs at class bor-
ders (both in feature and object space, as depicted in Fig. 5),
where selected points are often ambiguous. Consequently,
systematic errors can arise due to differing class interpreta-
tions. However, with RIU (cf. Sect. 3.3.3), we hope to avoid
occurence of the latter effect.

3.5.2 Designing Labeling Tools for the Crowd

Prior to discussing techniques aimed at enhancing the accu-
racy of labels generated by the crowd, we provide a concise
introduction to our web tools necessary for executing the
crowd-related tasks within our AL-driven framework. In
essence, these tools should be fashioned to be effortlessly
accessible, avoiding the need for extensive intros. This ap-
proach aligns with the primary objective of the majority
of crowdworkers in a paid crowdsourcing scenario, which
is quickly earning money. Consequently, extensive instruc-
tions are likely to be ignored either way (Endres et al. 2010).

As mentioned in Sect. 3.1, the crowd is expected to pro-
vide both an initialization data set and labels for points re-
quested during the AL loop. The workflow begins by show-
ing the RGB-colored point cloud to crowdworkers. They are
instructed to mark one point for each class defined by the
system operator at the beginning of the AL loop. A snap-
shot of the tool used for this purpose, referred to as crowd
task Type A, is displayed in Fig. 10a. Since crowdworkers
can freely choose points, ensuring quality control becomes
challenging because there is no real opportunity to include
checks in the task. Moreover, using a method like majority
voting after data collection is not practical since it is un-
likely that multiple crowdworkers will pick the same point.

To ensure generation of a high-quality initialization data
set for the classifier, we have developed a second tool aimed
at identifying errors originating from the prior campaign
with our Type A tool. As evident from Fig. 10b, the overall
design of our Type B tool closely resembles that of Type A.
Nonetheless, its complexity is considerably streamlined as
crowdworkers in fact (and in contrast to Type A) are not
required (but allowed) to interact with the data. Instead,
they only need to determine whether a presented point is
correctly assigned to its designated class. This task is ex-
pected to be straightforward in terms of both 3D navigation
and interpretability. Points identified as incorrect can sub-
sequently be discarded, effectively rendering crowdwork-
ers employing the Type B tool as “filters” for refining the
outcomes generated by Type A campaigns. The third tool,
denoted as Type C, is tailored for labeling points selected
during the AL iteration (cf. Sect. 3.1), and will thus be
employed most frequently. Type C is structurally akin to
Type B, with the primary distinction being that crowdwork-
ers are tasked not with a binary decision, but with solving
a multi-class classification problem. The significant advan-
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Fig. 10 Compilation of our tools required for the human crowd component within our AL-based framework. Each tool also offers a short introduc-
tion video, a task description, and a feedback option, not visualized here. a Type A: Selecting one point for each class, b Type B: Checking labels
of selected points, c Type C: Labeling selected AL points

tage of these latter two tools lies in their inherent ability to
allow for quality control measures, as outlined in the next
section.

3.5.3 Automated Quality Control

In order to mitigate crowd labeling errors, we draw upon
strategies outlined by Zhang et al. (2016), encompassing:
(i) quality control during task design and (ii) quality en-
hancement after data collection. As previously mentioned,
these measures are only valid for our crowd tasks of Type
B and Type C (cf. Sect. 3.5.2). Crucially, all quality con-
trol approaches must be inherently automatable, devoid of

manual checks or operator interventions, as our ultimate
objective is to achieve a fully automated pipeline.

To address quality control during task design, a straight-
forward approach is presenting a specific point for labeling
multiple times. This redundancy serves to assess the crowd-
workers’ consistency in their labeling, without necessarily
guaranteeing correctness of the label. As this tactic might
not effectively identify crowdworkers deliberately assign-
ing the same class label to all points, irrespective of the
data, a more robust strategy is combining consistency tests
with check points for which the true label is known (Kittur
et al. 2008). These check points can be randomly mixed
into real payload tasks. Consequently, only results from
crowdworkers who successfully pass all validation checks
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are kept and justify payment of the respective worker. This
strategy can lead to crowdworkers stopping contributing to
our campaigns out of frustration of not passing respective
checks, which however can be considered a desired prop-
erty as our campaigns will not benefit from said worker’s
contributions and we would rather have respective points
labeled by another worker out of the millions of registered
crowdworkers.

But even crowdworkers passing the check points might
not provide optimal labeling for the actual payload points.
This concern is particularly pronounced in our Type C tasks,
where labeling selected AL points can be considerably com-
plex for interpretation (especially in later iteration steps) so
that a single crowdworker might fail in deriving the true
label. To counteract this issue by means of quality improve-
ment after data collection, we leverage the concept of the
Wisdom of the Crowds. In our case, this can be realized by
assigning a task to multiple crowdworkers and afterwards
aggregating the results automatically through majority vot-
ing, again avoiding engagement of an expert. However, in
paid crowdsourcing, repetitively labeling points translates
to a multiplication of costs. Thus, the number of multiple
acquisitions should be kept limited, which raises the ques-
tion of how many is enough, as recently answered by Kölle
et al. (2021b) for this specific task setting.

3.6 Classifiers for 3D Semantic Segmentation

After presenting the human part of our hybrid intelligence
system, for the machine part, the only component left to
discuss is the classifier that is to be employed for semantic
segmentation of 3D point clouds. To demonstrate general-
izability of results, we rely on both a representative of the
feature-driven domain, an RF classifier, and a representa-
tive of the data-driven domain, a 3D-convolution-approxi-
mating, voxel-based SCN classifier, which is based on the
work of Schmohl and Sörgel (2019). For an ML model to
be successfully incorporated into AL, it (i) needs to be ca-
pable to learn from sparsely labeled data, (ii) must be suit-
able for reliably assessing its uncertainty—especially, its
epistemic uncertainty, which we seek to minimize, and (iii)
has to be provided with/needs to be capable of inferring,
explicit point-wise feature vectors to guarantee diversity
within sampled batches.

For the RF classifier, the latter requirement is met by
design, as we utilize hand-crafted features. Precisely, we
use a set of both geometric (structural tensor features, ori-
entation of fitted plane, roughness, height above ground
etc.) and radiometric features (LiDAR inherent features
and color information) evaluated for multi-scale spherical
neighborhoods, as described in the work of Haala et al.
(2020). Also, learning from sparsely labeled data (challenge
(i)) can be straightforwardly implemented for the RF, as

we simply reduce the list of samples provided for training.
Furthermore, we argue that the predicted (pseudo) posterior
probability of the RF is well suited to assess epistemic
uncertainty, as it is the result of averaging over multiple
bagging ensemble members and thus satisfies condition (ii).

As for the representative of the data-driven domain, the
aforementioned challenges are more complex to overcome.
Usually, ML models compute the loss over all labeled
instances (or voxels in our case). However, dealing with
sparse annotations, not every voxel carries a label, but
should still be presented to the network to enable it to
derive meaningful geometric descriptors (at least if it lies
within the receptive field of one of the few labeled voxels,
i.e., if it describes the neighborhood of labeled cells). Thus,
to address (i), we modify the loss function so that unlabeled
“background” voxels are ignored in loss calculation, but
still contribute in training due to their passive presence. To
address (ii), we employ a so-called deep ensemble, where
each ensemble member is trained on the same training set
but they differ in the randomly initialized weight values. In
inference, we then compute the average over all ensemble-
wise posterior probabilities to reliably estimate epistemic
uncertainty (Jospin et al. 2022).

Although the network implicitly utilizes self-taught fea-
tures, for (iii), we need to find a way to explicitly output
point-wise feature vectors. To do so, we concatenate filter
responses of the different levels of our 3-level U-Net like
architecture from both the encoding and decoding branch to
obtain a multi-scale description of our input points. How-
ever, at deeper levels, the original input voxel cloud is
represented in a more abstract manner at a lower resolution
than the input. As a remedy, we assign respective features of
deeper levels to all voxels at the original resolution that have
been aggregated into this specific cell. As can be seen from
Fig. 11, this often leads to a voxelated representation where
upsampled filter responses from deeper encoding levels are
smoother than their counterparts from decoding levels (al-
though stemming from the same lower resolution). This is
due to retrieving features in the decoding branch directly at
the deconvolutional layer, essentially incorporating the res-
olution of the previous deeper level, which is contrary to the
encoding branch where features are retrieved after a series
of 3D convolutions at the last layer of an encoding level.

Obtained filter responses of the encoding branch in
Fig. 11 often resemble typical features utilized by feature-
driven classifiers. For instance, Fig. 11a is reminiscent of
a verticality measure and Fig. 11c seems to score flatness.
However, both responses also appear to be impacted by
radiometric features, as convolutions are performed over all
available input channels. Also, the model tries to gradually
enhance its context awareness with Fig. 11e resembling
height above ground, which can only be inferred from
a wider spatial context. Contrary to the encoding branch,
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Fig. 11 Filter responses from
selected filters at different levels
of our SCN. Subfigures are
arranged in an order to match
the U-shape of the SCN.
a Encoding branch level 1,
b Decoding branch level 1,
c Encoding branch level 2,
d Decoding branch level 2,
e Encoding branch level 3,
f Decoding branch level 3

where the data is solely described by deriving descriptive
features, in the decoding branch the model progressively
develops its ability to recognize individual classes. In this
regard, Fig. 11f attempts to accentuate buildings, but also
lower parts of high vegetation that are often geometrically
similar (both are vertically oriented and noisy, either due to
façade furniture or detailed branch structures), but are al-
ready far less emphasized in Fig. 11d. Eventually, Fig. 11b
is clearly suited to extract points of a specific class, in this
case class Car.

4 Data

To test the presented methodology, we draw on the current
benchmark data sets for semantic segmentation of geospa-
tial ALS point clouds provided by ISPRS. These data

sets include the Vaihingen 3D Semantic Labeling Contest
(V3D), which serves as a representative ALS point cloud
example (Niemeyer et al. 2014), and epoch march 2018
of the high-resolution Hessigheim 3D Benchmark (H3D)
captured from an UAV (Kölle et al. 2021a). While both data
sets offer diverse and demanding class categories, they are
limited in spatial coverage. To supplement this limitation,
we incorporate a third data set — a National Mapping
Agency ALS point cloud depicting Stuttgart’s city center
(S3D). This data set spans an area approximately 30 times
larger than the V3D data set, yet it features a relatively
small class catalog, as indicated in Table 3. Nonetheless,
this data set is suitable for evaluating the scalability of AL.

Since one of the goals of this work is to minimize label-
ing effort by experts, we aim to give an estimate of the la-
beling costs for such data sets, exemplarily for H3D’s epoch
November 2018. Annotating the complete point cloud from
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Table 1 Comparison of reachable accuracies [%] for different training approaches and oracles using RF and SCN for the V3D data set after
30 iteration steps. TP represents the result of the top-performing model of the benchmark challenge

Method Sampl. Method Oracle F1-score

Powerl. L. Veg. I. Surf. Car Fence Roof Façade Shrub Tree mF1 OA

TP 61.99 88.83 91.22 66.72 40.66 93.61 42.62 55.87 82.57 69.34 85.24

RF

PL 48.39 83.16 91.93 72.68 14.94 95.17 64.30 40.60 80.73 65.76 84.25

AL wE OO 49.98 80.50 89.99 70.68 14.49 94.50 52.45 43.55 77.11 63.69 81.00

wE +DiFS OO 61.90 80.53 90.24 73.12 28.58 94.14 57.08 43.55 78.99 67.57 82.43

wE+DiFS+RIU OO 67.35 79.37 89.50 70.32 28.53 92.77 60.45 39.62 79.24 67.46 81.59

wE+DiFS+RIU ON 68.85 79.44 90.16 69.43 27.44 92.64 58.06 36.66 77.00 66.63 81.17

SCN

PL 42.11 81.40 91.11 72.15 41.22 94.10 59.65 48.87 83.88 72.92 83.86

AL wE OO 65.17 78.29 88.96 68.86 25.32 88.39 49.58 34.49 76.81 63.99 79.07

wE +DiFS OO 60.57 79.31 88.59 72.28 24.92 91.21 55.34 43.44 80.16 66.20 81.13

wE+DiFS+RIU OO 63.02 79.52 89.62 75.03 26.33 91.18 54.41 38.45 78.27 66.20 80.91

wE+DiFS+RIU ON 60.68 78.89 89.48 74.09 22.29 90.64 53.77 39.10 78.54 65.28 80.59

Table 2 Comparison of reachable accuracies [%] for different training approaches and oracles using RF and SCN for the H3D data set after
30 iteration steps (RF) and 10 iteration steps (SCN), respectively. Furthermore, we report the result of the (at the time of writing this paper) top-
performing TP model of the still ongoing benchmark challenge

Method Sampl. Method Oracle F1-score

L.
Veg.

I.
Surf.

Car U.
Furn.

Roof Façade Shrub Tree Gravel Vert.
Surf.

Chim. mF1 OA

TP 92.90 90.23 78.51 57.89 95.71 80.43 68.46 97.21 62.37 73.08 72.45 79.02 89.75

RF

PL 89.97 88.17 63.76 49.18 95.59 78.08 65.86 95.36 47.34 59.63 80.52 73.95 86.87

AL wE OO 87.04 79.33 49.48 42.15 93.17 74.72 63.22 95.12 46.65 27.40 85.50 67.62 81.63

wE +DiFS OO 91.04 85.93 59.74 43.64 95.92 76.40 64.41 95.68 51.34 54.80 82.97 72.90 86.58

wE+DiFS+RIU OO 88.38 85.97 55.68 44.07 93.75 75.64 66.46 95.56 49.69 55.53 63.59 70.39 84.84

wE+DiFS+RIU ON 88.06 86.94 56.01 42.88 93.93 75.78 64.43 95.14 46.67 56.17 50.26 68.75 84.82

SCN

PL 90.69 87.82 55.17 52.52 96.74 81.61 63.25 96.60 50.55 70.97 63.24 73.56 87.40

AL wE OO 84.91 79.04 51.37 38.98 92.45 75.10 51.51 92.01 43.77 60.90 63.65 66.70 80.25

wE +DiFS OO 88.28 82.06 68.27 40.25 95.01 77.68 56.81 95.66 49.91 70.09 74.64 72.61 84.35

wE+DiFS+RIU OO 89.58 85.45 68.36 45.50 95.55 75.78 49.87 95.76 54.18 70.87 48.96 70.90 85.44

wE+DiFS+RIU ON 89.29 83.03 63.64 39.06 94.78 73.93 51.50 95.24 54.59 67.10 54.31 69.68 84.43

Table 3 Comparison of reach-
able accuracies [%] for different
training approaches and oracles
using RF for the S3D data set
after 30 iteration steps

Method Sampl. Method Oracle F1-score

U. Furn. Ground Building Tree mF1 OA

PL 75.30 98.63 96.82 93.97 91.18 95.51

AL wE OO 67.70 98.19 96.12 93.31 88.83 94.63

wE + DiFS OO 66.25 98.29 96.03 93.40 88.49 94.65

wE + DiFS + RIU OO 62.19 97.87 94.81 91.90 86.69 93.47

wE + DiFS + RIU ON 59.86 97.82 93.89 91.51 85.77 92.83

scratch and checking each point two times (checks were
conducted by different student assistants each) took about
1490hours. That is for an area of about 0.207km2 result-
ing in an average time effort of 0.431min=m2 and makes
with a salary of $14.69=h an amount of $0.106=m2, respec-
tively. Please note that, on one hand, labeling costs highly

depend on the complexity of the scene, the defined class
catalog and the desired accuracy level, defining the number
of multiple acquisitions or checks. On the other hand they
vary with the skill and salary of the workers. Nevertheless,
this calculation is supposed to give an impression of effort
required to obtain data for real-world projects. For com-
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parison, Zolanvari et al. (2019) report a similar workload
of 0.194min=m2 for labeling the DublinCity data set (13
classes).

5 Results

Following the outline of our methodology (Sect. 3) and the
presentation of the data sets of interest (Sect. 4), we can
finally run our hybrid intelligence system for a variety of
experiments. At first, we will focus on finding an optimal
configuration and parametrization of the machine part uti-
lizing a simulated crowd oracle (cf. Sect. 5.1), which is then
subsequently replaced by a real crowd oracle (cf. Sect. 5.2).

5.1 Simulation of the Hybrid Intelligence System

To assess the (theoretical) capabilities of AL, we now em-
ploy the different sampling strategies and classifiers de-
scribed in Sects. 3.3 and 3.6 to our three different data
sets. We report results of pure weighted entropy sampling
(wE) as well as the adapted variant with the DiFS sampling
add-on. But to also give realistic estimates of accuracies
to be expected in an AL scenario where human processing
units are employed for labeling the queried points, we (i)
augment sampling with RIU, to reduce chances for encoun-
tering an oracle following a systematic error behavior, and
(ii) incorporate a noisy oracle ON where 10% of labels
are randomly misclassified in each iteration step. In each
of our AL runs, the initial data sets consist of 10 samples
per class. Unless stated otherwise, we report AL results af-
ter 30 iteration steps with 300points queried in each step,
exclusively from the dedicated training set, predicting on
the respective test splits (i.e., we adhere to the official data
splits for the benchmark data sets). As for the incorporated
ML models, the RF is parametrized by 100 binary decision
trees with a maximum depth of 18 and a minimum number
of samples at a node to justify a new split of 7. Respec-
tive features are computed for spherical neighborhoods of
r 2 f1; 2; 3; 5g m. For the SCN classifier, we employ a deep
ensemble of 5networks, each operating on a 0.5m voxelized
input point cloud. To reduce computation time, networks of
each iteration step start their training cycle based on the
result of the previous iteration step and use the current de-
cayed learning rate. Apart from these AL runs, we rely on
both the PL results of our classifiers using the fully labeled
training set and the PL result of the respective benchmark
leader (for V3D & H3D) as baseline solutions.

As for the results for the V3D data set, we can firstly con-
clude from Table 1 that both our classifiers are well suited
for the task at hand, as our PL results are on a level com-
parable to the top-performing benchmark submission, and
are only worse by about 1percentage point (pp) in Overall

a

b

Fig. 12 Comparison between the class distributions in the original
V3D training data set (a) vs. the one obtained by AL after 30 iteration
steps (b)

Accuracy (OA). However, we prefer comparing our AL-
based runs to the PL result obtained with our classifiers,
as these can be considered the limit of achievable accu-
racy for the specific model. Regarding the AL runs, it is
evident that the DiFS sampling add-on contributes signif-
icantly to the improvement of the classification accuracy,
so that the wE + DiFS strategy can be considered as opti-
mal result from the point of the machine, performing less
than 3pp worse in OA compared to PL for both the RF and
SCN classifier. However, in a realistic scenario with im-
perfect human operators as oracle, these accuracies are un-
likely to be achieved. Thus, we add the RIU technique with
dRIU = 1.5m to minimize chances of systematic errors and
consequently simulate only the effect of a noisy oracle ON .
Such more realistic AL runs perform only marginally worse
with a final loss of < 5pp in OA compared to the best-per-
forming PL benchmark submissions, but are far more cost-
efficient since only 1.15% of points from the training set
require labeling.

With respect to the performance of individual classes,
underrepresented categories such as Powerline or Car tend
to perform better in AL than in their PL counterparts. This
effect can be traced back to the generation of a training set
in AL, which, thanks to the weighted sampling scheme (cf.
Sect. 3.3.1), has a distribution that is close to that of an
equal distribution, as clearly visible from Fig. 12.

As for the RF classifier vs. the SCN classifier, results
are rather similar, with the RF slightly outperforming the
SCN. However, the two models differ significantly in com-
putational complexity, which is due to their basic working
principle. With the RF, features of each point only need to
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be computed once and can be kept throughout the iteration.
But for the SCN, whenever new labels become available,
we need to recompute or at least refine features of all points
(voxels), which is inevitably computationally more expen-
sive. Precisely, an RF-based AL iteration step can be com-
pleted in about 1minute, whereas such a training cycle for
the SCN takes about 50 times as long. Therefore, for AL,
CNN-based approaches are a suboptimal choice—at least
from a purely economic point of view.

Hence, for the high-resolution H3D data set incorporat-
ing a significantly larger voxel volume, we are compelled
to ease the computational load by reducing the number
of training cycles to 10 iteration steps, but then sampling
600points in each step. We also slightly adapt our RF classi-
fier to H3D’s resolution and compute features for neighbor-
hoods of r 2 f0.125; 0.25; 0.5; 0.75; 1; 2; 3; 5gm. Generally,
results on H3D confirm our observations on V3D with final
classification accuracies for wE + DiFS + RIU with an ON

oracle that are less than 3pp worse compared to our classi-
fier’s optimal PL results and only require 0.12� (RF) and
0.08� (SCN) of available training points. We would like
to emphasize that in such an ultra-high-resolution data set,
due to spatial proximity of neighboring points, we always
face a significant number of quasi-duplicates with respect
to the representation of these points in feature space. This
underlines the significance of DiFS, which is capable of
improving OA values by > 4pp and mF1 values by > 5pp
for both classifiers.

Since our two classifiers lead to similar accuracy lev-
els for V3D and H3D, due to the aforementioned advan-
tages in time complexity, we restrict ourselves to reporting
solely RF-based AL runs for the large-scale S3D data set.
As this data sets depicts a significantly larger scene with
a plethora of representatives for each class, we are dealing
with a much greater intra-class variety, which is further am-
plified by generalization through the rather coarse class cat-
alog. Thus, the highest accuracies are achieved for S3D in
the PL run. Especially class Urban Furniture suffers when
learning from only limited training sets, as those fail to
truthfully characterize the large variety of this quasi-class
Other. Nevertheless, with the optimal configuration from
the machine’s point of view (wE + DiFS), we obtain a re-
sult that is less than 1pp worse in OA than in PL, but only
utilizing 0.23� of available training points (please note
that the effect of boosting convergence by DiFS is not vis-
ible at this saturated state of the iteration after 30 iteration
steps, but improves OA by > 2pp at iteration step 10, for
instance).

5.2 Running the Real-World Hybrid Intelligence
System

Recalling the overall aim of enablingML by an efficient and
fast generation of training data through paid crowdsourcing,
this section is dedicated to evaluating the performance of
a hybrid intelligence system formed by combination of an
ML algorithm and the crowd, merged by means of AL.
Thus, this section can be considered as reiteration of parts
of the experiments conducted in the previous section, differ-
ing, however, by the fact that we no longer rely on simulated
oracles, but on real crowd oracles OC . Again, we test the
presented framework for all three test sites with different
characteristics (cf. Sect. 4), especially focusing on the indi-
vidual and joint performance of the crowd in interplay with
the machine learning from the human processing units. All
the experiments discussed in the following are run utilizing
the CATEGORISE framework (Kölle et al. 2021b).

5.2.1 Initializing the Loop

Due to our goal of transferring all labeling tasks from an
expert operator to crowdworkers, their first responsibility is
the generation of an initialization data set necessary to kick
off the AL run, i.e., the interactive communication between
crowd and machine in the first place. Thus, by utilizing our
web tool of Type A (cf. Sect. 3.5.2), for each data set, our
crowdworkers are asked to identify one point for each class.
Precisely, 100workers are tasked at a payment rate of $0.10.
The respective confusion matrices for each data set can be
found in Fig. 13a for the V3D data set. Unsurprisingly, a lot
of crowdworkers deliver insufficient labels, causing a rather
low OA of about 53%, which is due to no quality control
mechanisms being in place.

To refine generated labels, the next step is to filter the re-
sults obtained in the first place by a second group of crowd-
workers. This is accomplished by means of our Type B la-
beling tool (cf. Sect. 3.5.2). Based on the findings of Kölle
et al. (2021b), here we ask a total of 3 crowdworkers to
check each point at a payment of $0.10 + $0.05 (base pay-
ment + bonus) in the sense of majority voting. Table 4
gives an overview of the results from these binary catego-
rization campaigns (Correct/False) after aggregation of an-
swers from our crowdworkers by means of majority voting.
Since we consider these campaigns as filters, recall values
are of special interest for detecting both false and correct
labels. While almost no correctly labeled points are marked
as incorrect by the crowd, crowdworkers struggle to identify
false labels. In other words, crowdworkers seem to hesitate
to flag points as incorrect if they are not completely sure
about the correct answer. In this regard, the crowd performs
worst on the H3D data set, which is actually supposed to
give the easiest representation of data.
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a b c

Fig. 13 Labeling accuracy of the crowd in context of the initialization of an AL loop on the V3D data set. The accuracy of the raw and unchecked
crowd labels (a) are controlled by a second group of crowdworkers in a crowd campaign of Type B to refine results (b). To further ease the labeling
complexity, we restrict the class catalog and merge classes accordingly (c)

Table 4 Statistics of our Type B crowd campaigns for improving the
initially assigned labels by crowdworkers. The relative amount of re-
maining samples refers to all points that are marked by the crowd to
be labeled correctly and thus remain for the initialization data set. All
measures are given in [%]

Data
set

Recall OA Rel. amount of

False Correct Remaining samples

V3D 87.94 98.05 91.66 57.60

H3D 60.31 97.31 84.44 78.80

S3D 85.71 98.96 95.25 75.25

However, the poorer performance is mainly due to more
obvious errors in the other data sets. V3D and S3D rely
on a suboptimal colorization by orthogonal projection of
a temporally disjoint orthophoto. Among other issues such
as roof-like colorization of façades, this is especially prob-
lematic for dynamic objects such as cars. In our campaigns,
often, points geometrically depicting streets but radiometri-
cally representing cars (due to mapping of car color values
to streets) are mistaken for cars in the Type A campaigns.
With a closer look at the point cloud and with the simplified
3D point cloud navigation requirements in our Type B cam-
paigns, such errors can be easily detected. Thus, data sets
with non-optimal colorization perform better in this eval-
uation of Type B campaign results (cf. Table 4) since the
errors are more obvious. After checking results, all points
that are marked as False are eliminated, which is why a high
recall value for Correct is particularly desirable (i.e., drop-
ping true labels should be minimized). On average about
30% of initially collected labels are discarded in the pro-
cess (cf. Table 4) and filtered confusion matrices can be
built (cf. Fig. 13b). By this, we can improve OA of our
crowdsourced labels by about 24pp on average (over all

data sets), underlining the impact of such control tools, but
this improvement in accuracy comes at the expense of the
size of the initial training set.

Nevertheless, some errors remain, especially for the V3D
and H3D data sets, containing rich class catalogs. This
means that some classes are hard to comprehend for our
crowdworkers, being in accordance to the findings of Bayas
et al. (2016), stressing a limited feasible class catalog for
crowdsourced data acquisition. However, these errors are
more due to rather ambiguous classes and not hard label
errors, e.g., in case of V3D, Shrub vs. Tree and Fence vs.
Shrub, but also due to insufficiently and sparsely depicted
objects such as powerlines. Since distinguishing between
such classes is hard to communicate to crowdworkers and
even experts might argue on those, for V3D, we decide to
merge classes Fence, Shrub and Tree into class Vegetation
and merge class Powerline into class Roof. Similarly, for
H3D, classes Shrub and Tree are merged into Vegetation,
Chimney is added to Roof and Soil/Gravel to Low Vegetation
(class Vertical Surface was merged directly with Façade in
the first place following a similar arguing). Naturally, this
step further improves accuracies, where remaining confu-
sion for V3D mainly happens between classes Roof vs.
Façade, which is also due to the aforementioned merging
of classes Powerline and Roof, as crowdworkers originally
sometimes tend to label sparsely discretized linear point ag-
glomerates as Powerline instead of Façade. Nevertheless,
training data sets with an average OA over all our test sites
of 95% can be utilized for initializing the AL loop.
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Fig. 14 Overview of the
achieved performance for our
hybrid intelligence system for
both the V3D (first column)
and H3D data set (second
column). In a and b we report
the achieved labeling accuracy
of the crowd (first row) as well
as the accuracy of the machine
learning from the crowd (second
row) along with our congruence
measures Co and Cac evaluated
for runs relying on real crowd
oracles OC . Dotted black lines
represent the result of PL.
Depictions in c and d represent
the class-wise relative amount of
points sampled in each iteration
step evaluated based on the GT
labels

a b

c d

5.2.2 Parametrization of the Hybrid Intelligence System

Based on these initial training sets, we launch respective
AL loops for all our test sites applying the weighted en-
tropy sampling strategy with DiFS sampling add-on and
a batch size n+ = 300. In each case, we conduct a total of
10 iteration steps and allocate 10payload points per crowd
job (of Type C), which are posted to 3different crowdwork-
ers for the purpose of majority voting at a payment rate
of $0.10 + $0.05 (Kölle et al. 2021b). To compare the runs
relying on a crowd oracle OC to the theoretically maxi-
mum achievable performance, in each case, we also sim-
ulate corresponding AL loops by utilizing GT oracles OO

and contrast all runs to the respective PL solutions using
the completely labeled training set. Regarding this, Fig. 14

and 15 give an impression of the learning process of the
hybrid intelligence system over all iteration steps. Table 5
summarizes the final accuracies achieved by the ML model
for the semantic segmentation task.

5.2.3 The Performance of the Crowd

With respect to the labeling accuracy of the crowd, we can
observe that the OA values yielded in the respective itera-
tion steps are significantly worse compared to those of the
initial training set (i.e., iteration step 0) (cf. Figs. 14a and b
and 15a). But in contrast to the initial labeling step, where
crowdworkers themselves select the points to be labeled, in
the AL iteration steps, they are determined by the machine.
Since the ML model aims to resolve ambiguities between
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Fig. 15 Overview of the
achieved performance for our
hybrid intelligence system for
the S3D data set. In a we report
the achieved labeling accuracy
of the crowd (first row) as well
as the accuracy of the machine
learning from the crowd (second
row), along with our congruence
measures Co and Cac evaluated
for runs relying on real crowd
oracles OC . The dotted black
line represents the result of PL.
Depictions in b represent the
class-wise relative amount of
points sampled in each iteration
step evaluated based on the GT
labels

a

b

classes, it will tend to choose points it is currently most
uncertain about near the decision borders, which often cor-
respond to class borders as well (cf. Sect. 3.2). Thus, the
reduced accuracy in AL iteration steps is due to dealing
with points that are more complex for crowdworkers to la-
bel. Apart from this observation, all accuracy curves follow
a decreasing trend. But at the same time, the more advanced
the iteration, the better the performance of our model, as
border cases of previous iteration steps can now be solved
successfully. However, this also means that cases where the
machine is uncertain become gradually more demanding,
i.e., it focuses on more and more special edge cases which
are complex for interpretation not only for the machine but
also for the crowd.

As hoped for, the RIU technique (with dRIU = 1.5m)
effectively helps to ease labeling for crowdworkers by fo-
cusing on points that are related to, but easier to interpret
than the point originally selected by the machine. A more
detailed analysis of the crowd performance both with and
without support from RIU is given in Fig. 16 for the H3D
data set. RIU is indeed capable of improving the OA of
a training set generated within the AL iteration by about
4pp, which is caused by presenting points to the crowd that
are easier to label. This technique allows to resolve label
ambiguities between adjacent classes, such as Low Vegeta-
tion vs. Impervious Surface, Roof vs. Façade, Impervious
Surface vs. Façade, as can be seen from Fig. 16. Although
the rate of confusion of classUrban Furniturewith the other
classes can be reduced, the highest frequency of confusion
can still be observed with respect to this class due to the

high intra-class variability. This issue cannot be solved by
simply increasing the distance to the class border when the
class affiliation of the object under consideration is ques-
tionable as a whole.

Apart from the accuracy of the human component of the
system, also the corresponding time effort should be con-
sidered, especially as it ultimately determines the required
time of a complete run of the hybrid intelligence system.
This is due to a negligible processing time of the machine
part, i.e., the classifier, provided that we rely on the RF

model (cf. Sect. 5.1). As for the time required for the la-
beling step of a crowd-driven training cycle/iteration step
of our system, this can be specified as less than 11hours.
Thus, a whole AL run including initialization is completed
in about 5days (10iteration steps � approx. 11h + approx.
16h for initialization = 126h).

5.2.4 The Performance of the Machine

Considering the machine part of the intelligence system,
i.e., the ML model, its performance is depicted in Figs. 14a
and b and 15a for our different data sets. As for the runs with
a simulated omniscient oracle OO (as baseline solution),
AL runs of all data sets show the typical convergence behav-
ior and approximate the PL baseline solution. When adding
the RIU technique (i.e., ALRIU.OO/), respective runs tend
to perform even better. This is because increasing distance
from the class border can correspond to selecting a more
generalized batch rather than only focusing on most infor-
mative and thus most demanding instances. Although we
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Table 5 Comparison of accuracies reached for the V3D, H3D and S3D data set for PL and various AL approaches after 10 iteration steps using
different oracle types and sampling functions

Method Oracle F1-score [%] [%]

U. Furn. Car L. Veg. I. Surf. Roof Façade Veg. mF1 OA

V3D

PL – – 65.64 82.25 91.28 94.81 62.30 86.24 80.42 88.11

AL OO – 66.00 79.35 90.70 93:14 57:86 83:06 78:35 85:89

OO + RIU – 67.80 80.67 91.13 91.12 55.22 81.83 77.96 85.29

OC – 66.05 80.11 90.71 91.25 49.87 82.91 76.82 85.03

OC + RIU – 68:26 81:10 91:24 88.76 45.39 82.14 76.15 84.19

H3D

PL – 41.14 51.63 90.68 85.26 92.96 83.77 93.05 76.92 88.16

AL OO 33.93 56.34 90:31 82.70 88.33 79.73 92:66 74.86 86:65

OO + RIU 36:97 55.42 89.91 83:84 90:05 79.61 91.91 75:39 86.60

OC 33.37 57:40 88.34 78.14 88.89 79:83 92.07 74.01 85.15

OC + RIU 34.56 56.20 89.59 81.81 89.18 79.35 92.56 74.75 86.26

S3D

PL – 75.30 98.63 96.82 93.97 91.18 95.51

AL OO 62.06 98.18 94.66 91.69 86.65 93.56

OO + RIU 66:03 98:32 95.22 92.40 87.99 94:09

OC 54.68 97.62 92.34 92.15 84.20 92.18

OC + RIU 61.48 97.67 95:53 92:84 86.88 93.86

Fig. 16 Obtained confusion
matrices over all iteration steps
providing the crowd either with
the pure choice of the classifier
or applying the RIU technique
(cf. Sect. 3.3.3). a OCM, b
OCM + RIU

a b

need to resolve exactly such occurrences, in early iteration
steps, performance can often be boosted when relying on
more typical samples for different classes. In addition, in
the first and second iteration steps, the selection of points
in ALRIU.OO/ is slightly more related to an equal class
distribution than in AL.OO/ (cf. Fig. 14c) possibly being
beneficial for the ML model. While mF1-scores of runs
both with and without RIU differ only marginally (espe-
cially towards the end of the iteration), the gap between
increases when replacing the simulated oracle OO with the
real crowd oracle OC in case of all data sets due to the
higher error level of labeled data in the variants without

RIU, i.e. AL.OC / (cf. Figs. 14a and b and 15a). In this
respect, the RIU technique not only increases the labeling
accuracy of the crowd, but also the performance of the RF
classifier learning from the crowd, and is thus capable of
positively impacting the course of the iteration. However,
in case of the H3D data set the influence is lowest thanks
to the general high interpretability of this high resolution
data set.

From the selection of samples in each iteration step in
Figs. 14c and d and 15b, especially from the corresponding
loops with omniscient oracles OO , we learn that RIU can
have a real effect on the course of the iteration. Initially,
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RF models of each run learn from the same initialization
data set, so early selections differ only slightly, but deviate
gradually more with the number of iteration steps due to the
altered sample selection. Furthermore, an overall trend of
sampling batches of points more related to an equal class
distribution becomes obvious for the V3D and H3D data
set. Please note that this is not necessarily a desired prop-
erty. For instance, if the model is generally confused about
a specific class with high intra-class variability, it would be
desirable to focus sampling on only this specific class, but
where selected samples cover the whole bandwidth of this
class in feature space, i.e., samples are drawn from different
DiFS clusters (cf. Sect. 3.3.2). This is also the reason why
samples in batches of the large-scale S3D data set are not
approximately equally distributed (at least not in the first
10 iteration steps), as we are confronted with a plethora of
different representatives for each of the rather generalized
classes in a data set spanning such a vast area. In the long
run, however, it is for sure beneficial to provide the classi-
fier with a training data set that evenly covers all classes, as
our weighted sampling strategies intend to accomplish (cf.
Sect. 3.3.1).

However, the question remains how these crowd-pow-
ered runs fare in comparison to our baseline solutions of
PL, which is depicted in Figs. 14a and b and 15a, respec-
tively, and is also contrasted numerically to our AL runs
after ni = 10 iteration steps in Table 5. With respect to
achievable OAs, the method we advocate for, AL with the
RIU technique relying on a real crowd oracle (ALRIU.OC /)
completely excluding an expert annotator, is only 3.92pp
(V3D), 1.90pp (H3D) and 1.65pp (S3D) below the per-
formance of the respective PL baselines. As discussed in
Sect. 5.1, classes with great intra-class variety such as Ur-
ban Furniture and Façade (including façade furniture) suf-
fer the most from focusing only on a small AL training data
set, but at the same time underrepresented classes (such as
class Car) profit from AL sampling. It is worth emphasiz-
ing that these results are achieved by only labeling a small
fraction of available training points of 4.7� (V3D), 0.1�
(H3D) and 0.1� (S3D) (the absolute amount of labeled
training points for each data set is 300points � 10 it. steps +
initialization points). Thus, these results come at a labeling
cost of $190 (100jobs � $0.10 + 100 jobs � 3 rep. � $0.15 +
Œn+=10pts per job� � 3 rep. � 10 it. steps � $0.15) plus a 10%
MW fee.

5.2.5 Terminating the Loop

While the accuracy values discussed before refer to the
final classification performance after a fixed number of
ni = 10 iteration steps, we anticipate that a similar level of
accuracy can be achieved with less iteration steps and thus
less label effort. In other words, we aim to achieve a model

that performs well with a minimum number of required it-
eration steps, i.e., for efficiency reasons, an accuracy curve
reaching a stable, high-level fast is preferred to one per-
forming slightly better after a larger number of iteration
steps (assuming the same batch size n+). We strive to iden-
tify the state of iteration where more label effort would only
marginally improve model performance by means of our
congruence values (cf. Sect. 3.4) evaluated for our crowd-
based runs. We compute both the overall congruence Co

and the class-wise congruence Cac between the current and
the previous iteration step, i.e., dstop = 1 (cf. Sect. 3.4). We
succeed in describing the progress of the iteration if we
are capable of computing curves that behave as similar as
possible to the accuracy graphs, but without relying on GT
data not available in real-world applications.

In case of V3D (cf. Fig. 14a), this seems to be true. After
a congruence value of 0 in the first iteration step (due to
the lack of a model prediction from a previous step), con-
gruence values correspond well to accuracy curves. When-
ever there is an upward trend in accuracy, the congruence
values also increase (e.g., consider congruence measures
of AL.OC /; dark blue and violet curve in Fig. 14a). Vice
versa, flattening of accuracy curves also corresponds to flat-
tening of congruence graphs towards the end of the itera-
tion. In this regard AL.OC / and ALRIU.OC / are suitable
examples. While AL.OC / shows a linearly increasing be-
havior, the latter flattens from the third iteration step on.
In the congruence curves, we observe the same effects as
well both with an inherent delay of one iteration step due
to the required comparison with the prediction of the pre-
vious step. When the standard deviation of Cac congruence
values is computed, e.g., over the last nstop = 5 iteration
steps, we achieve a value of 1.4% for AL.OC / vs. 0.5%
for ALRIU.OC / at the tenth iteration step. Thus, depend-
ing on the stopping threshold, and as desired, ALRIU.OC /

would be terminated earlier than AL.OC /. But of course,
the termination of the loop also depends on the number of
iteration steps nstop which support the calculation of the
standard deviation. This was chosen gently, i.e. in such
a way that stopping too early is avoided, to ensure that
a stable plateau has been identified.

For the H3D data set (cf. Fig. 14b), again congruence
curves of AL.OC / and ALRIU.OC / follow the steady lin-
ear increase of mF1 curves and resemble congruence values
of AL.OC / in V3D. But in contrast to V3D, a clear drop
in congruence is observable for H3D at the second iteration
step. This is not necessarily a bad omen for the progress of
the iteration, as it only indicates a significant change in pre-
dicted labels at an unstable stage of the training. This is due
to adding new samples that have significantly altered the
current belief about decision borders. Fig. 14d underlines
this hypothesis. In the first iteration step, mainly samples
of class Façade are queried, which supposedly leads to an
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improvement in the recognition of representatives of this
class and probably also implicitly improves accuracies for
adjacent classes, which might now be better distinguishable.
However, the second iteration step is the first time a great
variety of classes within the batch are sampled. Therefore,
the RF model is able to improve its overall classification
capabilities with respect to a greater bandwidth of classes,
thus predicting significantly different. Remember that this
effect becomes visible in congruence curves with a delay
of one iteration step, explaining the strong discrepancy be-
tween the two successive predictions.

A similar behavior, showing the fidelity of the congru-
ence curves with respect to accuracy curves (and thus suit-
ability for defining a stopping criterion) can be spotted for
the S3D data set (cf. Fig. 15a). Please note that the char-
acteristic up-and-down bending of the AL.OC / mF1 curve
between iteration steps 2 and 4 is also translated to the
corresponding Cac.AL/ curve (again with a delay of one
iteration step), where the first upward trend is triggered by
the inclusion of a considerable number of high intra-class
variability Building samples in the third iteration step (cf.
Fig. 15b).

6 Conclusion & Outlook

The motivation driving this work was to generate a frame-
work that is capable of teaching a supervised ML system to
automatically enrich an arbitrary point cloud with semantic
information by only providing it with the respective cloud
as well as access to a (fixed) labeling budget. This was
achieved by setting up a hybrid intelligence system with
an AL backbone in which both an ML model and human
beings work together, with the latter being considered as hu-
man processing units in reference to electronic processing
units typically encountered in automated systems. When
paid crowdworkers take this role, there are still humans
working in the AL loop, but from an operator’s perspective,
we are dealing with a fully automated system because the
work of crowdworkers can be considered a non-determin-
istic subroutine of our program for timely returning labels,
but behaving just like other routines that are accomplished
by electronic processing units (such as training our RF or
SCN classifier). This concept was applied to a variety of
three ALS point clouds representing spatially distinct areas
(with two of them being state-of-the-art benchmark data
sets) with different characteristics. For those, we achieved
accuracies at a quality level similar to that of PL by anno-
tating only few most-informative training points out of the
complete set of potentially available training data (typically
� 1%), thus causing minimal monetary expenses. Time-
wise, with an average annotation time of about 40s per
crowd annotated point, we oppose an overall time effort of

about 140h (40s�Œ9classes�100points+9classes�100points�
3crowdworkers + 10it. steps�300points � 3crowdworkers])
for our crowd-based pipeline to an overall expert labeling
time of 1490h for a full annotation (numbers are valid for
the H3D data set as this is the only one the authors are
aware of the required labeling effort).

To summarize, we consider our approach to be efficient
in situations with a limited labeling budget. Naturally, by
restricting the training set to only few most-informative
points, our models trained on these samples achieve slightly
worse accuracy scores compared to the PL approach due to
not being able to represent each and every aspect, especially
of diverse classes, to their full extent. However, we believe
that in times of rapid data acquisition cycles, labeling effort
has to be focused on most-decisive points only, in favor
of reasonable processing throughput for semantic data in-
terpretation. Nevertheless, our pipeline is flexible enough
to allow an operator to individually decide how much re-
sources to spend on a specific data set, while still providing
a recommendation of cost vs. benefit by means of our stop-
ping criterion. Hence, the limiting factor with respect to
accuracy of semantic segmentation (given a feasible class
catalog) is available resources rather than the crowd’s in-
terpretation capability as our experiments have shown that
the crowd oracle behaves very similar to an omniscient
oracle. Still, with a better performing crowd a desired ac-
curacy level can be reached earlier in the iteration (with
less money spent), which can, for instance, be achieved by
providing a data modality that is easier to comprehend for
crowdworkers (Kölle et al. 2021b).

With respect to further optimizing the proposed method-
ology, we suggest to follow a promising approach from
the weakly supervised domain that was recently adapted
by Lin et al. (2022) for the automatic interpretation of ALS
point clouds. In this concept, an ML model is enabled to
derive point-wise predictions although only learning from
so-called scene-level weak labels for point cloud subsets
indicating that there are representatives of a specific class
included but not which point(s) actually belong to this class.
Thus, when our crowdworkers are required to only provide
such scene-level labels, from our point of view, this offers
the potential to drastically ease label complexity.

However, the main drawback we see in crowdsourced la-
beling is that the crowd is unable to annotate points accord-
ing to an arbitrarily complex and fine-grained class catalog
(also identified by Bayas et al. (2016)), why we actually
had to simplify V3D’s and H3D’s class catalog. According
to our findings, the crowd performs well for classes that are
easy and straightforward to understand from the pure class
names, but fails whenever classes are non-intuitive or are
rather concerned with a detailed and maybe even subjective
description (e.g., Shrub vs. Hedge). Furthermore, unspecific
classes such as Urban Furniture are often misused as quasi-
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class Other whenever crowdworkers are unsure about the
class affiliation of a specific point. Thus, it remains an open
question if and how complex class catalogs could be taught
to the crowd.

Despite these limitations, we have succeeded in formu-
lating a fully automated hybrid intelligence system based on
AL with subprocesses being carried out by inherently non-
deterministic human processing units (i.e., crowdworkers)
and that does not involve an expert in any labeling task.
By conducting this work, we hope to have paved the way
for a wider acceptance and dissemination of hybrid intelli-
gence systems relying on (paid) crowdsourcing in the field
of geospatial data analysis.
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