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Abstract
The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural net-
works with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical
imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising
endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods
are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation
for semantic segmentation, which we call Deep Uncertainty Distillation using Ensembles for Segmentation (DUDES).
DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with
a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive
uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting
wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012
dataset. With DUDES, we manage to simultaneously simplify and outperform previous work on Deep-Ensemble-based
Uncertainty Distillation.

Keywords Deep Learning · Semantic Segmentation · Uncertainty Quantification · Deep Ensemble · Knowledge
Distillation

1 Introduction

In recent years, approaches based on deep neural networks
have become the most popular and successful solution for
semantic segmentation problems (Minaee et al. 2022). De-
spite their unrivaled performance on established benchmark
datasets like Cityscapes (Cordts et al. 2016) or PASCAL
VOC (Everingham et al. 2010), neural networks lack inter-
pretability (Gawlikowski et al. 2022), are unable to distin-
guish between in-domain and out-of-domain samples (Lee
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et al. 2018), and tend to be overconfident (Guo et al. 2017).
These shortcomings are especially severe for safety-criti-
cal applications like autonomous driving (McAllister et al.
2017) and the analysis of medical imaging (Leibig et al.
2017) or computer vision tasks that have high demands on
reliability like industrial inspection (Steger et al. 2018) and
automation (Ulrich and Hillemann 2023).

Quantifying the predictive uncertainty is a promising en-
deavour to make such applications safer and more reliable,
e.g., by preemptively making risk-averse predictions or by
providing feedback to a human operator when predictions
are uncertain. Some of the most relevant methods include
Bayesian Neural Networks (MacKay 1992), Monte Carlo
Dropout (Gal and Ghahramani 2016), and Deep Ensem-
bles (Lakshminarayanan et al. 2017). Unfortunately, most
methods require a computationally expensive estimation of
a distribution of outputs by sampling from a stochastic pro-
cess. Recently, the concept of knowledge distillation has
been introduced as a potential solution (Shen et al. 2021;
Besnier et al. 2021; Holder and Shafique 2021; Simpson
et al. 2022). Knowledge distillation is a technique for trans-
ferring the knowledge embodied in a complex model, re-
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Fig. 1 DUDES applies student-teacher distillation with a Deep Ensem-
ble (DE) to accurately approximate predictive uncertainties with a sin-
gle forward pass while maintaining simplicity and adaptability

ferred to as the teacher, to a smaller model, referred to
as the student. By incorporating the knowledge learned by
a more complex model, the student’s performance can be
enhanced (Hinton et al. 2015; Romero et al. 2015; Malinin
et al. 2019).

In this work, we present a novel approach for efficient
and reliable uncertainty quantification, which we call Deep
Uncertainty Distillation using Ensembles for Segmentation
(DUDES) as shown in Fig. 1. DUDES applies student-
teacher distillation with a Deep Ensemble to accurately ap-
proximate predictive uncertainties while maintaining sim-
plicity and adaptability. In comparison to the Deep Ensem-
ble teacher, the student only needs a single forward pass to
obtain predictive uncertainties, which massively reduces the
inference time and eliminates the computational overhead
that is associated with having to deal with multiple mod-
els and forward passes. DUDES simultaneously simplifies
and outperforms previous work on Deep-Ensemble-based
uncertainty distillation, which we experimentally evaluate
on the Cityscapes and Pascal VOC 2012 dataset.

After an overview of the related work on uncertainty
quantification and knowledge distillation in Sect. 2, the
methodology of DUDES is described in Sect. 3. In Sect. 4,
we demonstrate the ability of DUDES through quantita-
tive and qualitative analysis and investigate the potential
for identifying wrongly classified pixels or out-of-domain
samples with the help of the predictive uncertainties qual-
itatively. Thereafter, we provide an extended set of experi-
ments with a Vision-Transformer-based architecture, a dif-

ferent uncertainty quantification method for the teacher, and
a different dataset to demonstrate the generalizability of
DUDES in Sect. 5. Sect. 6 discusses the experimental re-
sults and their potential impact on future research. Sect. 7
concludes the paper.

2 RelatedWork

In this section, we summarize the related work on uncer-
tainty quantification and knowledge distillation.

2.1 Uncertainty Quantification

Deep neural networks consist of a large number of model
parameters and include non-linearities, which generally
makes the exact posterior probability distribution of a net-
work’s output prediction intractable (Blundell et al. 2015;
Loquercio et al. 2020). This leads to approximate un-
certainty quantification approaches including softmax
probability, Bayesian techniques like Bayesian Neural
Networks (MacKay 1992), Monte Carlo Dropout (Gal
and Ghahramani 2016), and Deep Ensembles (Lakshmi-
narayanan et al. 2017).

While the softmax predictions are easy to implement,
they tend to be overconfident and need to be calibrated in
order to produce reliable confidence predictions where the
predicted probability and the actual likelihood are in agree-
ment (Guo et al. 2017). Additionally, softmax predictions
are often erroneously interpreted as model confidence (Gal
and Ghahramani 2016). A mathematically sound approach
based on Bayesian inference is provided by Bayesian Neu-
ral Networks, which transform a deterministic network into
a stochastic one. This is done by placing probability dis-
tributions over the activations and/or weights (Jospin et al.
2022). For example, Bayes by Backprop (Blundell et al.
2015) uses variational inference to learn approximate distri-
butions over the weights. At test time, weights are sampled
from the learned distributions, resulting in an ensemble of
models that is used to sample from the posterior distribu-
tion over the predictions. To overcome the high computa-
tional cost of Bayesian Neural Networks, Gal and Ghahra-
mani (2016) propose Monte Carlo Dropout as an approx-
imation of a stochastic Gaussian process using a common
regularization method. While dropout regularization (Sri-
vastava et al. 2014) is usually only used during training,
Monte Carlo Dropout (Gal and Ghahramani 2016) applies
this technique to sample from the posterior distribution of
the predictions at test time.

The uncertainties produced by Monte Carlo Dropout are
not calibrated (Gal and Ghahramani 2016), which is a major
drawback that is overcome by Deep Ensembles (Laksh-
minarayanan et al. 2017) where an ensemble of trained
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models produces samples of predictions at test time. Ran-
dom weight initialization and diverse data augmentations
across ensemble members introduce randomness in Deep
Ensembles, enabling exploration of diverse modes in func-
tion space (Fort et al. 2020). This characteristic contributes
to their reputation for being well-calibrated (Lakshmi-
narayanan et al. 2017) and establishes them as the state-
of-the-art in uncertainty quantification (Ovadia et al. 2019;
Gustafsson et al. 2020; Wursthorn et al. 2022). Besides
their outstanding ability to quantify high-quality uncertain-
ties, Deep Ensembles are also a popular method to improve
the prediction quality itself (Marmanis et al. 2016; Nigam
et al. 2018; Kang and Gwak 2019; Thanh et al. 2020;
Lumini et al. 2021; Nanni et al. 2023).

Next to these approximate uncertainty quantification
methods, there has also been an increasing interest in
using deterministic single forward-pass methods, which
need less memory and have a lower inference time. For
instance, Van Amersfoort et al. (2020) and Liu et al. (2020)
build on the idea of a well-regularized feature space in
which they quantify the uncertainty through distance-aware
output layers. Although these methods perform well, they
are not quite competitive with Deep Ensembles and require
a substantial adaptation of the training process. Mukhoti
et al. (2023) propose to simplify the beforementioned ap-
proaches by using Gaussian Discriminant Analysis post-
training for feature-space density estimation. With their
approach, they manage to perform on par with a Deep
Ensemble in some settings but still require a more sophis-
ticated training approach. In general, these deterministic
single-forward pass methods are a worthwhile alternative to
the traditional uncertainty quantification methods MacKay
(1992); Gal and Ghahramani (2016); Lakshminarayanan
et al. (2017), yet they all introduce conceptual complex-
ity that require changes in the architecture, the training
process, and introduce additional hyperparameters.

2.2 Knowledge Distillation

Knowledge distillation is a technique for transferring the
knowledge embodied in a complex model, referred to as
the teacher, to a usually smaller model, referred to as the
student. The teacher can be a model with a large number
of parameters or even a Deep Ensemble. The student is
trained to imitate the predictions of the teacher on a given
dataset, with the goal of minimizing the difference of the
student’s outputs and the teacher’s outputs. By incorporat-
ing the knowledge learned by a more complex model, the
student’s performance can be enhanced. Usually, this re-
sults in a more compact student model that achieves similar
performance compared to the teacher model (Hinton et al.
2015; Romero et al. 2015; Malinin et al. 2019).

Recently, the concept of knowledge distillation has
attracted increasing interest in the context of efficient un-
certainty quantification to enable real-time uncertainty es-
timation (Shen et al. 2021; Besnier et al. 2021; Holder and
Shafique 2021; Simpson et al. 2022). For instance, Shen
et al. (2021) have used student-teacher distillation for
real-time uncertainty quantification based on Monte Carlo
Dropout (Gal and Ghahramani 2016). Holder and Shafique
(2021) are the first to use Deep Ensembles, generally
regarded as the most powerful uncertainty quantification
method (cf. Sect. 2.1), as the teacher for efficient un-
certainty quantification and out-of-domain detection for
semantic segmentation. While this is a logical step towards
higher quality uncertainties in real-time environments, their
approach requires a custom segmentation and uncertainty
head, and they introduce two additional losses with three
new hyperparameters that determine the smoothness of
the softmax probability distribution and the loss weights.
This makes their method rather difficult to implement and
especially costly to adapt to new applications since these
hyperparameters might need to be tuned. Besides, their stu-
dent suffers a severe degradation in terms of segmentation
performance in comparison to the teacher and systemat-
ically underestimates uncertainties for classes with high
uncertainties and vice versa.

We believe that the process of ensemble-based uncer-
tainty distillation can be improved upon by simplification.
Instead of distilling the entire uncertainty map, which is
what Holder and Shafique (2021) propose, we only regard
the uncertainty of the respective predicted class, i.e. the
predictive uncertainty. This basic, yet highly effective, sim-
plification ensures that the student’s segmentation perfor-
mance is not degraded and the corresponding uncertainties
can be learned more easily. As a result, we manage to train
a student model that achieves similar or better segmenta-
tion performance than the Deep Ensemble teacher and does
not suffer from any systematic shortcomings with regard to
the uncertainty quantification. Additionally, DUDES does
not rely on custom segmentation or uncertainty head ar-
chitectures and introduces only a single uncertainty loss
without hyperparameters. Thereby, we provide a distinct
improvement over all of the shortcomings and complexities
of previous work.

3 Methodology

In the following, we provide an overview of DUDES, ex-
plain the methodology behind our uncertainty distillation
approach, and lay out the implementation details.
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Fig. 2 A schematic overview of the training process of the student model of DUDES. DUDES is an easy-to-adapt framework for efficiently esti-
mating predictive uncertainty through student-teacher distillation. The student model simultaneously outputs a segmentation prediction alongside
a corresponding uncertainty prediction. Training the student involves a regular segmentation loss with the ground truth labels and an additional
uncertainty loss. As ground truth uncertainties, we compute the predictive uncertainty of a Deep Ensemble, thereby acting as the teacher

3.1 Overview

DUDES is an easy-to-adapt framework for efficient and
reliable uncertainty quantification through student-teacher
distillation. The overall goal is to train a student model
that can simultaneously output a segmentation prediction
and a corresponding predictive uncertainty in the form of
standard deviations that correlate with wrongly classified or
out-of-domain pixels with a single forward pass as shown in
Fig. 1. Although the student and the teacher could be trained
jointly, in principle, we propose a two-step framework for
the sake of simplicity and computational constraints:

1. Training the teacher with the ground truth labels
2. Training the student with the ground truth labels and the

teacher’s uncertainty predictions

As shown in Fig. 2, the training of the student model con-
sists of two loss components. The first component LS as-
sesses the dissimilarity between the student’s segmentation
prediction and the ground truth labels, while the second
component LU evaluates the disparity between the stu-
dent’s uncertainty prediction and the output of one of the
uncertainty quantification methods described in Sect. 2.1.
As mentioned before, we propose to use a Deep Ensemble
as the teacher for the concrete implementation of DUDES.
Deep Ensembles are simple to implement, easily paralleliz-
able, require little tuning, and represent the current state-
of-the-art uncertainty quantification method (Ovadia et al.
2019; Gustafsson et al. 2020;Wursthorn et al. 2022). Never-
theless, since DUDES is flexible with regards to the chosen
uncertainty quantification method, the Deep Ensemble can
simply be replaced by any other uncertainty quantification
method as long as the resulting uncertainty measure is lim-
ited between 0 and 1, which we will show in Sect. 5.

Teacher. For the reasons stated above, we use a Deep
Ensemble as the teacher. The Deep Ensemble consists of
ten (cf. Sect. 4.5) regular semantic segmentation mod-

els that are not pre-trained, thus following prior work on
Deep-Ensemble-based uncertainty quantification (Laksh-
minarayanan et al. 2017; Fort et al. 2020). By randomly
initializing all the parameters before training, we aim to
capture different aspects of the input data distribution
for each ensemble member, boosting the teacher’s overall
performance, robustness, and uncertainty quantification
capabilities. During inference, each ensemble member pro-
duces slightly different predictions, enabling the calculation
of a mean segmentation prediction and an uncertainty pre-
diction. In our case, we decided to use the softmax standard
deviation as a measure of the respective uncertainty.

Student. As our student has to output a corresponding
predictive uncertainty in addition to the segmentation pre-
diction, we add a second head to the segmentation model’s
decoder. We propose to use an additional uncertainty head
that is identical to the regular segmentation head of the
segmentation model, except for the output layer. For the
segmentation head, we use a softmax activation to obtain
class-wise probabilities. Whereas for the uncertainty head,
we use a sigmoid activation that limits the outputs between
0 and 1. Our uncertainty head only needs one output channel
instead of the number of classes, as needed by the segmen-
tation head. Since this is a key modification to improve upon
previous work, we will discuss this simplification in detail
in Sect. 6. In contrast to the randomly initialized ensemble
members, the student’s parameters are initialized with Im-
ageNet pre-training (Deng et al. 2009) to drastically reduce
the required training time as shown in Sect. 4.5.

3.2 Uncertainty Distillation

To efficiently estimate the predictive uncertainty of the
Deep Ensemble with a single student model, we utilize
student-teacher distillation as Fig. 2 shows.
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Segmentation Loss. The main objective function that
is being minimized for the segmentation task is the well-
known categorical cross-entropy loss:

LS = −
1

N

NX

n=1

CX

c=1

yn;c log.pn;c.x//; (1)

where LS is the segmentation loss for a single image, N
is the number of pixels in the image, C is the number of
classes, yn;c is the respective 1-hot encoded ground truth
label, and pn;c.x/ is the respective predicted probability
based on the input image x. The categorical cross-entropy
loss measures the dissimilarity between the ground truth
probability distribution and the predicted probability distri-
bution. By minimizing this loss during training, the model
is encouraged to produce pixel-wise class predictions that
are as close as possible to the ground truth classes.

Uncertainty Loss. To distill the predictive uncertain-
ties of our teacher into the student, we introduce an ad-
ditional uncertainty loss, which is formulated as the root
mean squared logarithmic error (RMSLE)

LU =

vuut 1

N

NX

n=1

.log.zn.x/ + 1/ − log.qn.x/ + 1//2; (2)

where LU is the uncertainty loss for a single image, N is
the number of pixels in the image, zn.x/ is the teacher’s
predictive uncertainty for the n-th pixel as ground truth,
and qn.x/ is the corresponding student’s uncertainty pre-
diction based on the input image x. The teacher’s predic-
tive uncertainty zi represents the standard deviation of the
softmax probabilities of the predicted class in the segmen-
tation map. By minimizing the RMSLE during training, the
student is encouraged to produce uncertainty estimates that
are as close as possible to the teacher’s uncertainties. The
natural logarithm provides special attention to the pixels
where uncertainties are higher by penalizing underestima-
tions more than overestimations.

Total Loss. The total loss is the sum of both individual
losses:

L = LS +LU : (3)

For the sake of simplicity and because of the empiri-
cal results, which we will demonstrate in Sects. 4 and 5,
we refrain from introducing additional hyperparameters to
weight the individual losses. However, it is worth mention-
ing that, depending on the application, the introduction of
weights for the individual loss terms could be valuable.

4 Evaluation of Performance

In this section, we describe a variety of experiments that
demonstrate the advantages of DUDES. Firstly, we go over
our experimental setup. Secondly, we compare the student
and the teacher quantitatively. More specifically, we exam-
ine the class-wise segmentation performance as well as the
class-wise uncertainties. In addition, we investigate the un-
certainty quality and highlight the substantial difference in
terms of inference time and trainable parameters between
the teacher and the student model. Thirdly, we evaluate the
student’s predictions qualitatively. Fourthly, we assess how
well our student model performs on out-of-domain (OOD)
datasets in comparison to the teacher. Lastly, we provide
two ablation studies, which explore the influence of the
number of ensemble members and analyze the impact of
pre-training.

4.1 Experimental Setup

Architecture. For our baseline semantic segmentation
model, we use a DeepLabv3+ (Chen et al. 2018) as the
decoder and a ResNet-18 (He et al. 2016) as the backbone
because they both are very commonly used architectures for
semantic segmentation. All ensemble members are trained
with just the segmentation loss of Eq. (1) and generally
follow the training procedure of the student with regards to
data augmentations and hyperparameters.

Training. To prevent overfitting, we apply the following
data augmentation strategy to all training procedures:

1. Random scaling with a scaling factor between 0.5 and
2.0,

2. Random cropping with the crop size of 768 � 768,
3. Random horizontal flipping with a flip chance of 50%.

Besides, we employ a Stochastic Gradient Descent
(SGD) optimizer (Robbins and Monro 1951) with an initial
learning rate of 0.01, momentum of 0.9, and weight decay
of 0.0005 as optimizer-specific hyperparameters. In all
experiments, the decoder’s learning rate is ten times higher
than that of the backbone. Additionally, we use polynomial
learning rate scheduling to decay the initial learning rate
during the training process:

lr = lrinitial �
�
1 −

iteration

total iterations

�0.9

; (4)

where lr is the current learning rate, and lrinitial is the initial
learning rate. In all training processes, we train for 200
epochs with a batch size of 16 on a NVIDIA A100 GPU.
We empirically found this to be sufficient for the models to
converge and did not employ any early stopping techniques.
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Fig. 3 Quantitative comparison between the student’s and the teacher’s class-wise Intersection over Union (IoU). Higher IoU values denote better
segmentation results, which are preferred. For the difference, the teacher’s results are subtracted from the student’s results. Results of Holder and
Shafique (2021) are indicated by “Theirs”

Fig. 4 Quantitative comparison between the student’s and the teacher’s class-wise predictive uncertainties. In this case, a smaller difference is
preferred as the student is trained to predict the same uncertainties as the teacher. The differences are calculated by subtracting the teacher’s results

from the student’s results. They are highlighted based on the absolute differences being: , , , , , ,

. Results of Holder and Shafique (2021) are indicated by “Theirs”

Dataset. Our experiments are based on the Cityscapes
dataset (Cordts et al. 2016), a freely available urban street
scene dataset. It consists of 2975 training images, 500 vali-
dation images, and 1525 test images. Since the test images
are not publicly available, we use the validation images
for testing in all of our experiments. Each RGB image is
2048�1024 pixels in size, with each pixel assigned to one of
19 class labels or a void label. The void ground truth pixels
are excluded during training and evaluation in the segmen-
tation task, but they are used to qualitatively evaluate the
uncertainty outputs as they indicate the model’s ability to
distinguish between in-domain and out-of-domain samples.
Additionally, we test our student model and teacher ensem-
ble on Foggy Cityscapes (Sakaridis et al. 2018) and Rain
Cityscapes (Hu et al. 2019) to investigate the potential of
DUDES for out-of-domain detection.

Metrics. For quantitative evaluations, we primarily re-
port the mean Intersection over Union (mIoU), also known
as the Jaccard Index to measure the quality of the segmen-
tation prediction. In addition, we use the Expected Cali-
bration Error (ECE) (Naeini et al. 2015) to evaluate the
calibration of the softmax probabilities. Lastly, we report
the mean class-wise predictive uncertainty (mUnc) (Holder
and Shafique 2021) to compare the student’s uncertainty
with that of the teacher .

4.2 Quantitative Evaluation

Figs. 3 and 4 outline a quantitative comparison between the
student’s and the teacher’s Intersection over Union (IoU) as
well as their predictive uncertainties. The results of Holder
and Shafique (2021) have been included as they are the
most relevant previous work on Deep-Ensemble-based stu-
dent-teacher distillation for efficient uncertainty quantifica-
tion. Their teacher is based on 25 DeepLabv3+ models with
a MobileNet backbone (Howard et al. 2017), whereas our
teacher consists of 10 DeepLabv3+ models with a ResNet-
18 backbone. The MobileNet backbone and our ResNet-
18 backbone have been shown to have very similar perfor-
mance (Bianco et al. 2018). Both students are initialized
with ImageNet pre-training (Deng et al. 2009) and eval-
uated on the Cityscapes validation dataset (Cordts et al.
2016).

Segmentation Prediction. As shown in Fig. 3, our stu-
dent network outperforms the teacher on the segmentation
task for all classes except for wall and sky, with an average
improvement of 2.5% in mIoU. We attribute this improve-
ment to the student’s ImageNet pre-training as compared to
the randomly initialized ensemble members of the teacher.
In comparison, the student by Holder and Shafique (2021)
showed a mIoU deterioration of 4.2%.

Uncertainty Prediction. Fig. 4 shows that our student
approximates the teacher’s uncertainties very accurately: In
10 out of the 19 classes our student’s class-wise uncer-
tainties deviate by less than 0.01 compared to that of the
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Fig. 5 Comparison between the student’s and the teacher’s mean In-
tersection over Union (mIoU). We progressively ignore an increasing
percentage of pixels in the segmentation prediction and simultaneously
re-evaluated the mIoU. The pixels are sorted based on their predictive
uncertainty in descending order, thus removing the most uncertain seg-
mentation predictions first

teacher. Our student manages to deviate by less than 0.03
in 17 out of the 19 classes, with a maximum deviation of
0.042 for the bicycle class. On the other hand, the student
by Holder and Shafique (2021) deviates by less than 0.01
in 5 out of the 19 classes and by less than 0.03 in only 13
out of the 19 classes. Their student’s maximum difference
is 0.130 for the train class. On average across all classes,
the uncertainties of both students deviate only slightly from
those of the teachers, with our student model deviating by
0.002 and the student by Holder and Shafique (2021) devi-
ating by -0.007. Generally speaking, both students struggle
with accurately approximating the teacher’s uncertainties
for the last five classes: Truck, bus, train, motorbike, and
bicycle. For these classes, our student has an average ab-
solute deviation of 0.028, while their student (Holder and
Shafique 2021) deviates by 0.066.

Fig. 5 displays another comparison between the student’s
and the teacher’s ability to approximate reliable uncertain-
ties: For this analysis, we progressively ignored an increas-
ing percentage of uncertain pixels in the segmentation pre-
diction and simultaneously re-evaluated the mIoU. For this,
the pixels were sorted based on their predictive uncertainty
in descending order. This initially removes the pixels with
the most uncertain segmentation predictions from the eval-
uation until only the pixels with the most certain predictions
are left. Consequently, meaningful uncertainties should re-
sult in a monotonically increasing function.

As Fig. 5 shows, the student as well as the teacher experi-
ence an almost linear rise in mIoU from 73.8% and 71.3%,
respectively, to almost 100% after removing 90% of the
most uncertain pixels. Both models attain a similar relative

Table 1 Comparison of the inference time for a single image in mil-
liseconds and the number of trainable parameters between the baseline,
the teacher, and the student model. The inference time and correspond-
ing standard deviation are based on 25 forward passes

Inference time [ms] Trainable Parameters

Baseline 18.3 ˙ 0.4 12,333,923

Teacher 217.1 ˙ 0.8 123,339,230

Student 18.5 ˙ 0.4 12,334,180

increase in mIoU by disregarding the first 10% of the most
uncertain pixels. Up until ignoring 70% of the pixels, the
teacher reaches a mIoU of 92.5%, while the student only
attains 89.6%. Beyond this point, the student’s mIoU sur-
passes that of the teacher, with the student achieving 99.2%
after ignoring 80% of the pixels with the highest uncer-
tainties, while the teacher only reaches 95.9%. This analy-
sis yields two key findings: Firstly, predictive uncertainties
prove to be related to the correctness of the prediction and
hence provide an effective approach of identifying misclas-
sified pixels. Secondly, our student’s predictive uncertain-
ties deviate only slightly from the teacher’s uncertainties,
revealing that they are equally meaningful.

Inference Time. Table 1 compares the inference time for
a single image and the number of trainable parameters be-
tween the baseline, the teacher, and the student model. The
experiment was conducted on a common NVIDIA GeForce
RTX 3090 GPU with 24GB of memory. Obviously, there is
only an insignificant difference of 0.2 milliseconds in infer-
ence time between the baseline and the student, despite the
student’s ability to output an additional predictive uncer-
tainty. Furthermore, the student’s inference is roughly 11.7
times faster than that of the teacher. The number of train-
able parameters shows the efficiency of the student network.
The additional uncertainty head of the student network only
adds 257 parameters to the baseline model.

4.3 Qualitative Evaluation

Fig. 6 displays four example images from the Cityscapes
validation set and their corresponding ground truth labels,
our student’s segmentation prediction, a binary accuracy
map, and the student’s uncertainty prediction. The binary
accuracy map visualizes incorrectly predicted pixels and
void classes in white and correctly predicted pixels in black.

Visually, for large areas and well-represented classes like
road, sidewalk, building, sky, and car the student’s segmen-
tation is almost free of errors. This supports the quantita-
tive evaluation described in Fig. 4. Like most segmentation
models, our student struggles with class transitions, areas
with lots of inherent noise, or areas that belong to the void
class, which is visualized by the binary accuracy map.

A comparison of the binary accuracy map and our stu-
dent’s uncertainty prediction adds to the observations laid
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a b c d e

Fig. 6 Example images from the Cityscapes validation set (a) with corresponding ground truth labels (b), our student’s segmentation predictions
(c), a binary accuracy map (d), and the student’s uncertainty prediction (e). White pixels in the binary accuracy map are either incorrect predictions
or void classes. Latter appear black in the ground truth labels. For the uncertainty prediction, brighter pixels represent higher predictive uncertainties

out in Fig. 4 and Fig. 5: The uncertainty prediction reli-
ably returns high uncertainties for wrongly classified pix-
els and out-of-domain samples, which both are visualized
as white pixels in the binary accuracy map. For example,
in the first image of Fig. 6, our student correctly predicts
high uncertainties in the noisy parts of the background and
for fine geometric structures like traffic lights. Conversely,
the student predicts very low uncertainties for the road,
buildings, sky, and vegetation. The second example image
confirms this observation and adds two valuable insights
about the quality of the student’s uncertainty predictions.
Firstly, although the train in the left part of the image is
predicted correctly for the most part, the student still pre-
dicts high uncertainties. This is intuitively comprehensible
and desired because the train class is underrepresented in
the dataset (Cordts et al. 2016) and therefore potentially
more difficult to detect reliably. Secondly, the student pre-
dicts high uncertainties in the bottom part of the image
where reflections on the hood of the car cause incoherent
segmentation predictions. The third image exemplifies an-
other quality of the student’s predictive uncertainty. In this
case, the student struggles to correctly segment the truck
in the right part of the image. Simultaneously, the student

Table 2 Comparison between the student’s and the teacher’s mean Intersection over Union (mIoU) and mean class-wise predictive uncertainty
(mUnc) on the validation set of the Foggy Cityscapes dataset (Sakaridis et al. 2018). ˇ denotes the attenuation coefficient and controls the thickness
of the fog. Higher ˇ values result in thicker fog

Fogˇ=0.005 Fogˇ=0.01 Fogˇ=0.02

mIoU " mUnc mIoU " mUnc mIoU " mUnc

Teacher 64.2 12.3 57.6 14.1 46.7 16.2

Student 67.4 12.0 60.5 12.8 49.3 14.3

predicts high uncertainties for the entire truck, thus indicat-
ing the wrong segmentation prediction. The fourth image
demonstrates the student’s potential capability to identify
out-of-domain samples: for areas that belong to the void
class, high uncertainties are predicted.

4.4 Potential for Out-of-DomainDetection

To investigate the potential of DUDES for OOD detec-
tion, we evaluate our student model and the teacher ensem-
ble on Foggy Cityscapes (Sakaridis et al. 2018) and Rain
Cityscapes (Hu et al. 2019) without re-training them.

Quantitative Evaluation. As Tables. 2 and 3 show, our
student model compares quite well with the teacher. Across
all six validation datasets with varying amounts of simu-
lated fog and rain, our student performs better on the seg-
mentation task. It also manages to output similar predictive
uncertainties, although underestimating them with increas-
ing intensity of fog and rain in comparison to the teacher.
Potentially, this gap can be closed by incorporating hold-
out samples or additional data augmentations during the
distillation process to improve the student’s ability to gen-
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Table 3 Comparison between the student’s and the teacher’s mean Intersection over Union (mIoU) and mean class-wise predictive uncertainty
(mUnc) on the validation set of the Rain Cityscapes dataset (Hu et al. 2019). We evaluate on three sets of parameters, where Rain1 uses [0.01,
0.005, 0.01], Rain2 uses [0.02, 0.01, 0.005], and Rain3 uses [0.03, 0.015, 0.002] for attenuation coefficients ˛ and ˇ and the raindrop radius a. ˛
and ˇ determine the degree of simulated rain and fog in the images

Rain1 Rain2 Rain3
mIoU " mUnc mIoU " mUnc mIoU " mUnc

Teacher 47.7 13.2 40.6 14.9 34.9 16.2

Student 48.3 12.3 42.2 13.4 36.1 14.0

a b c d e

Fig. 7 Example images from the Foggy Cityscapes (top) and Rain Cityscapes (bottom) validation set (a) with corresponding ground truth labels
(b), our student’s segmentation predictions (c), a binary accuracy map (d), and the student’s uncertainty prediction (e). White pixels in the binary
accuracy map are either incorrect predictions or void classes. Latter appear black in the ground truth labels. For the uncertainty prediction, brighter
pixels represent higher predictive uncertainties

eralize on OOD tasks. This certainly remains an interesting
research question for future work.

Qualitative Evaluation. Fig. 7 supports the quantitative
findings with qualitative examples. As expected, the simu-
lated fog and rain degrade the quality of the segmentation
prediction considerably. Nevertheless, the student model
exhibits valuable predictive uncertainty estimations, partic-
ularly in regions with numerous incorrect classifications.
Generally, this adds to the observations of Fig. 6: high un-
certainties of the student correlate with wrongly classified
pixels and out-of-domain samples.

4.5 Ablation Studies

Number of Ensemble Members. An essential part of
DUDES is the quality of the teacher’s uncertainty predic-
tion because it represents an upper bound for the uncertainty
quality that can be expected from the student. Fig. 8 shows
the impact of the number of ensemble members on the
mIoU and mean Uncertainty (mUnc). Naturally, adding
more ensemble members improves the segmentation re-
sults. The mIoU increases from 70.6% when using just two
ensemble members to a maximum 71.4% for twelve mem-
bers. More importantly for DUDES, the mUnc increases
from 0.092 for just two ensemble members to a maximum
of 0.107 for six members. Adding more ensemble members
to the teacher does not change the uncertainty prediction
substantially as the mUnc stays within 0.106 and 0.107
until all twenty members are included. Overall, using ten

members appears to strike a balance between segmentation
performance and computational efficiency. While the mIoU
is only 0.1% lower compared to using twelve members,
opting for ten members reduces the computational cost in
terms of training time and memory footprint considerably.
These findings go along with prior work on Deep-Ensem-
ble-based uncertainty quantification by Fort et al. (2020)
and Lakshminarayanan et al. (2017). Consequently, we
propose to use ten ensemble members for DUDES, which
should be sufficient for most applications.

Fig. 8 Ablation study on the impact of the number of ensemble mem-
bers on the mean Intersection over Union (mIoU) and mean class-wise
predictive uncertainty (mUnc).
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Table 4 Ablation study on the
impact of ImageNet (Deng et al.
2009) pre-training on the mean
Intersection over Union (mIoU),
mean Uncertainty (mUnc), and
Expected Calibration Error
(ECE) (Naeini et al. 2015). We
evaluate the ECE with the l1
norm and a bin size of 10

Training Epochs mIoU " ECE # mUnc

TeacherRandom;n=10 200 71.3 0.021 0.106

BaselineRandom 200 68.5 0.031 –

StudentRandom 200 64.6 0.045 0.097

BaselineImageNet 200 73.7 0.019 –

StudentImageNet 200 73.8 0.025 0.108

StudentRandom 800 73.9 0.037 0.105

Impact of Pre-training. Table 4 shows the results of
another ablation study on the impact of ImageNet (Deng
et al. 2009) pre-training on the mIoU, mUnc, and expected
calibration error (ECE). We comprehensively compare the
baseline segmentation model with our student model and
our teacher, which consists of ten randomly initialized base-
line models. The study does not examine the impact of Ima-
geNet pre-training on the ensemble members as this would
lead to less reliable uncertainties compared to random ini-
tialization (Fort et al. 2020; Lakshminarayanan et al. 2017).

While training for 200 epochs and using random initial-
ization, our student underperforms the baseline model by
3.9% and the teacher by 6.7% with a mIoU of 64.6% on
the segmentation task. Our randomly initialized student also
underestimates the teacher’s uncertainties by 0.009 with
a mUnc of 0.097. When using ImageNet pre-training for
the baseline model and our student, both significantly im-
prove their mIoU with 73.7% and 73.8% respectively. The
student also manages to approximate the predictive uncer-
tainties better with a mUnc of 0.108, which is close to the
0.106 of the teacher. It is worth noting that similar perfor-
mance can also be achieved by randomly initializing our
student when the number of training epochs is quadrupled
to 800. This concurs with the findings of He et al. (2019).
As a consequence, we suggest using ImageNet pre-training
for the student to improve convergence speed. On top of
that, using ImageNet pre-training leads to a lower ECE.

5 Evaluation of Generalizability

In this section, we provide more evidence for the simplicity
and generalizability of DUDES by incorporating additional
experiments with a modern Vision-Transformer-based ar-
chitecture, Monte Carlo Dropout as the uncertainty quan-
tification method, and a different dataset. Firstly, we lay
out our adapted experimental setup. Secondly, we provide
a quantitative as well as qualitative evaluation to finalize
this section.

5.1 Experimental Setup

Architecture. In the following, we use a state-of-the-art
Vision-Transformer-based architecture SegFormer-B5 (Xie
et al. 2021) pre-trained on ImageNet (Deng et al. 2009)
as the backbone of a U-Net (Ronneberger et al. 2015) de-
coder as the baseline model for the student and the teacher.
In accordance with Sect. 3, we add a second uncertainty
head to the U-Net’s decoder, which is an exact copy of the
segmentation head, except for the output layer.

Uncertainty Quantification Method. For uncertainty
quantification, we apply Monte Carlo Dropout to our
teacher, replacing the use of a Deep Ensemble. Since the
SegFormer (Xie et al. 2021) already applies dropout layers
throughout the entire network, we follow their work and
consider two common dropout rates, 20% and 50% for the
teacher model. In order to train the student model, we leave
the teacher’s dropout layers activated and sample ten times
to obtain the predictive uncertainty for the uncertainty
distillation (Gal and Ghahramani 2016; Shen et al. 2021;
Gustafsson et al. 2020).

Training. During the training processes, we make three
changes compared to Sect. 3. Firstly, we decrease the initial
learning rate to 0.001. Additionally, we apply color jittering
in the distillation process to enhance the quality of the stu-
dent’s uncertainty estimates. Shen et al. (2021) showed that
this is useful when the training dataset is used for training
and distillation to prevent the student from underestimating
the teacher’s test-time uncertainty distribution. We followed
their suggestion of random variation in the range of [-0.2,
0.2] in four aspects: brightness, contrast, hue, and satura-
tion. Lastly, we change the crop size to 256 � 256.

Dataset. In addition to a different architecture and uncer-
tainty quantification method, we also use the Pascal VOC
2012 (Everingham et al. 2010) dataset for evaluation. Un-
like Cityscapes, Pascal VOC 2012 consists of only 1464
training images and 1449 validation images with varying
resolutions, 20 semantic object classes, and 1 background
class. Additionally, the dataset is less homogeneous than
Cityscapes. These properties make it inherently difficult to
achieve accurate segmentation results with corresponding
uncertainty estimates.
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Table 5 Quantitative comparison between the baseline’s, the student’s and the teacher’s inference time, mean Intersection over Union (mIoU),
Expected Calibration Error (ECE) (Naeini et al. 2015), and mean class-wise predictive uncertainty (mUnc) on the Pascal VOC 2012 dataset.
StudentA uses the uncertainties provided by TeacherA during training, whereas StudentB uses the uncertainties provided by TeacherB

Dropout Inference Time [ms] mIoU " ECE # mUnc

Baseline – 33.1 ˙ 0.7 78.8 0.027 –

TeacherA 20% 355.5˙ 1.3 76.1 0.013 0.096

TeacherB 50% 65.6 0.008 0.157

StudentA – 34.5˙ 1.3 78.7 0.022 0.081

StudentB – 78.4 0.024 0.135

5.2 Quantitative Evaluation

Table 5 shows a comparison between the baseline segmen-
tation model, two teacher models with dropout rates of 20%
and 50%, respectively, and two student models with an ad-
ditional uncertainty head for uncertainty quantification.

Overall, the results align with the experimental findings
on the Cityscapes dataset in Sect. 4. Our student models out-
perform their respective teacher models on the segmenta-
tion task while also capturing their predictive uncertainties.
They only slightly underestimate their respective teacher’s
uncertainty, which we attribute to suboptimal hyperparame-
ters and the inherently challenging properties of the Pascal
VOC 2012 dataset. As a consequence, our student mod-
els match the performance of the baseline model on the
segmentation task, while being slightly better calibrated in
terms of ECE and they are able to output a meaningful
predictive uncertainty, without significantly increasing the
inference time.

5.3 Qualitative Evaluation

Fig. 9 corroborates the quantitative findings. The student
model predicts high uncertainties for object boundaries, en-
tirely wrong or missing classifications, and areas with fine-
grained details that are challenging to classify. In contrast,
easy-to-classify areas and background pixels exhibit low
uncertainties.

For example, in the first image, our student segments
the depicted eagle almost perfectly and accordingly only
predicts high uncertainties for the object boundaries. Con-
versely, in the second and third image, our student either
wrongly classifies pixels that should belong to the back-
ground or fails to classify parts of the object. Nonetheless,
in both cases, high uncertainties are predicted for these ar-
eas, providing valuable information. In a similar way, the
student predicts high uncertainties for both the bicycle and
the human sitting on a bench in the fourth image as they
are challenging to classify through all of the fine-grained
details and noise.

6 Discussion

DUDES applies student-teacher distillation with a Deep En-
semble to accurately approximate predictive uncertainties
with a single forward pass while maintaining simplicity
and adaptability. Against the teacher, the needed inference
time per image is reduced by an order of magnitude and
the computational overhead in comparison to the baseline
is neglectable. Additionally, the student exhibits impres-
sive potential for identifying wrongly classified pixels and
out-of-domain samples within an image by leveraging its
uncertainties. Based on these observations, one could eas-
ily introduce an uncertainty-based threshold for OOD de-
tection. However, it is essential to acknowledge that there
remains a challenge in distinguishing between misclassi-
fied pixels and out-of-domain samples, as both may trigger
the threshold. Therefore, careful consideration and further
refinements may be necessary to address this challenge ef-
fectively.

DUDES represents a simple yet highly effective new
approach for uncertainty quantification. In contrast to the
work by Holder and Shafique (2021), DUDES requires no
major changes to the student’s architecture compared to
the baseline and introduces only a single uncertainty loss
without additional hyperparameters, yet delivers substantial
improvements over their work. Firstly, our student model
slightly outperforms its teacher in the segmentation task
by 2.5% while their student suffers from a segmentation
performance degradation in comparison to its teacher by
4.2%. Secondly, our student approximates its teacher’s pre-
dictive uncertainties more closely than the student model
by Holder and Shafique (2021). More precisely, their stu-
dent tends to underestimate uncertainties for classes with
high uncertainties and vice versa, whereas our student does
not suffer from any systematic shortcomings.

A major factor of the effectiveness of DUDES lies in
the simplification of what is distilled. Instead of distilling
the teacher’s uncertainty map, which is what Holder and
Shafique (2021) proposed, we only use the teacher’s predic-
tive uncertainty. The teacher’s uncertainty map is calculated
by computing the standard deviation of the softmax proba-
bility maps of the individual models along the class dimen-
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Fig. 9 Example images from the Pascal VOC 2012 validation set with corresponding ground truth labels, our student’s segmentation predictions,
a binary accuracy map, and the student’s uncertainty prediction from left to right. White pixels in the binary accuracy map are either incorrect
predictions or belong to the void class. Latter appears white in the ground truth label. For the uncertainty prediction, brighter pixels represent
higher predictive uncertainties

sion. In the case of multi-class semantic segmentation, the
resulting uncertainty map has dimensions of C � H � W ,
where C is the number of classes, H is the image height,
and W is the image width. For DUDES, the class dimen-
sion is reduced to 1 by only considering the uncertainty of
the predicted class in the segmentation map. Due to this
simplification, the student’s segmentation performance is
not hindered and the predictive uncertainties can be learned
more accurately.

We acknowledge the simplification in the uncertainty
distillation to be a potential limitation of DUDES as the
student is only capable of estimating the uncertainty of the
predicted class. However, there are practically no negative
implications of this limitation since the remaining uncer-
tainties are usually discarded anyway. Hence, DUDES re-
mains useful for efficiently estimating predictive uncertain-

ties for a wide range of applications while being easy to
adapt.

We believe that DUDES has the potential to provide
a new promising paradigm in reliable uncertainty quan-
tification by focusing on simplicity and efficiency. Except
for the computational overhead during training, we found
no apparent reason to not employ our proposed method in
semantic segmentation applications where safety and relia-
bility are critical.

7 Conclusion

In this work, we propose DUDES, an efficient and reli-
able uncertainty quantification method by applying stu-
dent-teacher distillation that maintains simplicity and
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adaptability throughout the entire framework. We quan-
titatively demonstrated that DUDES accurately captures
predictive uncertainties without sacrificing performance
on the segmentation task. Additionally, qualitative results
indicate impressive capabilities for the potential identi-
fication of wrongly classified pixels and out-of-domain
samples through a simple uncertainty-based threshold.
With DUDES, we managed to simultaneously simplify
and outperform previous work on Deep-Ensemble-based
uncertainty quantification.

We hope that DUDES encourages other researchers to
incorporate uncertainties into state-of-the-art semantic seg-
mentation approaches and to explore the usefulness of our
proposed method for other tasks such as detection or depth
estimation.
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