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Abstract
To advance underwater computer vision and robotics from lab environments and clear water scenarios to the deep dark 
ocean or murky coastal waters, representative benchmarks and realistic datasets with ground truth information are required. 
In particular, determining the camera pose is essential for many underwater robotic or photogrammetric applications and 
known ground truth is mandatory to evaluate the performance of, e.g., simultaneous localization and mapping approaches 
in such extreme environments. This paper presents the conception, calibration, and implementation of an external reference 
system for determining the underwater camera pose in real time. The approach, based on an HTC Vive tracking system in 
air, calculates the underwater camera pose by fusing the poses of two controllers tracked above the water surface of a tank. 
It is shown that the mean deviation of this approach to an optical marker-based reference in air is less than 3 mm and 0.3◦ . 
Finally, the usability of the system for underwater applications is demonstrated.

Keywords Tracking · Pose estimation · Hand–Eye calibration · UKF · Underwater vision · ROS · Ground truth · HTC Vive

1 Introduction

Pose estimation is a mandatory prerequisite in multiple dis-
ciplines, where each case demands the selection of a suitable 
tracking method. GNSS (e.g., GPS), for example, is suitable 
for determining the position of vehicles that have a direct 
line of sight to multiple satellites, but this method cannot 
be used underwater due to the attenuation of the signals. 
Instead, acoustic methods or optical markers can be used 
here (Kinsey et al. 2006). Alternatively, the absolute pose 

above the water surface can be determined by GNSS and 
the subsequent relative movements underwater can be meas-
ured with an inertial measurement unit (IMU) or the speed 
relative to the ground with Doppler velocity logs (DVLs). 
However, these methods can lead to a continuous drift of 
the pose. At the same time, the placement of optical markers 
or other instrumentation at underwater field sites is labo-
rious and can also suffer from challenging environmental 
conditions, such as storms, turbid water, currents and tides, 
growth of algae, or biofouling. For developing and improv-
ing robust visual underwater localization techniques (Zhang 
et al. 2022) in challenging scenarios (Köser and Frese 2020) 
such as the deep sea (no sunlight) or turbid waters (coast, 
harbors), it is difficult to obtain ground truth poses that 
would allow for the evaluation of underwater computer 
vision approaches.

To robustify and improve such approaches, they should 
be validated under various test conditions (different water 
types, different environmental scenarios, different visual 
structures, and different illuminations). As already argued 
in Nakath et al. (2022), underwater validation scenarios 
severely suffer from the lack of exactly known conditions, 
in geometric as well as radiometric terms. As an impor-
tant step to overcome geometric shortcomings, we suggest 
using a water tank (in our case 2.2 m × 1 m with a depth 
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of 0.8 m), in which a miniaturized underwater scene is set 
up that can be seen as a 1:10 model of the real world. This 
scene is intended to be used for developing and accessing 
visual mapping approaches. To this end, dye and scattering 
agents are added to the water in the tank to mimic visual 
impairments known to occur in underwater scenarios (see, 
e.g., Song et al. (2022) for a comprehensive discussion). 
However, the resultant extremely limited visibility makes 
it difficult to determine ground truth camera poses under-
water using optical markers (Herrmann et al. 2022). On top 
of that, adding optical markers will also create unrealistic 
structures, potentially biasing an evaluation. Our approach is 
therefore to implement an external reference system, which 
can determine ground truth camera poses independently of 
the water conditions. An optical tracking system is used for 
this, which determines absolute poses above the water sur-
face and applies a rigid transformation and sensor fusion to 
obtain the camera pose underwater in real time.

An HTC Vive Pro is chosen as the tracking system. This 
consumer virtual reality (VR) system Yu (2011) is signifi-
cantly cheaper than comparable optical motion capture sys-
tems, such as VICON or OptiTrack. Another advantage of 
the HTC Vive is the easy integration of the tracking algo-
rithms into the robot operating system (ROS) (Quigley 
et al. 2009) using the OpenVR interface. The ground truth 
controller poses are thus available in ROS, so that the rigid 
transformation to the camera pose can be determined for 
each controller with a Hand–Eye calibration approach. To 
reduce the tracking and transformation errors, two control-
lers are used on the upper end of the camera stick. This 
results in two pose estimates for the camera, which are 
merged using an Unscented Kalman Filter (UKF) (Julier and 
Uhlmann 1997; Wan and Van Der Merwe 2000). Finally, a 
custom-made underwater camera-light system, which can 
additionally be equipped with IMUs, is mounted at the end 
of the stick to record underwater datasets with ground truth 
poses; see Fig. 1.

In this work, the tracking quality of the developed sys-
tem is quantitatively evaluated. For this purpose, the track-
ing and the Hand–Eye calibration are analyzed first. Then, 
the precision of the real-time camera pose estimation is 
validated. This is achieved by first measuring an optical 
target as a fixed point in space. Then, the camera pose of 
the external tracking system is compared with a camera 
pose determined optically under good visibility conditions.

2  Related Work

2.1  HTC Vive Analysis

Using the HTC Vive as a cost-effective tracking system 
in the field of robotics and computer vision is wide-
spread, see, e.g., Wang et al. (2020); Ayyalasomayajula 
et al. (2020); Borges et al. (2018). In the latter paper, the 
accuracy of tracking of first generation HTC Vive devices 
is analyzed using the open-source library Libdeepdive 
(Symington 2018) in combination with a subsequent opti-
mization step. Trackers in different orientations are used 
together with two lighthouses. Being restricted to a 2D 
plane, a mean standard deviation of 1.18 mm and 0.45◦ 
is achieved for the tracker poses across the data sets. An 
analysis for the accuracy of the HTC Vive headset track-
ing is performed in Niehorster et al. (2017). However, 
since the headset is too big and bulky to use it for our 
experiments, there are no comparable values for our target 
application. Finally, (Bauer et al. 2021) provide and in-
depth pose estimation accuracy evaluation of the second 
generation of the Vive. However, all the results are not 
comparable to our approach, as we are interested in fused 
results of a pose with significant offset.

Fig. 1  Application in a deep sea AUV scenario: from left to right: the whole system with the external reference system, underwater camera, and 
artificial lights; an overview of the scene, without external light sources; and finally a view through the underwater camera
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2.2  Hand–Eye Calibration

Hand–Eye calibration describes a technique for calculating 
the 3D Position and orientation of a camera relative to a 
robot manipulator. In this work, it is used to determine the 
rigid transformation between the controllers and the under-
water camera on the camera stick. Various approaches can 
be found in the literature (see, e.g., Enebuse et al. (2021)). 
The classic approach is from Tsai and Lenz (1989), in which 
the pose of the hand is known from the robot or an external 
tracking system. A calibration target is used here, which is 
placed firmly in the room. Then, a data set of poses for the 
hand and the transformation from the camera to the calibra-
tion target is recorded. From this, a linear system of equa-
tions can be set up and the rigid transformation between 
hand and camera can be determined.

An alternative approach does not rely on calibration tar-
gets and instead determines the optical data with a struc-
ture-from-motion approach. This technique is particularly 
interesting for areas of application in which no calibration 
target can be set up. In Schmidt et al. (2005), an example 
application in the medical field is demonstrated, in which a 
non-sterile calibration pattern cannot be used. However, the 
accuracy of this approach is, on average, lower than that of 
the classical approach, which we hence stick to.

2.3  Underwater Ground Truth Camera Poses

Simulated or heavily controlled environments can often 
help to investigate parts of a complex problem under known 
conditions. The idea of hardware in the loop systems is to 
include real hardware in a simulation system, to narrow the 
simulation to reality gap (Bacic 2005).

Robot arms are often used as an external reference system 
for determining camera poses as they offer a high repeatabil-
ity and thus offer a good ground truth reference (Ali et al. 
2020). Hence, they are often used in hardware in the loop 
test facilities for, e.g., spacecraft (Park et al. 2021; Krüger 
and Theil 2010).

However, a robot arm for the planned application requires 
a large radius of movement, which increases the acquisition 
costs significantly. At the same time, the integration into an 
underwater application results in a high maintenance effort, 
so that this approach is not pursued by us.

A GPS-INS fusion-based system is used in Bleier et al. 
(2019) to estimate the 6DOF of a ship which scans the 
ground with a laser system. However, as we work in an 
indoor lab-environment, we do not use satellites. In Bernal 
et al. (2017), a VICON tracking system is used in con-
junction with immersed trackers and off-the-shelf cam-
eras to capture the motion of a space suit underwater. This 
approach cannot be employed by us, as we want to operate 

in extreme visibility conditions, which prohibit easy detec-
tion underwater. Two interesting solutions for cross-sur-
face pose determination are presented in Nocerino and 
Menna (2020): (i) a rod is equipped with a stereo-camera 
system with a submerged as well as an in-air image; (ii) a 
rod can as well be equipped with markers above and below 
the surface and then be observed by one camera. Still, we 
cannot use such approaches, as we also want to model dif-
ferent light conditions, including deep sea environments 
with artificial lighting, which demand absolutely no light 
over the surface.

Comparable work using an external reference system 
for underwater camera applications is presented in Song 
et al. (2021). Four optical tracking systems (VICON) are 
used here to detect poses from infrared sensors mounted 
at the upper end of a rod. This is a much more expensive 
system compared to a consumer VR system. The authors 
provide no analysis of the accuracy of the motion capture 
system, but it is claimed that it achieves an accuracy down 
to 0.5 mm in a 4m × 4m volume. At the bottom of the rod, 
an underwater camera with integrated IMU is located. For 
this purpose, the absolute deviation of the trajectory for 
VINS-Fusion (Qin et al. 2019) and ORB-SLAM2 (Mur-
Artal and Tardós 2017) are compared to the ground truth 
camera poses over several data sets. In the case of VINS-
Fusion, the deviation is on average 67.63 mm with the 
IMU and 111.33 mm without its inclusion. ORB-SLAM2 
achieves an average deviation of 88.1 mm.

3  System Design

3.1  Hardware Overview

In Fig.  2, the connection between the hardware com-
ponents is shown as a block diagram. This includes the 
devices from the HTC Vive, the camera, the calibration 
target consisting of ArUco markers, and the water tank. 
The respective poses and the transformations used in 3D 
space are shown. The poses of the controllers are deter-
mined by the tracking system. With the Hand–Eye cali-
bration result, a rigid transformation for each controller 
to the camera pose is concatenated. The optimal camera 
pose is calculated by the UKF, by fusing the two noisy 
measurements of the controller poses. Finally, the trans-
formation from the camera to the calibration target can 
be determined using ArUco marker detection. By placing 
the calibration target in a corner of the water tank, its pose 
can be defined in world coordinates by concatenating the 
inverse transformations. For more information about dif-
ferent coordinate systems, we refer to Janssen (2009).
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3.2  Vive Setup

The so-called lighthouses of the Vive system emit light 
sweeps, which are detected by the photo diodes of the con-
trollers. The horizontal and vertical angle to the lighthouse 
can be calculated from the measured time of arrival, and 
thus, the absolute pose can be determined in real time. In 
addition, IMU measurements are merged into the pose cal-
culation to improve the precision of relative movements. The 
arrangement of the lighthouses is selected in such a way 
that the center of the measurement environment with the 
water tank is optimally located in the tracking area. This 
also considers that the user of the system does not stand 
between the lighthouses field of view and the controllers 
during the measurement. The lighthouses are mounted at a 
height of 2.3 ms above the floor, with about 4.2 ms between 
them. In this setup, we did not observe any problems stem-
ming from reflections from the water surface. The surround-
ings of the measurement setup and the tracking area of the 
lighthouses with the cone-shaped coloring in magenta for 
the first lighthouse and cyan for the second lighthouse are 
shown in Fig. 3.

3.3  Camera Stick

The camera stick establishes the rigid mechanical con-
nection between the camera (underwater) and the tracking 

system. The camera’s pose therefore relates to the control-
ler’s pose by a rigid transformation. In Fig. 4, the camera 
stick is shown with the camera located on the right side, 
so that it is about 0.9 m below the controllers. Thus, this 
part can be kept submerged, while the upper elements of 
the stick with the controllers remain above the water sur-
face. The use of two controllers should make it possible 
to mutually play off their individual tracking errors and to 
achieve an optimized result. Empirical experiments were 
used to determine in which relative positioning the con-
trollers exhibit the smallest tracking error. This is achieved 
by rotating them 180◦ to each other, orienting them upright 
and having a distance between the origins of the rigid bod-
ies of about 0.52 m. As shown in Fig. 4, the real environ-
ment is visualized in real time in the ROS visualization 
(RViz).

Fig. 2  Overview of system transformations

(a) Side view of real environment

(b) Top view of simulation environment

Fig. 3  a System overview around the tank. b The system in a simula-
tion with the tracking area of the lighthouses
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3.4  Underwater Camera

The characteristics of the Basler Machine Vision camera 
used are listed in Table 1. While Fig. 5 shows the custom-
build camera underwater housing in detail. It is comprised 
of the camera in an adjustable mount, to enable setting its 
offset with respect to the dome port, an Arduino to process 
the data of IMUs and an USB hub to combine all data into 
one cable, which leaves the pressure housing.

We then employ the following calibration scheme, to 
determine the extrinsics and intrinsics of the camera: Ini-
tially, we estimate the cameras distortion parameters in 
air based on a fisheye model with a reprojection error of 
0.22 px. Subsequently, we use the approaches presented in 
She et al. (2019, 2022), to obtain and correct the camera’s 
displacement with respect to the dome center. This step 
ensures that refraction effects due to the traversal of the light 

rays through interfaces between media with different opti-
cal densities are omitted. The Hand–Eye calibration (see 
Sect. 3.7) can now be carried out with the centered camera 
in air. For the actual underwater application, we again used 
a fisheye model and reached a reprojection error of 0.55 px 
on a calibration set taken in a clear underwater setting. The 
last step and the dome centering are carried out to eliminate 
all refraction-based effects, such that the underwater sets can 
be used for pure radiometric problems.

3.5  Calibration Target

A calibration target is required for the system calibration and 
verification. This serves as a fixed point in 3D space and is 
composed of three ArUco markers, which can be detected 
by the camera. The pose detection during image process-
ing is improved by calculating the transformations to a joint 
board pose from several markers. Initially, the relative poses 
of the three markers have been optimized in a least square 
scheme using the Ceres solver (Agarwal et al. 2022). The 
three markers are assembled in the form of the inside view 
of a 3D angle, which is shown in Fig. 6.

3.6  Motion Capture

The HTC Vive Pro system is a room scale system with six 
degrees of freedom. These are defined by the rotation around 
three axes and the position of objects in 3D space. The meas-
urement principle is outside-in tracking, in which the optical 
part, i.e., the lighthouses, is placed in fixed spatial location. 
Each lighthouse covers a pyramidal volume of the tracking 
area with an opening angle of 150◦ in horizontal and 110◦ 
in the vertical direction.

(a) Camera stick in real environment

(b) Camera stick in virtual environment

Fig. 4  a Camera stick in the measurement environment. b Camera 
stick in the real-time visualization using RViz

Table 1  Properties of the Basler camera (Basler 2022a) and lens 
(Basler 2022b) used

Property camera Value

Max. Frame rate 60 FPS
Resolution 2 MP
Color Color and gray scale
Resolution (HxV) 1600 px × 1200 px
Pixel Size (H x V) 4.5 µm × 4.5 µm
Pixel bit depth 8, 12 bits
Shutter Global shutter

Property lens Value

Focal length 2.95 mm
Min. working distance 300 mm
Resolution 5 MP
Angle of view (D / H / V) 180◦ /143◦ /106◦
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For tracking, the lighthouses emit an infrared light flash 
over the entire tracking area, which is alternately followed 
by a horizontal and a vertical infrared light plane to scan the 
room. This sequence is repeated periodically. The horizontal 
and vertical planes of light are generated by a rotor, which 
rotates at 50–55 rotations per second, depending on the 
channel used. Since the objects in the tracking area require 
additional information from the lighthouses, an optical trans-
mission method is used to send the Omnidirectional Opti-
cal Transmitter (OOTX) data continuously over an infra-
red channel from each lighthouse. These data are used to 

uniquely identify the lighthouse and transmit its calibration 
data to the receivers with the global light flash.

The headset and the controllers of the HTC Vive have 
infrared sensors that measure the time between the arrival 
of the global light flash and the next sweeping plane. The 
angle between the normal vector of the lighthouse and an 
infrared sensor can be calculated from the time differences 
for horizontal and vertical measurements, since the rota-
tional speed of the rotor in the lighthouse is known (Borges 
et al. 2018). Here, the lighthouses can be viewed as cameras, 
which determine 2D positions in the image with the infrared 
scanners. This results in the horizontal and vertical direction 
in which a tracking object is located, starting from the origin 
of the lighthouse coordinate system.

Since the 3D positions of the infrared sensors on the 
headset and the controllers are known from the construc-
tion, 2D–3D correspondences result from their positions 
and the results of the lighthouse measurement (Niehorster 
et al. 2017). By solving them, the absolute pose determina-
tion for headset and controllers can be accomplished. To 
improve the detection of relative movements and to increase 
the frequency of pose calculation, the relative movement of 
the tracking devices is determined by a built-in IMU. The 
inertial data include linear acceleration and angular velocity, 
which are integrated into the absolute pose. The deviations 
caused by the drift in the relative measurements are com-
pensated by the lighthouse measurements.

3.7  Hand–Eye Calibration

The term Hand–Eye calibration is derived from the field 
of robotics where the camera is called the eye and the joint 
with its gripper is called the hand. Using a controller as a 
hand, its pose in the world coordinates is given by the VR 
tracking system. The calibration deals with the calculation 
of the relative transformation TFWM2Cam from a controller 
to the camera pose (Feuerstein 2009). For the calculation, 
the transformation TFWorld2WMi

 from the world origin to 
the controller in 3D space and the relative transformation 
TFCami2Target

 between the camera and the calibration target 
are needed at the same time (Tsai and Lenz 1989). The trans-
formation from the camera to the calibration target results 
from the image processing of the captured images with 
the known intrinsic camera parameters. The connections 
between the transformations for the Hand–Eye calibration 
are shown in Fig. 7.

With a known movement, a system of equations can be 
set up, and with enough samples, an accurate calculation of 
the calibration can be achieved. The movement must have 
sufficient degrees of freedom, so that the three-dimensional 
relationship between the camera and the controllers can be 
fully determined. To do this, it is necessary to rotate the 
camera around at least two axes while keeping the focus 

(a) Camera top view (b) Camera side view

Fig. 5  a The camera shown from the front. b The camera shown from 
the side

(a) Calibration target (b) Calibration target detected

Fig. 6  a The optical target used for the Hand–Eye calibration. b 
Detection of the calibration target
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on a calibration target which is placed in the world system 
and will not be moved during calibration (Tsai and Lenz 
1989). The set also contains the transformations TFWMi2WMi+1

 
between two consecutive controller poses and TFCami2Cami+1

 
between two consecutive camera poses. The result of the 
Hand–Eye calibration describes the relative transformation 
TFWM2Cam between the origin of the controllers and the lens 
of the camera. This is calculated across the entire data set 
and is identical for each data pair due to the rigid transforma-
tion between the controllers and camera. Figure 8 explains 
the principle of calibration.

Since two controllers are used on the camera stick, an 
individual transformation to the camera pose is required for 
each controller. These two transformations are determined 
using the same set of images. Each sample is therefore com-
posed of the two controller poses in the world system and 
the transformation from the camera to the calibration target. 
To minimize the influence of tracking and image processing 
deviations on the calibration result, the set size is defined 
as 50 samples. In addition, the calibration is performed 20 
times, so that a set of 20 transformations is available for 

each transformation required. The set size and number of 
sets were determined empirically. Subsequently, the result 
is optimized by linearizing the non-linear pose-optimization 
problem and solving it with a least-squares approach with 
the Ceres solver (Agarwal et al. 2022). Since these transfor-
mations each correspond to the result of an entire Hand–Eye 
calibration, the assumption is made that the calibration pro-
cess has already compensated the outliers. Consequently, all 
transformations for the Ceres optimization are defined with 
the same uncertainty.

3.8  Unscented Kalman Filter

The Kalman Filter (KF) describes a mathematical model 
for integrating and fusing successive, noisy measurements 
of a system in a linear environment with one or multiple 
sensors. The KF is real-time capable and therefore suitable 
for tracking. The goal is to merge the measurements from 
the two controllers, so that the overall tracking error is min-
imized. The first-order Markov assumption states that all 
prior information is aggregated in the current state. Hence, 
only the previously calculated state, a motion model, and 
current input measurement, as well as their uncertainties are 
considered for the estimation of the next state. For a detailed 
description of the KF, refer to Pei et al. (2017).

In this work, the Unscented Kalman Filter (UKF) is 
used (Julier and Uhlmann 1997; Wan and Van Der Merwe 
2000). The UKF has the advantage that it can be used in 
non-linear systems. In addition, the calculation is a second-
order approximation, so that the use of Jacobian matrices is 
not necessary to set up the target covariance. The UKF is 
based on statistical techniques and takes deterministic sam-
ples of a system. A minimal number of samples around the 
mean, called sigma points, are used. Using Newton’s laws 
of motion, the unscented transform is applied to the set of 
sigma points by the motion model based on the observed 
velocity, angular velocity, and linear acceleration. Then, the 
new mean and its covariance are calculated by comparing 
the prediction with the next measurement. A description of 
the UKF calculations can be found in Kraft (2003).

A 15-dimensional state vector �
�
 is used for the UKF, 

which according to Eq. 1 contains the position p, rotation 
q, velocity v, angular velocity av, and linear acceleration a

The rotation is represented by a quaternion and only the 
imaginary components are considered. To learn more about 
representing rotation in 3D space, we refer to Diebel (2006). 
The real part can be calculated from the imaginary compo-
nents after the UKF iteration. The state vector �

�
 describes 

(1)
�
�
= [px, py, pz, qx, qy, qz, vx, vy, vz, avx, avy, avz, ax, ay, az]

T
.

Fig. 7  Overview of the requirements for Hand–Eye calibration

Fig. 8  Overview of the transformations for two consecutive data sets 
of the Hand–Eye calibration

25PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (2024) 92:19–33



 

1 3

the camera pose and its motion in the world coordinate 
system.

To use the UKF camera pose as a later ground truth ref-
erence for the captured images, the poses must be synchro-
nized with the image time stamps. The ROS time is used 
as a common time basis. This is time-synchronous for all 
components in the system. However, the camera used does 
not allow the time stamp to be set directly for the image 
recording. Consequently, this is set within the pylon software 
on the PC. The image time stamps are defined in the middle 
of the exposure time. Then, the offset of the UKF camera 
pose to the recorded image is determined. To do this, rotat-
ing movements are carried out over the calibration target, as 
well as forwards and backwards movements in the direction 
of the calibration target. The evaluation of both experiments 
shows that the error due to the time difference is smaller than 
the error due to tracking and image processing. Thus, the 
time-synchronous behavior between poses and image time 
stamps is given.

4  Evaluation

In the evaluation, the various system components are ana-
lyzed independently, and the precision of the overall system 
is determined. Wherever possible, the respective experiment 
is reproduced with synthetic poses. This procedure offers 
the advantage that the ground truth is always known for the 
synthetic poses. A test scenario is used for the simulation, 
in which the synthetically generated camera stick is moved 
along the edges of a square with an edge length of about 1 m. 
In doing so, rotations are performed on all coordinate axes. 
Zero mean normal distributed noise is added to syntheti-
cally generated poses. Its standard deviation is based on the 
uncertainties observed in the real system. Of course, least-
squares optimization procedures will be able to find optimal 

solutions on such systematic noise patterns, which is a trivial 
insight. However, synthetic ablation studies are the best we 
can do to justify each layer of complexity in the absence of 
ground truth data. In top of that, the noise is applied on the 
input side of the evaluated modules, while the optimization 
happens on the output side.

The real system is analyzed using the camera stick under 
dry conditions. It is the goal to validate the system indepen-
dently of the sources of interference that arise in an under-
water application. These can include, for example, blurred 
images and poor lighting conditions. To represent the later 
application realistically, movements of the camera stick are 
carried out in the empty tank.

The evaluation procedure is based on the transforma-
tion representation in Fig. 2. These transformations are 
each characterized by uncertainties, which are to be ana-
lyzed one after the other. For the sake of simplicity and only 
for the statistical analysis, independence between rotation 
and translation parts of the investigated transformations is 
assumed. First, the tracking of the controllers is examined, 
and then, the Hand–Eye calibration is analyzed. Finally, the 
precision of the UKF and the precision of the overall system 
are determined.

4.1  Analysis of VR Tracking System

This section defines the basis for an approximate determina-
tion of the precision of the tracking of the controllers. The 
fundamental problem is that the precision cannot be directly 
determined from the tracking data, since the ground truth 
poses of the controllers are unknown. The transformation 
TFWM between the two controllers offers an approach for 
the analysis. This transformation can be regarded as constant 
due to the rigid construction of the stick. During tracking, 
the deviation of this transformation from the expected mean 

Table 2  Tracking analysis for the real system based on the transformation between the two controllers

Dataset TFWM [mm] �max [mm] � [mm]

1 526.08 2.51 0.60
2 525.88 3.76 1.33
3 525.89 4.12 1.37
4 525.91 3.86 0.83
5 525.37 4.42 1.49

 Dataset TFWM [ ◦] �max [ 
◦] � [ ◦]

1 179.47 0.49 0.11
2 179.48 0.43 0.11
3 179.47 0.61 0.14
4 179.50 0.45 0.12
5 179.44 0.53 0.14
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transformation can be determined. This describes the com-
bined tracking error of both controllers.

The mean values of the transformations between the 
controllers TFWM over the datasets, their maximum devia-
tion �max , and the standard deviation � are analyzed. Table 2 
shows five datasets, each lasting 110–140 s. This shows that 
the rigid transformation between the two controllers TFWM 
is stable up to a few millimeters and fractions of a degree. 

The average standard deviation � of the transformation over 
the data sets is 1.12 mm and 0.12◦ . Based on these values, 
the simulation of the controller poses is parameterized. For 
dataset 1 in Table 2, Fig. 9 shows the course of the absolute 
distance and rotation between the controllers over time. For 
the simulation, the experiment is repeated and deviations of 
the transformation TFWM are observed in the same order of 
magnitude. An average maximum deviation �max of 4.99 mm 
and 0.5◦ as well as a mean standard deviation � of 1.29 mm 
and 0.13◦ result over several simulated data sets.

4.2  Analysis of Hand–Eye Calibration

To maintain the high precision of the tracking, an exact 
transformation from the controllers to the camera must be 
determined during the Hand–Eye calibration. Therefore, in 
Table 3, the effect of the optimization is first shown using 
the simulation. Zero mean normal distributed noise with 
standard deviations based on the preceding analysis (1 mm 
and 0.1◦ ) is added to each coordinate axis during simulation 
to the poses of the controllers. To account for the imperfec-
tion of the pose estimation process from images of visual 
markers, random noise with the same parameters (zero 
mean, std. deviations 1 mm and 0.1◦ ) is added to camera 
poses computed from images of markers. For each data set, 
the average rigid transformation between the camera poses 
�TF of the 20 calibrations is compared with the result of the 
optimization �TFop

 . In addition, the average deviation of the 
individual camera poses from the ground truth pose �C is 
compared with the optimized camera poses �C1op . It is shown 
that the accuracy of the Hand–Eye calibration result is 
improved by a factor of approx. 4 on average by the 
optimization.

Since the ground-truth poses are unknown in the real 
system, this form of analysis cannot be repeated there. 

Fig. 9  Deviation between the controller poses for distance and rota-
tion over time for dataset 1 in Table 2. The gray area represents the 
1-�-standard deviation

Table 3  Hand–Eye calibration analysis based on simulated data

Dataset �TF [mm] �TFop
 [mm] �C1 [mm] �C1op

 [mm] �C2 [mm] �C2op
 [mm]

1 1.88 0.36 2.23 0.25 2.33 0.14
2 2.03 0.46 2.07 0.35 2.18 0.70
3 2.09 0.26 1.65 0.57 1.86 0.33
4 2.20 0.62 1.82 0.73 2.05 0.67
5 1.92 0.26 2.30 0.61 1.93 0.76

 Dataset �TF [ ◦] �TFop
 [ ◦] �C1 [ 

◦] �C1op
 [ ◦] �C2 [ 

◦] �C2op
 [ ◦]

1 0.11 0.03 0.11 0.03 0.11 0.01
2 0.10 0.01 0.10 0.02 0.12 0.02
3 0.12 0.04 0.11 0.02 0.10 0.04
4 0.09 0.03 0.09 0.04 0.10 0.03
5 0.10 0.03 0.10 0.03 0.10 0.03
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Instead, the camera poses are analyzed after the Hand–Eye 
calibration. For this purpose, the transformation between 
the two propagated camera poses TFCams is determined 
during the tracking. This can then be used to determine the 
mean deviation TFCams , as well as the maximum error �max 
and the standard deviation � of the transformation. The 
errors shown in Table 4 therefore contain both the cali-
bration error and the error originating from the tracking 
system. There is an average deviation between the cam-
era poses TFCams of 6.57 mm and 0.29◦ . For dataset 1 in 
Table 4, Fig. 10 shows the course of the absolute distance 
and rotation between the single camera poses over time. In 
the simulation, the experiment was repeated with several 
data sets. The average deviation between the camera poses 
TFCams is 3.53 mm and 0.21◦ . In the real system, the errors 
are bigger due to real effects such as the systematic drift 
and outliers in the tracking. The position of the camera 
is particularly affected by small errors in rotation of the 
controllers. This can easily be explained by the leverage 
effect stemming from the physical design of the camera 
stick (see Fig. 4).

4.3  Analysis of UKF‑Filtering

To determine the precision of the overall system, the calibra-
tion target is first measured in the world system according 
to Fig. 2 via a chain of transformations. For this purpose, a 
large set of poses is recorded, and the optimal calibration 
target pose is then determined using a pose optimization 
based on the Ceres library Agarwal et al. (2022). This makes 
it possible to compare an optically determined camera pose 
based on the visual markers with the camera pose computed 
by the proposed tracking system. In addition to the errors 
from tracking and Hand–Eye calibration, errors from image 
processing and the time offset between the tracking poses 
and the image time stamps are also considered. Due to the 

slow-motion speed during the later experiments, a small 
deviation in synchronization between image time stamp 
and camera pose time stamp will not lead to a large spa-
tial deviation. As an example, the average movement speed 
during the experiment is 56.8 mm/s and the average frame 
rate of the camera is 7.7 Hz. A large synchronization error 
of 10% of a time interval between two images is assumed 
for the calculation. This would lead to a systematic position 

Table 4  Camera poses’ analysis for the real system based on the transformation between the Cameras

Dataset TFCams [mm] �max [mm] � [mm]

1 5.74 6.34 1.51
2 6.73 14.42 2.36
3 6.38 11.06 2.30
4 5.96 8.80 1.73
5 8.05 7.01 1.88

 Dataset TFCams [ 
◦] �max [ 

◦] � [ ◦]

1 0.25 0.38 0.09
2 0.29 0.73 0.10
3 0.30 0.50 0.12
4 0.26 0.59 0.08
5 0.37 0.36 0.10

Fig. 10  Deviation between the single camera poses for distance and 
rotation over time for dataset 1 in Table 4. The gray area represents 
the 1-�-standard deviation
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error of 0.74 mm between the true camera pose during image 
acquisition and the tracked camera pose from the external 
reference system. However, such a large time offset would 
have been noticed during the calibration due to the system-
atic errors. The remaining time error can therefore only be 
a few milliseconds, and therefore, the resulting position 
error is estimated at a maximum of 0.2 mm. Consequently, 
time synchronicity is not a major problem for the planned 
application.

Table 5 compares the mean deviations from the optically 
determined camera pose to the individual camera poses �C and 
the UKF camera pose �CUKF

 . It is shown that the camera pose 
determined by the suggested system with the UKF is more 
precise than the individual camera poses using only one con-
troller. This results in a mean deviation of 2.51 mm and 0.26◦ 
from the UKF filtered camera pose to the optimized camera 
pose based on visual markers optimized across all datasets. 
For dataset 2 in Table 5, Fig. 11 shows the course of the abso-
lute deviation for distance and rotation between the tracked 
camera pose and optical determined camera pose over time. 
The experiment was repeated in the simulation using a perfect 
Hand–Eye calibration. The comparison of the UKF camera 
pose to the ground truth camera pose results in an average 
deviation of 2.44 mm and 0.09◦ over several data sets.

5  Discussion

One difficulty in evaluating the system was that the 
ground-truth poses of controllers and camera are not 
known in the real world. The simulation uses synthetic 
poses to show that the developed algorithm performs well. 
For this purpose, the system is realistically simulated in 
terms of tracking and error propagation. Using this param-
eterization, it can be shown that the camera pose has an 

average deviation of 2.44 mm and 0.09◦ from ground truth 
in the simulation.

In the real system, a previously measured optical ground 
truth reference is used. This system behaves very similar to 
the simulation in terms of tracking and error propagation, 
and the result for the camera pose is also in the same order of 
magnitude with an average deviation of 2.51 mm and 0.26◦ . 
This proves that the approach developed for the external 

Table 5  Camera poses’ analysis for the real system compared to the optical camera pose

Dataset �C1
 [mm] �C2

 [mm] �CUKF
 [mm]

1 3.61 5.49 3.20
2 3.83 2.91 2.01
3 4.78 2.63 2.46
4 5.28 3.31 2.40
5 6.09 3.61 2.47

 Dataset �C1
 [ ◦] �C2

 [ ◦] �CUKF
 [ ◦]

1 0.32 0.38 0.32
2 0.30 0.39 0.33
3 0.23 0.32 0.22
4 0.25 0.30 0.21
5 0.25 0.34 0.23

Fig. 11  Deviation between the optical determined camera pose and 
the tracked camera pose after the UKF for distance and rotation over 
time for dataset 2 in Table 5. The gray area represents the 1-�-stand-
ard deviation
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tracking system and the algorithms used are performing 
well. Although this error will be scaled in the envisioned 
application, the tracking should still vastly outperform any 
pose estimation data captured in the deep sea.

Furthermore, it is shown that the transformation to the 
lower end of the camera stick only increases the error by 
a factor of 2–3 due to the leverage effect. This is achieved 
by optimally fusing the resulting poses based on the two 
individual controllers using the UKF. When replacing the 
commercially available drivers of the VR tracking system 
with open-source drivers [Libsurvive (Libsurvive 2022)], 
the errors are significantly increased. These increased errors 
could possibly be caused by imperfect parameters of the 
open-source algorithm. However, the closed-source driver 
has limitations in terms of accessing raw data, the uncer-
tainties, the algorithm, and the precise timing. Therefore, 
future work will deal with developing an optimizer for the 

open-source drivers to operate the external reference system 
with an precision of the same order of magnitude.

6  Conclusion

In this paper, we presented an external tracking system for 
underwater camera poses. With the HTC Vive, we used an 
inexpensive consumer VR tracking system. Given the track-
ing above the water surface and the result of the Hand–Eye 
calibration, a fused underwater camera pose can be esti-
mated in real time. Each system component is individually 
analyzed and validated. Using the overall system, an average 
deviation of the camera pose from tracking to an optically 
determined camera pose of approximately 3 mm and 0.3◦ is 
achieved. With the external reference system, ground truth 
poses are available for the underwater camera which enables 
comprehensive underwater experiments.

(a) Trajectory of the experiment, mimicking a lawn mower pattern typically executed by AUVs

(b) Selected RAW images A, B and C from left to right

Fig. 12  a Trajectory of the underwater experiment and three example positions of captured images. b The corresponding captured images during 
the experiment
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(a) In air

(b) Homogeneous sun illumination

(c) Heterogeneous artificial illumination

(d) Mixed (heterogeneous artificial and homogeneous sun) illumination

Fig. 13  Captured underwater dataset. The RAW images are still geometrically distorted but presented in sRGB space for better visibility
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Future work will explore the possibility of an open-source 
tracking driver. In addition, two IMUs will be mounted next 
to the camera. One will be fused in the camera pose esti-
mation, while the other will provide independent measure-
ments which enables the evaluation on visual-inertial optical 
underwater methods.

6.1  Future Application: Record Underwater 
Validation Datasets

We recorded underwater datasets to proof the applicability of 
the system to the designated task (see Fig. 12). To this end, 
we installed three 50 W Wasler daylight (5400 k) lamps with 
Walimex diffusors above the tank to mimic sunlight with heavy 
atmospheric scattering. In addition, we added two Ulanzi L2 
lite (5500 k) as co-moving light sources (see Fig. 1). We added 
dye to the water to induce a seawater-like attenuation effect and 
in addition added Maaloxan as a scattering agent.

We now have a sensor-in-the-loop-system, which operates 
in a real scattering medium. Of course, a gap to the real world 
always remains, e.g, induced by missing swell, algae bloom, 
marine snow, and the like. However, we trade this in for a 
tracking error that low that it cannot be achieved in the wild.

In Fig. 13, we show (a) in-air imagery and then the same 
scene under water: with (b) homogeneous (sun) illumina-
tion, (c) heterogeneous illumination from co-moving lights, 
and (d) a mix of sun and artificial illumination. In each sce-
nario, we roughly captured 2000 images using traditional 
lawn mower patterns and a free 3D scanning scheme to cap-
ture the impact of depth variations on monocular underwater 
computer vision algorithms. Each of the images then comes 
with a synchronized ground truth 3D pose, which, e.g., was 
used in Grimaldi et al. (2023) to empirically investigate the 
difficulties of underwater visual monocular SLAM. Finally, 
we fixed all parameters of the camera, except for exposure 
time and recorded RAW imagery. The linear nature of these 
data enables the development and testing of physically based 
color correction algorithms like, e.g., (Bryson et al. 2016; 
Akkaynak and Treibitz 2019; Nakath et al. 2021).

Finally, our marker only features one ArUco marker per 
dimension. In the future, this should be extended to more 
markers per dimension to yield an overdetermined system 
of equations for pose estimation.
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