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Abstract
During flood events near real-time, synthetic aperture radar (SAR) satellite imagery has proven to be an efficient manage-
ment tool for disaster management authorities. However, one of the challenges is accurate classification and segmentation
of flooded water. A common method of SAR-based flood mapping is binary segmentation by thresholding, but this method
is limited due to the effects of backscatter, geographical area, and surface characterstics. Recent advancements in deep
learning algorithms for image segmentation have demonstrated excellent potential for improving flood detection. In this
paper, we present a deep learning approach with a nested UNet architecture based on a backbone of EfficientNet-B7 by
leveraging a publicly available Sentinel-1 dataset provided jointly by NASA and the IEEE GRSS Committee. The perfor-
mance of the nested UNet model was compared with several other UNet-based convolutional neural network architectures.
The models were trained on flood events from Nebraska and North Alabama in the USA, Bangladesh, and Florence, Italy.
Finally, the generalization capacity of the trained nested UNet model was compared to the other architectures by testing
on Sentinel-1 data from flood events of varied geographical regions such as Spain, India, and Vietnam. The impact of
using different polarization band combinations of input data on the segmentation capabilities of the nested UNet and other
models is also evaluated using Shapley scores. The results of these experiments show that the UNet model architectures
perform comparably to the UNet++ with EfficientNet-B7 backbone for both the NASA dataset as well as the other test
cases. Therefore, it can be inferred that these models can be trained on certain flood events provided in the dataset and
used for flood detection in other geographical areas, thus proving the transferability of these models. However, the effect
of polarization still varies across different test cases from around the world in terms of performance; the model trained
with the combinations of individual bands, VV and VH, and polarization ratios gives the best results.
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1 Introduction

Flooding is a widespread and dramatic natural disaster that
affects lives, infrastructures, economics, and local ecosys-
tems all over the world. Floods often cause loss of life
and substantial property damage. Moreover, the economic
ramifications of flood damage disproportionately impact the
most vulnerable members of society. Due to their imaging
capabilities that allow data acquisition regardless of illu-
mination and weather conditions, satellite synthetic aper-
ture radar (SAR) data have become the most widely used
Earth observation (EO) data for operational flood monitor-
ing (Martinis et al. 2015). For flood mapping using SAR
amplitude data, the specular reflection occurring on smooth
water surfaces results in most cases in a dark tone in SAR
data, making floodwater distinguishable from other land

K

https://doi.org/10.1007/s41064-024-00275-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s41064-024-00275-1&domain=pdf
http://orcid.org/0000-0001-9842-9056


2 PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (2024) 92:1–18

surfaces. In the case of urban areas, flooding results in an
increase of the backscatter, which results in brighter images.

Some of the challenges in this regard include accurate
classification and segmentation of flooded water as well as
availability of annotated datasets for training models and
subsequent comparison. One of the prevalent methods is
binary segmentation using thresholding methods like Otsu
(1975). In the paper Landuyt et al. (2019), the authors de-
scribe their comprehensive study of established pixel-based
flood mapping approaches like global and enhanced thresh-
olding, active contour modeling, and change detection on
SAR images of different flooded areas. However, the gen-
eralization ability of these methods is limited due to the
effects of backscatter, geographical area, and time of image
collection. Another area of approach for flood detection us-
ing SAR images includes rule-based classification methods
like M et al. (2017). In the paper Pradhan et al. (2016), the
authors also include Taguchi optimization techniques along
with rule-based classification for mapping flood extent. Few
studies have utilized texture information for mapping flood
using a single SAR image Dasgupta et al. (2018); Ritushree
et al. (2023). Ouled Sghaier et al. (2018) introduces a tex-
ture analysis method to map flood extent from a time se-
ries of SAR images. With the development of the Google
Earth Engine, web-based applications for flood mapping
like those described in Tripathy and Malladi (2022) are
also being introduced, which involves using a long stretch
of SAR images before and after the flood and calculating
the mean, standard deviation, and Z-score of each pixel.

Over the past few years, machine learning methods
have been in prevalence for flood mapping. Techniques
like Bayesian network fusion (Li et al. 2019b), self-orga-
nized maps (Skakun 2010 ), and support vector machines
(Insom et al. 2015) have been applied for extraction of
flooded areas from optical as well as SAR satellite images,
although there have been limited studies in this domain
due to the lack of large-scale labeled flood event datasets.
Deep learning methods represented by convolutional neu-
ral networks have proven to be effective in the field of
flood damage assessment (Bai et al. 2021; Ghosh et al.
2020) and have enabled development of new methods for
automated extraction of flood extent from SAR images
(Zhang et al. 2019). In the paper Muñoz et al. (2021), the
authors combined multispectral Landsat imagery and dual-
polarized synthetic aperture radar imagery to evaluate the
performance of integrating convolutional neural network
and a data fusion framework for generating compound
flood mapping. These studies show that deep learning
algorithms play an important role in enhancing flood clas-
sification. The recent release of the large-scale open-source
Sen1Floods11 dataset (Bonafilia et al. 2020) has boosted
research into using deep learning algorithms for water-
type detection in flood disasters, as was shown in Konapala

and Kumar (2021). Similarly, in the Bai et al. (2021), the
authors have utilized this dataset for training and valida-
tion as well as testing the model on a previously unseen
subset from the same dataset. The paper Katiyar et al.
(2021) also uses off-the-shelf models like baseline Segnet
and UNet for flood mapping and comparison of different
results based on different labeling techniques. Fully con-
volutional networks (FCN) have been quite prevalent for
flood mapping, as described in the papers Li et al. (2019a);
Nemni et al. (2020); Rudner et al. (2019). All the previous
studies have shown that flood detection is possible using
rule-based as well as deep learning methods. However, it is
also important to compare and quantify how some of these
state-of-the-art deep learning models perform on a global
scale, and whether these deep learning models can enhance
automatically generated flood maps. A higher quality of
detection also helps with the timeliness of rapid mapping
of floods and in providing critical information for disaster
relief management services.

In this work, we aim to design and train a deep learn-
ing model on the labeled flood data from some specific
geographical regions and then test the performance of the
trained models on real Sentinel-1 data from other geograph-
ical regions. This is to test whether it is possible to detect
floods from SAR data from certain parts of the world, even
though the model has been trained on a training dataset
from a completely different geographical area. We utilize
the publicly available Sentinel-1 dataset provided jointly
by the NASA Interagency Implementation and Advanced
Concepts Team and the Institute of Electrical and Elec-
tronics Engineers Geoscience and Remote Sensing Society
(IEEE- GRSS) technical committee. The model trained on
this dataset was then applied to flood events from five vary-
ing geographical areas to assess the performance of the
model. For our analysis, we have implemented the Effi-
cientNet-B7 architecture of the encoder in a nested UNet
model to assess its performance on flood segmentation from
Sentinel-1 images. The nested UNet has previously been
used for medical image segmentation ( Zhou et al. (2018)).
In our previous paper, Ghosh et al. (2022), we presented
an initial evaluation of two deep learning models, a base-
line UNet and a feature pyramid network (FPN), on only
the Florence subset of the NASA dataset. In this study, for
evaluation, the performance of the UNet++ model has been
compared to other convolutional neural network models
like Resnet34, InceptionV3, and Efficient net-B7, all hav-
ing the same baseline UNet architecture. This is to evaluate
whether the nested UNet with EfficientNet-B7 backbone
performs significantly better than other baseline UNet ar-
chitectures with backbones of Resnet34, InceptionV3, and
EfficientNet-B7. We chose UNet because it is a common
performance baseline for image segmentation. In the pa-
per Helleis et al. (2022), the authors utilize a similar method
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of comparing many deep learning models like ResNet-34
and different variations of the UNet like AlbuNet for flood
mapping.

However, one of the main differences between this work
and the work described in Helleis et al. (2022) is the choice
of the training dataset. In Helleis et al. (2022), the authors
train the models on the Sen1Floods11 dataset, which has
already been mentioned. Our choice of dataset is the dataset
provided jointly by the NASA Interagency Implementation
and Advanced Concepts Team and the IEEE- GRSS tech-
nical committee. While many of the publications on flood
mapping mentioned before used the Sen1Floods11 dataset
for training, the dataset from NASA has not been so widely
used to date. In that regard, we believe it will be interesting
to see how models trained on this dataset perform on flood
case studies from different parts of the world.

Another aspect of evaluation in this work is the impact
of using different polarization band combinations of input
data on the segmentation capabilities of the nested UNet and
other models. The nested UNet, along with the other mod-
els, is trained on single bands like VV and VH as well as
band combinations to assess the feature importance of these
bands for flood segmentation, similar to the paper Helleis
et al. (2022). The feature importance of the bands is then
measured using the Shapley score.

Fig. 1 Overview of the study sites. Colored dots represent the tile locations, red dots represent NASA flood dataset sites, and blue dots represent
the sites of the real SAR data used for evaluation

2 Materials andMethods

2.1 Training Dataset

The dataset was derived from the flood detection challenge
organized by the NASA Disaster Team in collaboration with
the Alaska SAR Facility – Distributed Active Archive Cen-
ters (ASF-DAAC). The dataset was labeled by the NASA
IMPACT Machine Learning Team (NASA 2021) to gen-
erate the flood extent maps. The dataset is quite diverse
and more representative of the different variations of geo-
graphical areas that were affected by flood, including agri-
cultural land and urban settings. The dataset covered four
flood events from Nebraska, North Alabama, Bangladesh,
and Florence. A total of 54 Geotiff images were converted
into tiles of 256 � 256 pixels. More comprehensive details
about the flood events are detailed in Table 1.

Each tile is generated from Sentinel-1 C-band synthetic
aperture radar (SAR) imagery data acquired in interfero-
metric wide swath mode in 5m�20m resolution, with dual
polarization mode i.e., “VV” and “VH”. Subsequent addi-
tional steps are applied for further processing the images us-
ing the Sentinel-1 Toolbox (Sentinel-1 2015), like applying
border noise correction, speckle filtering and radiometric
terrain normalization using a digital elevation model (DEM)
at a resolution of 30m. The final terrain-corrected values are
converted to decibels via log scaling (10 � log10.x/). The
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Table 1 Table showing the different flood events covered in the dataset

Area name Total area cov-
ered

Flood start
date

Flood end
date

Bangladesh 7,150km2 14.03.2017 12.07.2017

Nebraska 1,741km2 14.03.2019 01.04.2019

North Al-
abama

13,789km2 02.02.2019 27.03.2019

Florence 7,197km2 01.10.2018 05.10.2018

imagery is then converted to a 0–255 grayscale image. All
these steps were also followed while preparing the evalu-
ation dataset from different geographical areas. The whole
NASA dataset consists of approximately 66.000 tiled im-
ages from these various geographic locations. In addition
to the two polarization bands, VV and VH, an additional
channel containing the value of .VV+VH/=.VV−VH/ for
every pixel was added to all the images. The corresponding
flood label was treated as the ground truth.

The Bangladesh geographic area, which is predominant
in the dataset, is primarily an agricultural hub, and re-
cently harvested fields can look similar to floods due to low
backscatter in both VV and VH polarizations. Similarly, the
validation dataset from Florence has a primarily urban set-
ting. Such varying backscatter is relevant for performance
optimizations and generalizability to test imagery, as our ul-
timate aim is to apply the model for flood extent detection
on Sentinel-1 images from varying geographic locations.

For our evaluation, we keep the entire Florence dataset
as our validation set while training our model. A total
of 8382 images from the Florence dataset are separated
from the rest of the data, and the remaining approximately
25,000 image tiles are used for training. The dataset is im-
balanced, i.e., the proportion of images with some flood
region presence is lower than that of the images without it;
thus, during training, it is ensured that each batch contains
at least 50% samples with some amount of flood region
present through stratified sampling. Also, a data augmen-
tation technique is applied whereby each tile is rotated by
90°, 180°, and 270° to reduce the data imbalance problem.
This method is shown in Fig. 2.

Fig. 2 Each tile is rotated by 90°, 180°, and 270° to reduce the data
imbalance problem

2.2 Evaluation Dataset FromDifferent Geographical
Areas

The trained models were then tested on Sentinel-1 flood
data from five different geographical areas. The flood events
covered in these dataset described below:

2.2.1 Spain Floods, 2019

From 11 to 14 September 2019, torrential rainfall (recorded
296.4mm of rain in 24 hours (spa 2019) caused major flood-
ing in southeastern Spain (Valencia, Alicante, Murcia, Al-
bacete, and Almería). By 12 September, several rivers, in-
cluding the Segura and Cànyoles rivers, overflowed their
banks and caused major flooding and material damage. To
analyze this flooding, VV and VH pairs of Sentinel-1 im-
ages were acquired from the ESA Sentinel Hub (Hub 2015)
for 11 and 16 September, 2019, as before and after flood
images.

2.2.2 Kerala Floods, India, 2018

In August 2018, severe floods affected the south Indian state
of Kerala due to unusually high rainfall during the monsoon
season, resulting in dams filling to their maximum capaci-
ties. Almost all dams had to be opened, since the water level
had risen close to overflow level, thus flooding local low-
lying areas (Lal et al. 2020). To analyze this flooding, VV
and VH pairs of Sentinel-1 images were acquired from the
ESA Sentinel Hub (Hub 2015) for 4 July and 27 August,
2018, as before and after flood images.

2.2.3 Bihar Floods, India, 2021

In the state of Bihar in the northern Indian plains, due to
excessive rainfall between June 1 to July 23, 2021, several
rivers submerged many villages in their path (Downtoearth
2021). Other than that, these floods were also attributed to
the Farakka Barrage on the river Ganga in West Bengal,
Bihar’s eastern neighbour. The Farakka Barrage in West
Bengal, which regulates the flow of the Ganga, led to sedi-
ment deposition upstream of Farakka, which, in turn, led to
a rise in the height of the river bed and, hence, the record
flood levels in the state. To analyze this flooding, VV and
VH pairs of Sentinel-1 images were acquired from the ESA
Sentinel Hub (Hub 2015) for 12 June and 6 July, 2021, as
before and after flood images.

2.2.4 Vietnam Floods, 2020

In October 2020, the central region of Vietnam experienced
a number of inclement tropical storms, including Linfa
and Nangka (Reliefweb 2020), which brought heavy rain-
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fall (around 2000mm between 5 to 20 October 2020) and
caused water levels in rivers to rise rapidly. Several rivers,
especially in the Dong Hoi and Dong Ha regions, reached
historically high levels and caused heavy flooding. To ana-
lyze these floods, VV and VH pairs of Sentinel-1 images of
both Dong Hoi and Dong Ha regions were acquired from
the ESA Sentinel Hub (Hub 2015) for 12 June and 6 July,
2021, as before and after flood images.

These five different datasets represent different types of
floods, due to heavy and short rainfall, sustained rainfall
over a period of days, severe tropical storms, and floods due
to opening of dams. Other than that, the flood events were
also from different geographical regions of the world. All
the Sentinel-1 data were prepossessed using the same steps
as mentioned in Sect. 2.1 to match the training data. The ad-
ditional channel containing the value of .VV+VH/=.VV−
VH/ for every pixel was also added to each test image. The
Sentinel-1 images were divided into tiles of 256�256. The
trained models were then applied to detect the water pixels
in both the before-flood and after-flood images in each of
the datasets. The labeled reference water masks for these
datasets for evaluation were created by hand labeling us-
ing Sentinel-2 data from the exact same dates as reference.
The resulting segmentation maps were then recombined to

Fig. 3 UNet++ based segmen-
tation model with L3 pruning
investigated in the study (Zhou
et al. 2018)

the original scene size using a tapered cosine function as
described by Wieland and Martinis (2019) to reduce the
prediction errors close to the tile borders.

2.3 Model Architecture

The state-of-the-art models for image segmentation are vari-
ants of the encoder – decoder architecture like U-Net (Ron-
neberger et al. 2015). However, it has been shown in (Zhou
et al. 2018) that more effective image segmentation archi-
tectures like nested UNet or UNet++ with nested dense
convolutional blocks and dense skip connections can more
effectively capture fine-grained details. The main idea be-
hind UNet++ is to bridge the semantic gap between the
feature maps of the encoder and decoder prior to fusion.
To enable deep supervision, a 1�1 convolutional layer fol-
lowed by a sigmoid activation function was appended to
each of the target nodes. As a result, UNet++ generates
four segmentation maps given an input image, which will
be further averaged to generate the final segmentation map.
Similar to (Zhou et al. 2018), we set the pruning level to
L3.

In this study, we use EfficientNet-B7 as the encoder ar-
chitecture for the UNet++ segmentation network. As men-
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Fig. 4 Network architecture of EfficientNet-B0 (Tan and Le 2020)

tioned in (Tan and Le 2020), to maximize the model ac-
curacy for any given resource constraints, an optimization
problem can be designed with parameters w, d, and r, which
are coefficients for scaling network width, depth, and reso-
lution, respectively. The authors of the paper (Tan and Le
2020) also use neural architecture search to design a new
baseline network and scale it up to obtain a family of mod-
els, called EfficientNets, which achieve much better accu-
racy and efficiency than previous convolutional neural net-
works.

In (Tan and Le 2020), the authors introduce a new com-
pound scaling method which uses a compound coefficient
� to uniformly scale network width (ˇ� ), depth ( ˛�), and
resolution (��), where ˛, ˇ, and � are constants that can be
determined by a small grid search. Intuitively, � is a user-
specified coefficient that controls how many more resources
are available for model scaling, while ˛, ˇ, and � specify
how to assign these extra resources to network width, depth,
and resolution, respectively.

Fig. 4 shows the architecture of EfficientNet-B0. Its main
building block is mobile inverted bottleneck MBConv from
the paper (Sandler et al. 2019), to which squeeze-and-ex-
citation optimization, as mentioned in (Hu et al. 2019), is
added. Starting from the baseline EfficientNet-B0, a com-
pound scaling method is added to scale it up with two steps:

� � = 1 is first fixed, assuming twice more resources avail-
able, and a small grid search of ˛, ˇ, and � is done.

� ˛, ˇ, and � are fixed as constants and the baseline net-
work is scaled up with different �, to obtain EfficientNet-
B1 to B7.

In particular, EfficientNet-B7 has achieved state-of-the-
art 84.3% top-1 accuracy on the ImageNet dataset (Deng
et al. 2009), while being 8.4x smaller and 6.1x faster on
inference than the best existing convolution network. The
EfficientNet also transfers well and achieves state-of-the-
art accuracy on CIFAR-100 (91.7%) (Krizhe-vsky 2009)
dataset.

2.4 Model Training Details

For our analysis, we use EfficientNet-B7 as the encoder
backbone for the nested UNet. The other models for com-
parison are Resnet34, InceptionV3, and Efficient net-B7,
all having the same baseline Unet architecture. The models
are retrained on our filtered dataset and the weights of the
pre-trained networks are also fine-tuned by continuing the
back-propagation. For the entire study, the mini-batch size
was selected as 64 and iterated over the whole dataset for
100 epochs, for all the models. The Adam optimizer, as
introduced in (Kingma and Ba 2017), was used for training
optimization, with a learning rate of 3e-4. As mentioned in
(Zhou et al. 2018), a combination of binary cross-entropy
and dice coefficient as the loss function for each of the four
semantic levels was added.

2.5 Model EvaluationMetrics

For our model evaluation, metrics like accuracy, precision,
recall, F1 score, intersection over union (IoU), and kappa
have been used. The mIoU is the average between the IoU
of the segmented objects over all the images of the dataset.

For an image to be classified accurately, both preci-
sion and recall should be high. For this purpose, F1 score
and mIoU are often used as a tradeoff metric to quan-
tify both over- and under-segmentation into one measure.
While training, a sum of F1 score and mIoU, which is the
model evaluation score, is used as a metric for evaluating
the model while training.

A modified K-fold cross validation approach was used to
evaluate the performance of the models. The filtered dataset
was randomly divided into 10 equal subsets. For each round,
the models were trained on 9 subsets randomly and vali-
dated on the remaining subset. The process was repeated for
k=10 by randomly selecting 9 subsets for training and the
remaining one for validation. The model with the highest
model evaluation score was selected and its performance
was evaluated on the validation dataset. This was repeated
for all the models with different architectures. The train-
ing was performed on a server with three nVidia GP104GL
(Quadro P4000) GPUs, with driver NVIDIA UNIX x86.64
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Kernel Module 460.56. The whole model development and
training process was performed using Tensorflow along
with the Keras library in Python.

2.6 Importance of Polarization Band Combinations
Using Shapley Score

Shapley values are a metric for feature importances for
machine learning models (Lundberg and Lee 2017). This
method requires retraining the model on all feature subsets
S � F , where F is the set of all features. It assigns an im-
portance value to each feature that represents the effect on
the model prediction of including that feature. To compute
this effect, a model f[i is trained with that feature present,
and another model fS is trained with the feature withheld.
Predictions from the two models are then compared on the
current input f[i .x[i / − fS .xS /, where xS represents the
values of the input features in the set S. Since the effect
of withholding a feature depends on other features in the
model, the preceding differences are computed for all possi-
ble subsets S � F (Lundberg and Lee 2017). The Shapley
values are then computed and used as feature attributions.
They are a weighted average of all possible differences:

�i =
X

S�F

jS jŠ.jF j − jS j − 1/Š

jF jŠ ŒfS[i .xS[i / − fS .xS /� (1)

In this paper, the Shapley scores of each model have been
calculated for all possible polarization band combinations:

� VV, VH, .VV + VH/=.VV − VH/
� only VV
� only VH
� only .VV + VH/=.VV − VH/
� VV, VH

Fig. 5 a shows the progression of training and validation loss and b shows the progression of training and validation IoU for the UNet model with
EfficientNet-B7 as encoder over 15 epochs

� VV, .VV + VH/=.VV − VH/

� VH, .VV + VH/=.VV − VH/

The scores for each of these band combinations denote
how much contribution each band combination has towards
flood segmentation using the given model.

3 Results

3.1 Training Results

The progression of training and validation loss and training
and validation IoU, for the best UNet++ model with Effi-
cientNet-B7 as encoder, over 15 epochs after K-fold cross-
validation, is depicted in Fig. 5.

3.2 Results on the NASA Dataset

The results of the performances of the best models of the
baseline UNet with Resnet34, InceptionV3, and Efficient-
Net-B7, and the UNet++ with EfficientNet-B7, after K-fold
cross-validation, on a few of the validation images from
Florence are shown in Fig. 6.

Based on the labels from the validation data, metrics
like accuracy, precision, recall, F1 score, intersection over
union (IoU), and kappa were calculated and the results are
depicted in Table 2.

To assess whether the performances of the models are
significantly different with each other, the McNemar’s test
was used (McNemar 1947). McNemar’s test is used to com-
pare the predictive accuracy between two models based on
a contingency table of the two model’s predictions. The
test is performed taking into account exactly which cases
the first model predicted correctly where the second model
predicted wrong and vice versa. The p-values were calcu-

K



8 PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (2024) 92:1–18

Fig. 6 The SAR image, the corresponding ground truth, and the prediction results for the trained baseline UNet models with Resnet34, Incep-
tionV3, and EfficientNet-B7, and the UNet++ with EfficientNet-B7 for the validation set from Florence flood event

Table 2 Comparison of performance metrics of the baseline UNet with Resnet34, InceptionV3, and Efficientnet-B7, and the UNet++ with Effi-
cientNet-B7 on the validation data from Florence

Performance metric UNet with Resnet34 UNet with InceptionV3 UNet with EfficientNet-B7 UNet++ with EfficientNet-B7

Accuracy 98.1% 97.9% 98.3% 98.8%

Precision 85.1% 80.05% 87.02% 89.5%

Recall 88.25% 87.8% 88.9% 89.1%

F1 86.6% 83.74% 87.94% 89.3%

IoU 73.1% 71.7% 75.06% 75.76%

Kappa 79% 74.5% 80.7% 81.6%
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Table 3 Comparison of pairwise p-values among the baseline UNet with Resnet34, InceptionV3, and EfficientNet-B7, and the UNet++ with
EfficientNet-B7 on the validation data from Florence

Resnet34
(UNet)-Incep-
tionV3 (UNet)

Resnet34 (UNet)-
EfficientNet-B7
(UNet)

Resnet34 (UNet)-
EfficientNet-B7
(UNet++)

InceptionV3
(UNet)-Efficient-
Net-B7 (UNet)

InceptionV3 (UNet)-
EfficientNet-B7
(UNet++)

EfficientNet-B7
(UNet)-EfficientNet-
B7 (UNet++)

0.32 0.45 0.13 0.15 0.07 0.5

Fig. 7 Figure showing the IoU
scores for each model trained
with the individual bands VV,
VH, .VV + VH/=.VV − VH/,
and all possible combinations
for the Florence dataset

Fig. 8 Figure showing the abso-
lute Shapley (SHAP) score for
VV, VH, .VV+VH/=.VV−VH/,
and their combinations for each
of the models for the validation
set from Florence
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Fig. 9 The SAR image, the corresponding ground truth, and the prediction results for the trained baseline UNet with Resnet34, InceptionV3, and
EfficientNet-B7 models, and the UNet++ with Efficientnet-B7 model, for the pre-flood and post-flood Sentinel-1 image from the case study in
Spain 2019. The first row consists of the pre-flood results while the second row highlights the post-flood results

Fig. 10 The SAR image, the corresponding ground truth, and the prediction results for the trained baseline UNet with Resnet34, InceptionV3, and
EfficientNet-B7 models, and the UNet++ with EfficientNet-B7 model, for the pre-flood and post-flood Sentinel-1 image from the case study in
Kerala 2018. The first row consists of the pre-flood results while the second row highlights the post-flood results

lated for the pairwise McNemar test for each model, with
the significance level kept at a standard value of 0.05. The
pairwise p-values are shown in table. From the Table 3, it
can be seen that in all cases, the p-value is larger than the
assumed significance threshold of 0.05. Therefore, it can be
concluded that there are no significant differences among
the different models.

To check how the IoU scores vary depending on the
combinations of bands used, the models were trained on
the training set repeatedly, each time using a different band
combination, as mentioned in Sect. 2.6. In each case, the

trained models were then used to predict the flood map of
the Florence validation set and the IoU was calculated as
shown in Fig. 7. From Fig. 7, it can be seen that for all four
models, the model trained on the data having all three bands
performs the best, and the model trained on only VH band
outperforms the model with only the VV band. Also, it can
be seen that the addition of the ratio .VV+VH/=.VV−VH/

band enhances the performance of the model.
As mentioned in Sect. 2.6, the absolute Shapley scores

were calculated to get an idea of the marginal contribution
of each of the polarization bands and their combinations to
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Fig. 11 The SAR image, the corresponding ground truth, and the prediction results for the trained baseline UNet with Resnet34, InceptionV3, and
EfficientNet-B7 models, and the UNet++ with EfficientNet-B7 model, for another pre-flood and post-flood Sentinel-1 image from the case study
in Kerala 2018. The first row consists of the pre-flood results while the second row highlights the post-flood results

Fig. 12 The SAR image, the corresponding ground truth, and the prediction results for the trained baseline UNet with Resnet34, InceptionV3, and
EfficientNet-B7 models, and the UNet++ with EfficientNet-B7 model, for the pre-flood and post-flood Sentinel-1 image from the case study in
Vietnam 2020. The first row consists of the pre-flood results while the second row highlights the post-flood results

the final prediction and shown in Fig. 8. As can be seen
from Fig. 8, for all of the models, the highest marginal
contribution for each of the models is from the combination
of VV and VH bands, and the individual contribution of the
VV band is higher than that of the VH band in all cases.
The inclusion of the ratio .VV+VH/=.VV−VH/ with VV
or VH bands contributes more than the VV or VH bands
individually. In case of the model having the backbone of
the UNet-Inceptionv3, the contribution of the VV, VH band
combination is the highest, compared to the other models
for this specific dataset.

3.3 Results on the Real Dataset

The results of the performances of the baseline UNet with
Resnet34, InceptionV3, and EfficientNet-B7 models, and
the UNet++ with EfficientNet-B7, on some of the pre-flood
and post-flood datasets from Spain, Kerala, and Vietnam
are shown in Figs. 9–13.

Based on the reference masks hand-labeled from Sen-
tinel-2 data, metrics like accuracy, precision, recall, F1
score, intersection over union (IoU), and kappa were cal-
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Fig. 13 The SAR image, the corresponding ground truth, and the prediction results for the trained baseline UNet with Resnet34, InceptionV3, and
EfficientNet-B7 models, and the UNet++ with EfficientNet-B7 model, for another pre-flood and post-flood Sentinel-1 image from the case study
in Vietnam 2020. The first row consists of the pre-flood results while the second row highlights the post-flood results

culated for all the datasets and the results are depicted in
Tables 4–7 respectively.

To assess whether the performances of the models are
significantly different from each other, the McNemar’s test
was used as before. The pairwise p-values for the four
different datasets are shown in Table 8. From the Table 8, it
can be seen that in all cases, the p-value is larger than the
assumed significance threshold of 0.05. Therefore, it can be
concluded that there are no significant differences among
the different models.

Table 4 Comparison of performance metrics of the baseline UNet with Resnet34, InceptionV3, and EfficientNet-B7, and the UNet++ with Effi-
cientNet-B7, on the Sentinel-1 data from Spain

Performance metric UNet with Resnet34 UNet with InceptionV3 UNet with EfficientNet-B7 UNet++ with EfficientNet-B7

Accuracy 98.6% 98.1% 98.7% 98.8%

Precision 81.6% 79.3% 82.4% 82.8%

Recall 85.3% 83.4% 86.1% 86.4%

F1 83.4% 81.3% 84.2% 84.5%

IoU 71.5% 71.1% 72.9% 73.0%

Kappa 79.8% 78.7% 80.4% 80.5%

Table 5 Comparison of performance metrics of the baseline UNet with Resnet34, InceptionV3, and EfficientNet-B7, and the UNet++ with Effi-
cientNet-B7, on the Sentinel-1 data from Kerala

Performance metric UNet with Resnet34 UNet with InceptionV3 UNet with EfficientNet-B7 UNet++ with EfficientNet-B7

Accuracy 96.8% 96.3% 97.1% 97.7%

Precision 82.3% 80.1% 83.7% 84.0%

Recall 83.8% 80.5% 87.0% 87.3%

F1 83% 80.3% 85.3% 85.6%

IoU 69.7% 66.8% 73.5% 74.1%

Kappa 78.5% 75.6% 80.3% 80.8%

3.3.1 Comparison of IoU Scores for Models with Different
Band Combinations

As mentioned in Sect. 3.2, to check how the IoU scores vary
depending on the combinations of bands used, the models
were trained on the training set repeatedly, each time us-
ing a different band combination. In each case, the trained
models were then used to predict the flood map of the test
datasets from Spain, Kerala, Bihar, and Vietnam. The IoU
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Table 6 Comparison of performance metrics of the baseline UNet with Resnet34, InceptionV3, and EfficientNet-B7, and the UNet++ with Effi-
cientNet-B7, on the Sentinel-1 data from Bihar

Performance metric UNet with Resnet34 UNet with InceptionV3 UNet with EfficientNet-B7 UNet++ with EfficientNet-B7

Accuracy 97.7% 97.5% 98.3% 98.5%

Precision 85.5% 81.3% 88.5% 89.7%

Recall 88.4% 87.6% 89.1% 89.4%

F1 86.9% 84.3% 88.8% 89.5%

IoU 71.7% 70.2% 73.9% 74.7%

Kappa 78.7% 77.5% 79.8% 80.3%

Table 7 Comparison of performance metrics of the baseline UNet with Resnet34, InceptionV3, and EfficientNet-B7, and the UNet++ with Effi-
cientNet-B7 on the Sentinel-1 data from Vietnam

Performance metric UNet with Resnet34 UNet with InceptionV3 UNet with EfficientNet-B7 UNet++ with EfficientNet-B7

Accuracy 98.1% 97.7% 98.7% 98.9%

Precision 83.4% 78.9% 84.0% 86.2%

Recall 84.9% 81.4% 85.7% 86.2%

F1 84.1% 80.1% 84.8% 86.2%

IoU 71.7% 70.1% 73.7% 74.0%

Kappa 80.7% 78.7% 81.2% 81.6%

Table 8 Comparison of pairwise p-values among the baseline UNet with Resnet34, InceptionV3, and EfficientNet-B7, and the UNet++ with
EfficientNet-B7, on the four different test datasets

Dataset Resnet34
(UNet)-Incep-
tionV3 (UNet)

Resnet34 (UNet)-
EfficientNet-B7
(UNet)

Resnet34 (UNet)-
EfficientNet-B7
(UNet++)

InceptionV3
(UNet)-Efficient-
Net-B7 (UNet)

InceptionV3
(UNet)-Efficient-
Net-B7 (UNet++)

EfficientNet-B7
(UNet)-EfficientNet-
B7 (UNet++)

Spain 0.33 0.26 0.18 0.22 0.16 0.47

Kerala 0.39 0.34 0.15 0.29 0.07 0.41

Bihar 0.38 0.32 0.12 0.21 0.11 0.45

Vietnam 0.28 0.36 0.23 0.19 0.08 0.42

scores were calculated for each case study separately and
shown in Fig. 14.

From Fig. 14, it can be seen that in all cases, the model
trained on the data with all three bands performs the best.

The Shapley values were then calculated using Eq. (1)
and shown in Fig. 15. As can be seen from Fig. 15, the
highest marginal contribution for each of the models is from
the combination of VV and VH bands in all cases.

4 Discussion

In this work, the main objective was to leverage the huge
amount of publicly available Sentinel-1 data to delineate
open water bodies which can be further used in flood ex-
tent mapping in varied geographical areas of the world. In
the literature study shown in Sect. 1, almost all of the re-
lated works dealt mostly with the techniques applied but not
with the generalizability of the methods in different varied
geographical and topographical conditions.

4.1 Model Architecture

The UNet models with Resnet34, InceptionV3, and Ef-
ficientNet-B7 architectures perform comparably to the
UNet++ with EfficientNet-B7 backbone, as is visible from
the results on both the NASA dataset as well as on the
real test cases. In both instances, there were no signifi-
cant differences among the results from the four different
architectures. One reason behind this may be that deeper
encoders with more layers may not necessarily improve the
predictive capabilities of the model. A visual comparison
of the segmentation results in Figs. 6, 9–13 suggests that
there may not be any significant differences among the
results of the UNet models with Resnet34, InceptionV3,
and EfficientNet-B7 architectures; however, the UNet with
InceptionV3 architecture tends to produce noisy predic-
tions in some fine-edge cases. This can be aligned with the
results from Bai et al. (2021), where it was also reported
that deep learning architectures like UNets tend to produce
similar results to convolutional neural networks (CNN).
One argument behind the UNet++ not producing signifi-
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Fig. 14 a–d Show the IoU scores for each model trained with the individual bands VV, VH, .VV+VH/=.VV−VH/, and all possible combinations
tested on the real datasets from Spain, Kerala, Bihar, and Vietnam, respectively

cantly better predictions than the UNet models can be that
although the UNet++ employs the multidepth encoders and
multiscale feature map fusion which may help with correct
classification of areas prone to misclassification, the inher-
ent multiscale information flow in UNet architectures, that
is intrinsic to any encoder, is sufficient for this task. Hence,
using a dedicated architecture focusing on multiscale fu-
sion does not improve the results significantly. This also
highlights another point, namely that the model architec-
ture may not be the limiting parameter for obtaining better
segmentation results at this stage. To further improve the
performance of the models, adding additional training data,
with a focus on hard examples, may be more beneficial.

4.2 Polarization

The segmentation results also depend strongly on the choice
of polarization used for training and inference. It has been
shown that using both polarizations, VV and VH, is neces-
sary for improved detection of flooded areas. Additionally,
adding a third band as a ratio of two VV+VH and VV-
VH can add information in certain scenarios. A visual in-
spection of a scene from the Florence set in the NASA
dataset gives an idea regarding how the models can per-

form differently after being trained and tested on different
combinations of polarization bands, as shown in Fig. 16.

In Fig. 16, for the first scene (first row) the combination
of the VV, VH and the .VV + VH/=.VV − VH/ bands per-
form superiorly compared to the model with only the VH
band. The combination of the VH and VH bands as well as
the just the VV band performs worse. In the second case
(second row), the models with only the VH band, both VV,
VH bands together and using the combination of the VV,
VH and the .VV +VH/=.VV − VH/ bands perform almost
comparably and better than the model with only the VV
band.

The effect of polarization varies across different test
cases from around the world, as is evident from the IoU
score of the different models from four different real test
cases with different polarization band combinations.

� In Fig. 14a, in the case of the test dataset from Spain,
the models trained on only the VV band have a higher
IoU% than the models trained on only the VH band. The
combination of the VH and the ratio band performs better
than combination of the VV and the ratio band as well as
the combination of VV and VH bands.

� In Fig. 14b, in the case of the test dataset from Kerala,
the models trained on only the VH band have a higher
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Fig. 15 a–d Show the Shapley (SHAP) scores for each model trained with the individual bands VV, VH, .VV+VH/=.VV−VH/, and all possible
combinations tested on the real datasets from Spain, Kerala, Bihar, and Vietnam respectively

IoU% than the models trained on only the VV band. The
combination of the VV and VH bands performs better
than combination of the ratio band with either just the
VV or the VH bands.

� In Fig. 14c, in the case of the test dataset from Bihar,
the models trained on only the VV band have a higher
IoU% than the models trained on only the VH band. The
combination of the VH and the ratio band performs better
than combination of the VV and the ratio band as well as
the combination of VV and VH bands.

� In Fig. 14d, in the case of the test dataset from Vietnam,
the models trained on only the VH band have a higher
IoU% than the models trained on only the VV band. The
combination of the VH and the ratio band performs better
than combination of the VV and the ratio band as well as
the combination of VV and VH bands.

4.3 Marginal Contribution From Each Polarization
Band to the Final Prediction

Shapley values are an important metric for measuring the
marginal contribution of each of the polarization band com-
binations towards the final prediction. Similar to the polar-
ization bands, the marginal contribution of the these bands

towards the final prediction also varies across different test
cases from around the world.

� In Fig. 15a, in the case of the test dataset from Spain,
the contributions of the VV band and the VH band are
almost equal for the UNet-ResNet34 and UNet-Incep-
tionV3 models, and the contribution of the combination
of the VV and ratio bands is marginally higher than that
of the combination of the VH and ratio bands. For the
UNet-EfficientNetB7 and Nested-UNet-EfficientNetB7
models, the marginal contribution of the VV band is
higher than that of the VH band and the contribution of
the combination of VV and ratio bands is higher than
that of the combination of VH and ratio bands.

� In Fig. 15b, in the case of the test dataset from Kerala,
the contribution of the VV band is marginally higher than
that of the VH band for the UNet-ResNet34 and UNet-
InceptionV3 models, and the contribution of the combi-
nation of the VV and ratio bands is almost equal to that
of the combination of the VH and ratio bands. For the
UNet-EfficientNetB7 and Nested-UNet-EfficientNetB7
models, the marginal contribution of the VH band is
higher than that of the VV band and the contribution of
the combination of VH and ratio bands is higher than
that of the combination of VV and ratio bands.
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Fig. 16 The SAR image, the
corresponding ground truth,
and the prediction results for
the UNet++ with EfficientNet-
B7 model on two scenes from
Florence in the NASA dataset
using only the VV band, only
the VH band, both VV and
VH bands together, and using
a combination of the VV, VH,
and the .VV +VH/=.VV − VH/
bands

� In Fig. 15c, in the case of the test dataset from Bihar,
the contributions of the VV band and the VH band are
almost equal for the UNet-ResNet34 and UNet-Incep-
tionV3 models, and the contribution of the combination
of the VV and ratio bands is marginally higher than the
combination of the VH and ratio bands. For the UNet-
EfficientNetB7 and Nested-UNet-EfficientNetB7 mod-
els, the marginal contribution of the VV band is higher
than that of the VH band and the contribution of the
combination of VV and ratio bands is higher than that of
the combination of VH and ratio bands.

� In Fig. 15d, in the case of the test dataset from Viet-
nam, for all models, the contribution of the VH band is
marginally higher than that of the VV band for the UNet-
ResNet34 and UNet-InceptionV3 models, and the con-
tribution of the combination of the VH and ratio bands
is almost equal to the combination of the VV and ratio
bands.
Previous studies (Baghdadi et al. 2001; Henry et al.
2006a) have shown that VV polarization is the most ef-
ficient channel for flood detection compared to the VH
polarization signal due to the double bounce property
(Ferro et al. 2011). This is because the backscatter values
given by VV polarization are highly distinct in wet ar-
eas. However, results obtained through VH polarization
are quite different for different weather conditions, as
VH polarization is most sensitive to surface roughness
conditions (Henry et al. 2006b), such as the roughness of
water surfaces due to wind conditions. With regards to
the comparison between only VV and VH polarization
bands for flood detection, our results show that neither
VV nor VH singularly can be considered as the preferred
input for the purpose of flood mapping using deep learn-
ing models. Similar to the observations by Katiyar et al.
(2021) and Helleis et al. (2022), the combination of VV
and VH polarized data can be seen to perform superiorly
compared to only one of the bands alone. This is also
shown to hold true for more complex cases like flood
mapping in urban areas Pelich et al. (2022).

5 Conclusion

In this study, the performance of the UNet++ with Effi-
cientNet-B7 encoder is compared with three other state-
of-the-art UNet-based segmentation models in the task of
flood mapping based on SAR satellite images. Moreover,
the impact of polarization band combinations on the per-
formance of the trained models was also assessed. Overall,
we can summarize our conclusions from our experiments
with these points:

� The UNet models with Resnet34, InceptionV3, and Ef-
ficientNet-B7 architectures perform comparably to the
UNet++ with EfficientNet-B7 backbone, as is visible
from the results on both the NASA dataset as well as on
the real test cases. In both cases, there were no signifi-
cant differences among the results from the four different
architectures.

� The segmentation results also depend strongly on the
choice of polarization used for training and inference.
However, the effect of polarization still varies across dif-
ferent test cases from around the world in terms of per-
formance; the model trained with the combinations of the
individual bands VV and VH and .VV+VH/=.VV−VH/

gives the best results.
� The highest marginal contribution for each of the models,

as is evident from the Shapley values, is from the combi-
nation of VV and VH bands in all cases. Thus, calcula-
tion of the Shapley values has proven to be an effective
measure of the marginal contribution of individual po-
larization bands as well as band combinations for flood
detection using deep learning architectures.

� We have also shown how the flood dataset provided by
the NASA Interagency Implementation and Advanced
Concepts Team can be used as a benchmark dataset for
training deep learning models. One of the main high-
lights is that these models can be trained on certain
flood events provided in the dataset and used for flood
detection in other geographical areas, thus proving the
transferability of these models.
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In this work, although only Sentinel-1 data have been
used, these methods should also transfer to other SAR sen-
sors as well. To handle problems with more complex urban,
arid, and mountainous environments, further research may
be carried out to check whether additional information, like
slope or land cover information, or even extending the train-
ing set with more example scenes from these environments
could help improve the results and increase the robustness
of the models.
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