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Abstract
Building Information Modeling (BIM) plays a key role in digital design and construction and promises also great potential for 
facility management. In practice, however, for existing buildings there are often either no digital models or existing planning 
data is not up-to-date enough for use as as-is models in operation. While reality-capturing methods like laser scanning have 
become more affordable and fast in recent years, the digital reconstruction of existing buildings from 3D point cloud data is 
still characterized by much manual work, thus giving partially or fully automated reconstruction methods a key role. This 
article presents a combination of methods that subdivide point clouds into separate building storeys and rooms, while addi-
tionally generating a BIM representation of the building’s wall geometries for use in CAFM applications. The implemented 
storeys-wise segmentation relies on planar cuts, with candidate planes estimated from a voxelized point cloud representa-
tion before refining them using the underlying point data. Similarly, the presented room segmentation uses morphological 
operators on the voxelized point cloud to extract room boundaries. Unlike the aforementioned spatial segmentation methods, 
the presented parametric reconstruction step estimates volumetric walls. Reconstructed objects and spatial relations are 
modelled BIM-ready as IFC in one final step. The presented methods use voxel grids to provide relatively high speed and 
refine their results by using the original point cloud data for increased accuracy. Robustness has proven to be rather high, 
with occlusions, noise and point density variations being well-tolerated, meaning that each method can be applied to data 
acquired with a variety of capturing methods. All approaches work on unordered point clouds, with no additional data being 
required. In combination, these methods comprise a complete workflow with each singular component suitable for use in 
numerous scenarios.
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1 Introduction

Triggered by the digital transformation in all areas of soci-
ety, business and administration, the introduction of Build-
ing Information Modeling (BIM) is fundamentally changing 
the processes in the construction industry. BIM describes 3D 
building geometries alongside semantic information such as 
technical properties and categorizations of building compo-
nents. Spatial relations and hierarchies between objects are 

stored as well to provide additional context for exchange and 
maintenance (Borrmann et al. 2018). Despite being brought 
up mainly for digital planning, all life cycle phases benefit 
from end-to-end information management based on digital 
building models as a single source of truth, as they allow 
for updating and sharing a property’s state in a transparent 
way between collaborators (Gao and Pishdad-Bozorgi 2019; 
Ròka-Madaràsz et al. 2016).

Building on this foundation, Computer-Aided Facility 
Management (CAFM; sometimes referred to as “BIM for 
FM”) aims to provide all needed data of building assets 
in a computer-based information system where changes 
are continuously integrated, allowing facility managers to 
monitor and catalogue building assets, space usage and 
more.1 Most CAFM processes need information related to 
geometry and spaces, like space management according to 
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DIN 277, inventory occupancy rate, room reservations etc. 
(Braun et al. 2013; Nävy 2013) and therefore require up-to-
date floor plan-like models with the spatial object relations 
and wall geometries. Typical management tasks like floor 
space estimation, documentation of retrofits and asset track-
ing are notably simplified by this paradigm, especially if 
models with the required room layouts, spatial relations and 
area footprints are regularly updated based on on-site data. 
BIM concepts implemented in IFC-like spatial definitions 
and hierarchies lend themselves notably well to solve these 
problems, hence they often suggested as data models for 
CAFM (Patacas et al. 2020). Ideally, this results in a digital 
twin of the building which covers the entire building life 
cycle starting from design to demolition (Deng et al. 2021). 
However, the crux of these BIM methods lies in the fact 
that most existing buildings have been constructed before 
the wide-spread use of digital models, with paper floor and 
design plans being preserved in best-case scenarios only 
and changes not being reflected in them. Consequently, such 
cases require the manual creation of BIM models by experts 
from surveying data (e.g. point clouds) captured on-site.

Like BIM, point cloud capturing devices have made 
large strides towards fast capturing of large data quanti-
ties (Bosché and O’Keeffe 2015). Especially terrestrial 
laser scanning (TLS) has become quite sophisticated, with 
capturing devices becoming more affordable, compact and 
user-friendly. Recent trends in the industry indicate that 
techniques like mobile laser scanning (MLS) are becoming 
increasingly popular (Otero et al. 2020) as they allow for 
faster capturing of large, complex objects than TLS. These 
properties make MLS an ideal match for scenarios where 
frequent remodelling is required, however, this comes at the 
price of increased noise which demands processing algo-
rithms to be robust.

Nevertheless, the manual construction of digital models is 
a laborious and time-consuming process (Tang et al. 2010), 
making frequent re-modeling for capturing area and layout 
changes introduced by renovations impractical. The result 
is a need for highly automated modeling and analysis work-
flows, as they cut down on time and resources.

In response to this problem, this work deals with the auto-
mated segmentation of multi-storey point clouds into storeys 
and rooms and the reconstruction of BIM models including 
all surfaces such as floors, ceilings and walls (Scan-to-BIM). 
Given the aim of the underlying research project, the pre-
sented methods generate CAFM-ready models for the most 
relevant CAFM applications, contain relations of building 
storys, rooms. Due to the focus on CAFM use cases related 
to space management, architectural elements such as win-
dows and doors are not the focus of our approach.

Building on a previous, purely voxel-based work for 
room segmentation (Martens and Blankenbach 2021) titled 
VOX2BIM, the novelty of the presented approach lies in 

the significant extension of known strategies to improve 
speed and robustness and the complimentary combination 
of methods (e.g. storey segmentation, room segmentation 
and wall reconstruction) to derive spatial segmentations 
and geometric models. The presented workflow allows for 
dealing with unordered point clouds, non-Manhattan layouts 
and multi-storey setups and unlike other works combines 
voxel-based and point-based processing to enable dealing 
with data of varying qualities, ranging from sources such as 
TLS, MLS and image-based 3D reconstruction. Voxel-based 
techniques are used to accelerate processing and to improve 
robustness towards noise, occlusions and density variations, 
while refinement steps are done in continuous space using 
the underlying point clouds to deliver the required CAFM-
ready accuracy. The use of object-oriented data models for 
the reconstructed building storeys, room spaces and volu-
metric walls means that relations between spatial elements 
are being preserved, allowing for elements to be modelled 
and exported in the BIM-ready IFC STEP format. Addition-
ally, point cloud segments for each storey and room are gen-
erated to provide rich spatial information for use by external 
processing methods.

The overall article is structured as follows: At first, an 
overview of related works including common strategies is 
discussed. Afterwards, the novel combination of algorithms 
explored in this paper is explained in detail. Finally, the 
results are presented and discussed before the conclusion 
and outlook are provided.

2  Related Work

Automated segmentation of internal building structures such 
as rooms and walls has been subject to various publications, 
ranging from robotics and floor plan generation to geom-
etry reconstruction in the AECO and CAFM fields (Tang 
et al. 2010). With segmentation being a crucial step in the 
reconstruction process, even machine learning is receiving 
attention for object segmentation and recognition in larger 
workflows (Perez-Perez et al. 2021a, b). In the following, 
CAFM implementation strategies and related point cloud 
segmentation and reconstruction methods are discussed in 
more detail.

2.1  BIM and CAFM

CAFM has proven to have a positive effect on the mainte-
nance of building assets and has helped track close to 60% of 
the yearly utility costs in case studies (Ròka-Madaràsz et al. 
2016). Ideally, CAFM data is stored using a standarized for-
mat such as IFC in a common data environment (CDE) to 
allow for transparent inspection by the facility managers 
(Patacas et al. 2020). However, the lack of BIM for most 
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existing facilities, data capturing and model creation repre-
sent significant hurdles, therefore especially scenarios with a 
large number of facilities benefit from the creation of simpli-
fied initial models and supplementing them with additional 
geometric and semantic information as required by the facil-
ity managers has proven to be a pragmatic strategy (Carbon-
ari et al. 2015; Gao and Pishdad-Bozorgi 2019). The use of 
IFC-inspired spatial hierarchies for buildings, storeys, rooms 
and assets appears to be a typical baseline for such models, 
as they allow for simplified management of spatial units and 
tracking of defective inventory objects within the facilities 
(Motamedi et al. 2014; Pishdad-Bozorgi et al. 2018).

Due to the required segmentation and reconstruction 
of spatial units and building elements being closely inter-
twined, most works solve both problems in tandem. In the 
following, these strategies are categorized into storey seg-
mentation, room segmentation and parametric wall recon-
struction methods.

2.2  Storey Segmentation

Despite being crucial in multi-storey setups, storey seg-
mentation is rarely discussed as part of segmentation. 
Instead, most works merely deal with the detection of 
floor and ceiling planes either as a preprocessing step for 
removing the related points or as a way of estimating the 
ceiling height. A common strategy hereby lies in construct-
ing point density histograms along an “up” axis. With 

point densities being significantly higher at heights run-
ning through the floor and ceiling planes, detecting them 
becomes quite trivial (Okorn et al. 2016; Jung et al. 2017; 
Wang et al. 2017). As an alternative, normals are occasion-
ally used for the same purpose, as they give cues about the 
orientation of surfaces and thus allow for easy identifica-
tion of floors and ceilings as vertical surfaces (Sanchez 
and Zakhor 2012; Shi et al. 2019). Combinations of both 
methods where points are filtered by their normal orienta-
tions and afterwards used for histogram construction are 
quite rare though (Oesau et al. 2013). Aside from reduced 
accuracy due to discretization, issues with the histogram-
based method often originate from large vertical surfaces 
such as staggered ceilings or furniture objects leading to 
small peaks resembling floor and ceiling peaks. This is par-
ticularly problematic for storey segmentation, where peaks 
are usually used to identify storey boundaries and extract 
points located between them as storey segments (Macher 
et al. 2017; Oesau et al. 2013; Li et al. 2018). Oftentimes 
details of dealing with this issue are kept vague, however 
defining fixed sizes can help identify neighboring peaks 
which form a slab and therefore separate two storey seg-
ments (Li et al. 2018).

As seen in other works, segmentation for multi-sto-
rey setups is rarely being dealt with. Histogram-based 
approaches are usually used for this or similar tasks but 
have only experienced incremental improvements which 
prioritize robustness over accuracy.

Fig. 1  Overview of the individ-
ual stages of the segmentation 
and reconstruction workflow. 
Storey Segmentation (1): the 
multi-storey point cloud is split 
into separate segments for each 
storey. Room Segmentation 
(2): For each storey segment, 
individual rooms are extracted. 
Parametric Wall Reconstruction 
(3): Wall bodies are recon-
structed for the individual storey 
segments. IFC Model Recon-
struction (4): The results are 
merged and written into a final 
IFC file
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2.3  Room Segmentation

While occasionally performed together with parametric 
wall reconstruction, room segmentation by itself augments 
point clouds with valuable spatial and semantic information. 
One early segmentation strategy is the use of prior knowl-
edge about rooms having at least one scan positions. This 
means that planar surfaces can be assigned to them, and 
hence individual rooms, based on visibility (Ochmann et al. 
2014). Such visibility-based approaches can be implemented 
with ray-casting and further generalized to label individual 
points in setups with more than one scan position per room 
(Ochmann et al. 2016; Mura et al. 2014; Wang et al. 2017). 
Alternatively, artificial scan positions can be generated as 
well (Ambruş et al. 2017). Variations using MLS trajectories 
rather than static TLS scan positions exist as well and assign 
points visible at specific trajectory positions to the room 
where the capturing device currently resides in. Transitions 
to other rooms can hereby be detected as sudden changes in 
the ceiling profile along the MLS trajectory (Díaz-Vilariño 
et al. 2017). Simplifications of this method involve a filtering 
step, such that only wall points are left. The remaining points 

transformed into a graph using a Delaunay Triangulation, 
which enables visibility checks and room partitioning with 
respect to the scan positions (Turner and Zakhor 2014).

Due to efficiency, 2D projections of the point cloud onto 
the XY-plane, are quite popular and can be used without 
scan positions. Within this group of techniques, the use of 
2D region growing is quite rare, with one variation con-
verting all points belonging to the ceiling plane to a binary 
image before applying region growing to it for room label-
ling (Macher et al. 2017). The method by which this work 
is built upon instead aims to estimate walls by measuring 
point densities in a vertical direction and then uses them 
as boundaries for the region growing process (Martens and 
Blankenbach 2021). Detecting room boundaries also repre-
sents the lynchpin of methods which rely on detecting lines 
in 2D point cloud projections as room boundaries (usually 
through Hough Transform (Hough 1962)) to subdivide the 
space into cell complexes. Based on graph optimization 
techniques, this allows for the estimation of room boundaries 
and the labelling of points inside them (Mura et al. 2014; 
Ikehata et al. 2015; Wang et al. 2017; Ambruş et al. 2017; 
Li et al. 2018).

Fig. 2  Building storey segmen-
tation process. a Input point 
cloud. b Voxelized point cloud 
using coarse resolution for 
illustration purposes. c Remain-
ing voxels after filtering based 
on normal and occupancy. d 
Histogram with a relative num-
ber of filtered, occupied voxels 
along z-axis. Histogram peaks 
are used to construct cutting 
planes candidates. e Merged and 
refined cutting planes used for 
segmentation. f Extracted storey 
segments with unique colours 
per storey
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Keeping this in mind, existing approaches usually lack 
flexibility due to their reliance on scan position data or miss 
the opportunity of refining their results in 3D by focussing 
solely on 2D line detection.

2.4  Parametric Wall Reconstruction

Similar to room segmentation, other works have achieved 
parametric reconstruction exploiting various assumptions 
and types of prior data, but oftentimes focus on modelling 
structures as planar surfaces rather than volumetric bod-
ies. For instance, methods requiring scan positions (e.g. 
Ochmann et al. 2014) oftentimes not only do room seg-
mentations based on visibility but also reconstruct visible 
room boundaries as planes using common methods such 
RANSAC (Schnabel et al. 2007). Noteworthy examples rely 
on tracing rays from scan positions to individual points to 
differentiate between individual wall surfaces and add open-
ings like doors and windows to them (Previtali et al. 2014, 
2018). Similar strategies combining such visibility checks 
with RANSAC (Ochmann et al. 2014) and would later be 
extended by combining opposite surfaces of adjacent rooms 
into modelling volumetric, room-separating walls (Ochmann 
et al. 2016; Macher et al. 2017). Despite known scan posi-
tions providing a reliable of identifying wall openings 
such as doors and windows, capturing them is not always 
and option and dropping them as a requirement allows for 
improved flexiblity.

Exploiting surface orientations has proven particu-
larly useful, as they allow for categorizations into walls 
and floors/ceilings for additional semantic information 
(Thomson and Boehm 2015). Point groups with similar 
normal directions extracted by means of region growing 

can be used to remove noise and accurately reconstruct 
planar models using RANSAC in manhattan-world sce-
narions (Sanchez and Zakhor 2012; Murali et al. 2017). 
Previously discussed techniques for room segmentation 
based on cell complex decompositions naturally lend 
themselves to parametric reconstructions, as their earli-
est step involves extracting 2D lines (Ikehata et al. 2015; 
Díaz-Vilariño et al. 2017; Li et al. 2018). While these 2D 
lines are extracted from 2D projections of the underlying 
points, extruding them in the vertical direction creates the 
final wall surfaces. The projection step can either involve 
discretization by creating a floor plan-like projection of 
point clouds where point densities in the vertical direction 
are mapped onto a 2D grid before estimating 2D lines with 
a Hough Transform (Okorn et al. 2016). Alternatively, 2D 
line fitting of projected points using RANSAC may also be 
used on individual pre-segmented vertical surface patches 
(Mura et al. 2014; Wang et al. 2017). Building footprints 
from point projections onto a 2D occupancy map (Hong 
et al. 2015) or pre-segmented room boundaries (Turner 
and Zakhor 2014; Shi et al. 2019) can be used for the 
same purpose.

All in all, the detection of planar or linear point segments 
represents an efficient solution in most cases, however com-
monly-used shape detection algorithm (Hough Transform 
and RANSAC) have issues with irregular or rounded walls 
and only reconstruct planar rather than volumetric objects. 
Furthermore, all discussed methods use histogram-based 
approaches to estimate ceiling heights which is trivial in 
single-storey scenarios, but becomes much more complex 
for multi-storey building where individual storey and slab 
heights are present.

Fig. 3  Workflow stages for seg-
mentation of individual rooms. 
a Input point cloud. b Inside 
area mask. c Room boundary 
mask. d Seed regions for region 
growing. e Final room seg-
ments. f and point cloud with 
labeled room segments
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3  Methods

This section describes the implemented segmentation and 
parametric reconstruction process based on an input point 
cloud (as detailed in Fig. 1). Step (1) is the storey segmenta-
tion, which is crucial in multi-storey scenarios for providing 
the room segmentation and parametric reconstruction steps 
with point cloud segments that correspond to individual 
floors in the input point cloud. Both subsequent steps use 
the resulting storey segments as input and are performed 
independently from each other. The room segmentation step 
(2) generates non-overlapping point cloud segments for each 
individual room, while the parametric wall reconstruction 
(3) extracts information about the location and thickness 
of walls within the input point cloud. Once all steps are 
completed, the information generated by both methods is 
merged into one single IFC model (4). Despite similarities 
with related techniques are combined in a unique way to pro-
vide semantic relations between the reconstructed objects. 
All operations benefit strongly from aggregating the original 
point cloud into voxel grids to provide higher speed than 
purely point-based approaches while still offering decent 
robustness. The lack of precision resulting from the discre-
tization errors introduced by voxelization is compensated 
by refining initial results with data from the original point 
cloud. In contrast to previously discussed related works, the 
presented one only assumes at least partial visibility of floor, 
ceiling and wall surfaces.

3.1  Storey Segmentation

With buildings spanning through multiple storeys, the first 
step is concerned with extracting individual storeys as sep-
arate point cloud segments and extracting related informa-
tion such as elevation, ceiling height and footprint geometry. 
This problem can be boiled down to finding floor and ceil-
ing planes and extracting all points located in between them. 
An approach employed by other works is the construction of 
point histograms along different elevations of the point cloud 
(Oesau et al. 2013; Turner and Zakhor 2015), however, this 
method is notoriously sensitive to noise, scanning/registration 
artifacts, point density variations and clutter due to discretiza-
tion and ignorance of the local context. Fine histogram resolu-
tions or histogram borders located close to a plane provoke 
points to be distributed among neighboring histogram bins 
due to noise and lead to imprecise plane estimates. To solve 
these issues and achieve more accurate results, a histogram-
like approach is only used during an initial phase to select 
candidate planes. Initially, all points are inserted into a voxel 
grid, as illustrated in Fig. 2 at stage (b). Afterwards, the nor-
mal vector for each occupied voxel is estimated by means of 
a principal component analysis (PCA) as described by Rusu 
(2009). All voxels with normals oriented in roughly vertical 
direction are assumed to contain suitable points and kept for 
subsequent steps (c). The selected voxels are organized into 
slices along the horizontal direction, with voxels being either 
marked as occupied or empty. A majority voting is applied 

Fig. 4  Visual overview of the 
region growing process. A 
set of initial seed regions gets 
iteratively expanded until no 
growth occurs. Region overlaps 
and rooms boundaries are used 
as growth limiters. Once no 
more growth occurs, the process 
is finished
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to local neighborhoods in each slice to remove outliers cre-
ated by artifacts and holes present in the occupied segments. 
Slices where the number of occupied voxels exceeds a prede-
fined ratio are selected as candidate slices for floor and ceiling 
plane reconstruction (d). However, additional steps are nec-
essary for plane refinement, as noise and a slight tilt in point 
clouds can lead to multiple slice-candidates being clustered 
together. Therefore, constructing perfectly horizontal planes 
these slices will lead to inaccurate results where multiple 
planes are created at neighboring height levels. A final step, 
therefore, merges neighboring slices are merged and estimates 
the final planes from the points residing within the respective 
slice voxels (e). Just like before, only points from voxels with 
an overall vertical normal orientation are used for the final 
PCA-based plane fitting step to exclude points located along 
walls and other vertical surfaces to provide reliable results. 
In contrast to conventional histogram-based approaches, ben-
efits of extracting, merging and refining the fitting planes in 
continuous space are a greatly increased accuracy, robustness 
towards noise and a forgiving parameter selection where suit-
able grid sizes may go up to 0.2m.

Finally, the resulting fitting planes are used to extract the 
points located in between floor and ceiling plane pairs as 
building storey segments (f). Problematically, the distinction 
between floor planes, ceiling planes and faux ceilings is not 
obvious, but this issue can be solved by categorizing plane-
pairs into storeys and slabs based on their height. With slab 
segments typically being lower in height than storeys, both 
can be separated using either clustering approaches or a sep-
aration into two classes based on the between-class variance 

metric akin to the automatic thresholding method by Otsu 
(1979). For simplicity, the presented implementation sorts 
all segments i by their height hi and chooses a threshold that 
lies in the center of the two neighboring segment heights hi 
and hi+1 which maximize the distance:

Faux or staggered ceilings however can still lead to false-
positive slab segments and oversegmentation and can only 
be identified with prior knowledge. This entails defining an 
expected ceiling height and merging storey segments with slab 
candidate segments above them if the ceiling height is con-
sidered too low. With the final storey segments determined, 
all points located between the plane pair of each segment are 
extracted and associated with an individual building storey. 
Due to planes always vaguely cutting through the center of all 
points running along floor or ceiling surfaces, a small margin 
may be added to the plane boundaries to gather points close 
to them. Each resulting point cloud segment corresponds to 
an individual storey and thus carries new spatial information 
with. Additional geometric informations such as segment 
height, elevation and footprint polygon are stored alongside 
the storey segments for use with later reconstruction steps. 
The small spaces located between individual storey segments 
are treated as slabs with points inside being treated as artifacts 
and excluded from further processing. Projecting the occupied 
voxels of each storey to a 2D grid allows for the reconstruc-
tion of a footprint polygon which, when extruded along the 
storey’s height, forms a volumetric representation of it.

(1)dmax = max(∣ hi+1 − hi ∣)

Fig. 5  Parametric reconstruc-
tion workflow for building 
walls. Top row from left to 
right: Wall mask extracted from 
voxelized input (a), pixel-thin 
morphological skeleton of wall 
structures (b), wall polygons 
reconstructed from morpho-
logical skeleton (c), simplified 
wall polygon with corrected 
coordinates (d). Bottom row 
from left to right: Volumetric 
walls constructed from wall 
simplified wall polygons (e), 
volumetric walls superimposed 
onto original point cloud (f) 
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3.2  Room Segmentation

With the storey segmentation being performed beforehand, 
the room segmentation algorithm assumes input point 
clouds to span across only one single floor. Estimating the 
boundaries surrounding each room represents a key step, as 
they form separate compartments in the point cloud. Once 
room boundaries are known, morphological operators 
(Matheron 1697; Young 1983) are used for extracting the 

final, non-overlapping room segments. Once created, the ini-
tial segments are mapped onto the original point cloud. Most 
operations exploit the 3D context given in the voxel grid, 
before breaking the data down into 2D floor plans. Despite 
the seemingly apparent loss of information when dealing 
with 2D floor plans, it should be noted that working with the 
full 3D data can promote oversegmentation due to furniture 
and other large planar clutter objects being indistinguishable 
from room boundaries. The overall process is built on the 

Fig. 6  Visual results of storey 
segmentation for each point 
cloud organized in rows. First 
column: Input point clouds. 
Second column: Output point 
clouds with individual storeys 
labeled. Third column: Labeled 
output point clouds in side view
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region-growing idea presented in Martens and Blankenbach 
(2021), but uses more sophisticated and robust methods for 
estimating room boundaries and footprints which are used 
as growth boundaries.

The entire process is portrayed in Fig. 3. Initially, the 
original point cloud is voxelized using a uniform voxel grid 
which forms the foundation for all subsequent operations. 
With the space corresponding to the inside area of the point 
cloud being unknown, it is assumed that each vertical stack 
in the voxel grid belongs to the inside area if at least one 
voxel in it is occupied. The information in the voxel grid 
is thus reduced to a binary image marking the inside area. 
The result will however suffer from scan artifacts and holes, 
thus requiring a morphological closing pass to clean it up as 
shown in subfig. 3 (b).

Afterwards, the locations of room boundaries inside the 
voxel grid are determined. A first estimate is already given 
by the binary image denoting the inside area: the outer bor-
der of the inside area is treated as a set of exterior walls 
separating inside and outside space. As a side effect, borders 
of incomplete geometries or regions where parts of the point 
cloud have been occluded or cut out are treated as external 
walls as well.

For the voxelized point cloud the remaining bounda-
ries are defined as densely occupied vertical stacks located 
between the floor and ceiling planes. Therefore floor and 
ceiling locations are again estimated, although this time 
variable ceiling heights are taken into account. This step is 
required to improve accuracy, as elevations are not guaran-
tueed to be identical across one single floor in the presence 

Fig. 7  Results for room segmen-
tation for synthetic data from 
the UZH dataset (Mura 2016) 
with original point clouds in 
the left and labeled point clouds 
in the right column. Unlabeled 
points are marked black, ceil-
ings have been removed for 
illustrative purposes. Despite 
the presence of non-Manhattan 
layouts, the separation between 
rooms remains clean. Only the 
long corridor in the bottom row 
represents a failure case as it 
has been split into two separate 
corridors
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of false or staggered ceilings, ventilation shafts or staircase 
steps. The floor elevation is thus estimated by choosing the 
lowest occupied voxel within a vertical stack, while the ceil-
ing elevation is determined by the highest occupied voxel 
within such a stack. When applied to the entire point cloud, 
this approach results in two masks denoting the respective 
floor and ceiling elevations for each pixel, with the former 
one being filtered using a morphological erosion and the 
latter one being filtered with a morphological dilation filter. 
This filtering step is crucial in filling holes and removing 
noise from both images, as some floor and ceiling sections 

may be missing from the point cloud. A large relative num-
ber of occupied voxels within the newly-defined floor and 
ceiling segment boundaries now indicates the presence of 
wall segments if the distance between floor and ceiling is 
sufficiently large. While the relative number of occupied 
voxels can be thresholded manually to extract the wall seg-
ments, using Otsu’s automated thresholding method repre-
sents a convenient and viable option. This method aims to 
find a suitable threshold t by maximizing the between-class 
variance:

Fig. 8  Results for room 
segmentation for synthetic 
data from the UZH dataset 
(Khoshelham et al. 2017) with 
original point clouds in the 
left and labeled point clouds 
in the right column. Unlabeled 
points are marked black. As 
seen in the second row, small 
compartments of large rooms 
and halls can end up being split 
into multiple smaller rooms. 
The sample in the third row 
is properly segmented despite 
the non-Manhattan layout, 
but heavy clutter can promote 
oversegmentation, especially in 
narrow spaces
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The between-class variance depends on the mean values �
0
 

and �
1
 of the thresholded sections, the overall mean � , their 

relative probabilities �(t) and 1 − �(t) . As a result, reason-
ably pronounced structures are still picked up as wall among 
the mostly irrelevant background signals. Walls extracted 
using this method are oftentimes represented by very fine 
lines in the resulting binary mask. A morphological open-
ing improves the results and deals with disconnected wall 
segments without introducing noise (c). Despite the algo-
rithm working well in most scenarios, it may be required 
to manually override the estimated floor elevation value in 

(2)
sigma2

b
(t) = �(t) ⋅ (�

0
(t) − �)2 + (1 − �(t)) ⋅ (�

1
(t) − �)2 rare corner cases where large parts of walls are occluded by 

furniture objects such as shelves to get more stable results.
To extract the rooms, a region growing algorithm starting 

in seed regions located in the center of each room is used 
(d). As a means of creating these seed regions, a distance 
transform is performed on a mask that combines both, the 
building’s inside area and walls. The resulting mask defines 
the closest distance of each pixel to the walls and outside 
area. With this distance being maximized in the center of 
each room, candidate seed regions are extracted using auto-
mated thresholding. Different automated thresholding meth-
ods could be used for creating the seed regions. One example 
would be a threshold selection metric where the number 
of unconnected regions is being maximized alongside their 

Fig. 9  Results for room seg-
mentation with original point 
clouds in left and labeled point 
clouds in right column. Unla-
beled points are marked black 
and occasionally occur at the 
outer edges of room segments 
when recessed walls are present. 
Such points can be labeled 
in a nearest-neighbor fashion 
during a post-processing step at 
the cost of additional runtime. 
Across different scenarios, 
panorama windows, irregular 
ceilings and non-Manhattan 
layouts pose no problem to the 
algorithm
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size. Even though different threshold selection methods 
were investigated Otsu’s thresholding method has proven 
again more suitable for this task, as it leads to relatively 
large but still disconnected seed regions. Regardless of the 
method used, resulting seed regions may still require filter-
ing based on their area due to possible oversegmentation. 
Sufficiently large seed regions are then iteratively expanded 
using a custom region-growing implementation detailed in 
Fig. 4. During each iteration, the region-growing method 
uses morphological dilations to grow individual segments 
simultaneously, where regions are not allowed to cross walls 
or claim parts of other regions. Given the individual segment 
and wall masks, operations for limiting region growth can 
be modelled efficiently by combining masks with bit-opera-
tions. Once no more growth occurs, the resulting regions are 
extracted from the 2D mask and mapped back onto their cor-
responding points in the original point cloud. Furthermore, 
the 2D masks are used to create footprint polygons of each 
room which are extruded to form volumetric room elements. 
Leftover points which have not been labeled by the mapping 
from 2D to 3D can be assigned to the room located closest 
to them in an optional postprocessing step using a nearest-
neighbor fashion. This postprocessing delivers visually 
attractive results and helps clean up missing regions. The 
high quality of this step results from the method operating 
on individual unlabeled points rather than voxels but does 
come at the cost of high execution times if many unlabeled 
points are present.

3.3  Parametric Wall Reconstruction

As an extension to the room segmentation step which relies 
on the estimation of room boundaries, the reconstruction 
of wall volumetric bodies deals with the extraction of sup-
port polygons for said walls. Once again the algorithm takes 
advantage of a 2D representation to benefit from accelerated 
execution speed.

In a series of initial steps depicted in Fig. 5, the method 
estimates the location of walls present in the point cloud by 
inserting it into a voxelgrid to speed up the process. Floor 
and ceiling elevations are then extracted as 2D masks from 
the voxelgrid, culminating in the estimation of wall bounda-
ries from densely-occupied voxels located between the indi-
vidual floor and ceiling segments. In contrast to the room 
segmentation, however, merely estimating potential room 
boundaries is insufficient, as walls have a volumetric geom-
etry. Filling in the space between room boundaries using 
a morphological opening deals with this problem while 
simultaneously limiting the impact of noise (a). To reduce 
the thickness of connected segments in the wall mask, the 
Zhang-Suen algorithm is used to create a morphological 
skeleton (Zhang and Suen 1984) as seen in Fig. 5 (b). This 

skeleton is traversed by selecting the skeleton endpoints and 
junctions as starting points.

For the construction of the wall support polygon, the 
algorithm then jumps to neighboring pixels located within 
a predefined radius until a new skeleton junction or end-
point is met. The traversal is performed for each skeleton 
endpoint and junction to cover the entire skeleton structure 
(c). All detected paths are simplified using the Douglas-
Peucker algorithm (Douglas and Peucker 1973) to generate 
simplified polygon lines suitable for representing the wall 
structures (d). The associated distance tolerance for line 
segments and their internal control points of 6.5 (in pixel 
space) has proven to be an ideal simplification parameter 
and was used for evaluation purposes as well. With possible 
deviations being introduced during the simplification pro-
cess, polygon line endpoints are moved to the closest point 
in the center of the wall mask. Finally, the lines are extruded 
in orthogonal direction to model the individual wall thick-
nesses, where the thickness is determined as the distance of 
the wall endpoints to the closest boundary in the wall mask. 
These reconstructed volumetric walls are saved alongside 
their geometric attributes such as elevation and height for 
conversion to IFC.

4  Results

With the overall workflow being composed of different 
stages which can be used independently from one another, 
results and execution times for each stage are henceforth pre-
sented individually. All tests were performed on a PC run-
ning Windows 7 Enterprise with Service Pack 1, equipped 
with an Intel Core i7-4770 CPU running at 3.40GHz and 
16GB of RAM. All programs for geometric point cloud pro-
cessing were written in C++, with region growing and voxel 
slice filtering implemented using OpenCV (Itseez 2015) and 
vector operations making use of the Eigen library (Guenne-
baud et al. 2010). Execution times include loading the point 
clouds from the hard disk and writing out the results. Syn-
thetic point clouds taken from the UZH dataset (Mura 2016) 
(labeled as synth1, synth2 and synth3) and real-world data 
from the ISPRS benchmark dataset (Khoshelham et al. 2017) 
(labeled as tub1, tub2, uvigo and grainger_museum) have 
been used alongside other real-world point clouds of vary-
ing quality. Alongside high-quality point clouds acquired 
with a Riegl VZ-400 TLS system, a large share of MLS 
point clouds captured with BLK2GO and ZEB Revo RT 
systems are used to analyse and underline the robustness 
of the methods (for details on the data, refer to Tables 1, 2 
and 3). At the end of this section, IFC models created by 
combining all techniques are presented for multi-storey and 
single-storey laser scans.
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4.1  Storey Segmentation

As discussed earlier, the storey segmentation represents 
the earliest step in the presented workflow and extracts the 
individual building storeys as point cloud segments located 
between floor and ceiling planes. In terms of speed, the seg-
mentation process runs rather fast due to the reliance on 
voxels for plane candidate estimation, even when applied 
to larger point clouds. The overall point count and point 
cloud volume still affect the segmentation speed during the 
voxel grid buildup and point extraction phases though, as 
indicated by the execution times in Table 1. When it comes 
to parameter choice, choosing a suitable expected ceiling 
height has proven to show a bigger impact on accuracy 
of floor and ceiling plane estimation than choosing more 
restrictive values for the minimum area a slice should cover 
within the voxel grid. Increasing the voxel grid resolution 
may improve result accuracy in some cases at the cost of 
higher execution times.

Visual segmentation results are shown in Fig. 6, with 
original point clouds and individual storeys marked in differ-
ent colours. Points located outside these cutting planes have 
been removed by this method, which results in the exclusion 
of scan artifacts and therefore aids subsequent room and 
wall segmentation steps as well. As illustrated, the method 
can therefore be used on single-storey point clouds to esti-
mate storey heights and to remove scan artifacts and other 
unwanted structures not related to the building in a robust 
way. Overall, given a vague approximate for the expected 
ceiling height, potential false positive cutting plane candi-
dates such as faux ceilings or table surfaces are correctly 
discarded, meaning that overall parameters can be reused for 
buildings of similar type. Problems will, however, arise if 
ceiling and floor planes of different storeys overlap within a 
slice, as the algorithm was not conceptualized with this case 
in mind. One such scenario is shown in the bottom row of 
Fig. 6, where the second storey is cut off prematurely, thus 
removing the ceiling plane of the right room.

4.2  Room Segmentation

While in the overall workflow context the room segmenta-
tion is used on point clouds resulting from the storey seg-
mentation, it can be used on any point cloud as it requires no 
preconditions. The use of voxel grids once more proves ben-
eficial as the discretization introduced by it keeps execution 
times low, but has a slightly more noticable effect regarding 
overall accuracy here.

As seen in Figs. 7, 8 and 9, the method fares very well 
even when room layouts follow a non-Manhattan geometry, 

but point clouds aligned to the coordinate system of the 
voxel grid (e.g. using suitable geometric methods (Martens 
and Blankenbach 2020)) generally produce more robust and 
accurate results with fewer instances of oversegmentation 
caused by faulty seed regions. Large panorama windows and 
irregular ceilings do not cause any issues. Nonetheless, ele-
ments such as recessed wall niches and large vertical furni-
ture elements like shelves will lead to notable issues though 
and are commonly mistaken for walls during the early phase 
of the process, thus rendering room boundary estimations 
more complicated. With the region growing process using 
these structures as growth boundaries, this either leads to 
points not being marked or oversegmentation. Similar effects 
can be seen when suspended ceilings with multiple visible 
layers are present, as they make the estimation of floor and 
ceiling elevations more difficult. These effects can however 
be circumvented by adapting algorithm parameters. Filtering 
and removing small seed regions has shown effective when 
dealing with oversegmentation, while choosing a floor height 
offset during wall estimation helps reject vertical structures 
which would otherwise be incorrectly recognized as walls. 
Cases where room areas or walls are completely occluded 
from view can not be resolved through parameter tweak-
ing though, the same holds true for extremely small rooms 
which can be mistaken for artifacts. While the structure of 
most long corridors like the ones at the top of Figs. 7 and 9 
is quite inconsequential to the segmentation quality, a failure 
case is shown at the bottom of Fig. 7, where the corridor is 
split into two smaller ones. This effect is the result of over-
segmentation during the generation of the seed regions. The 
same effect also leads to the oversegmentation visible in the 
second row of Fig. 8, where a large hall is subdivided into 
smaller rooms due to the presence of large, room-partition-
ing building elements. High amounts of large vertical clutter 
in narrow rooms will lead to oversegmentation as well.

Depending on the success of the room labeling, the 
chance of missing points always exists, for example outliers 
might be located too far away from any relevant region to 
be labelled meaningfully. The optional postprocessing step 
which marks the remaining points within a pre-specified 
radius in a nearest neighbor-fashion can be applied in such 
cases to improve results. This method will consider all points 
within a user-specified range around labeled regions and 
improves result quality significantly by labelling individual 
missing points. However, this postprocessing step comes at 
the cost of additional processing time and may be exceed-
ingly time-consuming if many unlabeled points are present. 
Such cases manifest themselves as noticable outliers in the 
result Table 2, where execution times exceed 60s. While 
these execution times seem quite excessive, the visual quality 
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of the results is rather solid, as unlabeled points (labeled 
in black in Fig. 9) are relatively rare. In scenarios where 
execution times represent a major concern, optional post-
processing may be disabled though. In direct comparison 
to other related works (Ikehata et al. 2015; Ochmann et al. 
2016; Shi et al. 2019), execution times have always proven 
superior when no post-processing is involved. Even with 
post-processing enabled, execution times are only worse in 
rare cases where a large number of points is involved in this 
optional step.

4.3  Parametric Wall Reconstruction

Like the room segmentation, the parametric wall reconstruc-
tion is meant to be run after the storey segmentation step, but 
can also be run in a standalone manner on single-storey point 
clouds. Execution times are swift as seen in Table 3, given 
mean deviations are calculated as the orthogonal distance 
between each point pi and the closest reconstructed wall sur-
face �j , however, the capturing method, furniture and clutter 
elements play a role in impacting the results. Therefore, the 
median was provided as a robust mean that better describes 
the average deviation and also corresponds to the accuracy 
metric introduced by Tran et al. (2019):

In addition, the maximum range for points to consider for 
distance estimations has been capped to r = 0.3m . Due to 
the lack of reference models for all point clouds and for 
the sake of consistency, geometric deviations were calcu-
lated between the reconstructed models and the input point 
clouds. To guarantee faithfulness of the results, all points 
which do not belong to walls (such as furniture and clutter 
objects) have been removed from the point clouds before dis-
tance estimation. For more clarity, an overview of the distri-
bution of geometric deviations is depicted in Fig. 13 for the 
presented point clouds. As seen in Figs. 10, 11 and 12, furni-
ture objects, floors and ceilings contribute most to the devia-
tions and have therefore been removed before estimating the 
distances seen in Table 3 and Figs. 13. Among the remaining 
structures, recessed wall niches, windows and closets are 
common contributors to high distance deviations. Overall, 
the algorithm proves to be the most accurate for long wall 
segments. Short wall segments which oftentimes occur in 
cramped and complex environments on the other hand suffer 
from decreased accuracies. In rare cases, the method can fail 
to estimate wall thicknesses incorrectly which will lead to 
larger deviations. Additionally, wall endpoints may some-
times be slightly shifted during the simplification process, 

(3)MAcc(r) = Median (�T
j
pi) if |�

T
j
pi| ≤ r

leading to subtle deviations from the reference point cloud. 
With these factors in mind, it should be noted that skipping 
the simplification process would lead to lower deviations 
with reconstructed models being considerably more complex 
and visually less appealing in return. However, for almost 
all evaluated point clouds the median deviations to the auto-
matically generated model are not greater than 5cm on aver-
age, in 4 out of 5 cases the deviations are even smaller than 
3cm which fully meets the requirements of CAFM applica-
tions. In terms of speed, the presented method outperforms 
other established works which have their execution times 
documented (Ikehata et al. 2015; Ochmann et al. 2016; Shi 
et al. 2019).

4.4  IFC Model Reconstruction

Using the results from the previous segmentation steps, 
building a complete IFC model representing building sto-
reys, slabs, rooms and walls concludes the presented work-
flow. As far as model creation is concerned in general, only 
storey and room footprints are required alongside parameters 
for volumetric wall reconstruction. All of them are generated 
in previous steps and stored using JSON as a transition for-
mat, which means that combining them and reconstructing 
their spatial relations results in the final IFC model. Exam-
ples for the created models are shown in Fig. 14 for multiple 
single- and multi-storey laser scans.

The geometric quality of these models directly depends 
on the results of previous workflow steps meaning that 
poor models can be salvaged by adapting the correspond-
ing parameters. As shown in the results, doors and other 
openings such as windows are not modelled at this point 
due to the workflow algorithms not yet being designed to 
detect them. Should the workflow be extended by additional 
methods, adding new model information would be simple 
though, as it merely requires an extension of the final stage 
where all extracted information is combined.

5  Discussion and Conclusion

This work presented a multi-stage workflow for the seg-
mentation of multi-storey building point clouds and sub-
sequent parametric reconstruction with focus on the most 
basic CAFM use cases related to spaces and geometries. 
The segmentation is split into storey-wise and room-wise 
segmentation steps, both of which can be executed indepen-
dently from each other. The resulting point cloud segments 
and their rich room and storey information can potentially 
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be used by external processing tools. Volumetric represen-
tations of the walls for each entire storey are reconstructed 
in a separate processing step. With the relation of storeys 
and rooms being extracted alongside wall storey heights and 
room footprints, the final step of the presented workflow 
is capable of combining this information into a single IFC 
model suitable for BIM-based CAFM.

As proven by the results, the storey and room-wise seg-
mentation steps are highly robust and can be applied to 

high-quality TLS and comparably more noisy MLS data 
alike. All methods run very fast, with the only notable bot-
tleneck being the optional post-processing step in the room 
segmentation which is used to clean up point cloud seg-
ments. Comparisons with related methods dealing with room 
segmentation and parametric wall reconstruction reveals that 
both steps are in fact performed faster by the presented work-
flow. Other works (Ikehata et al. 2015; Ochmann et al. 2016) 
present their results for point clouds with a varying number 

Fig. 10  Results of parametric wall reconstruction for synthetic data 
from the UZH dataset (Mura 2016). All ceilings have been removed 
for visibility. Left column: Input point cloud. Center column: Recon-
structed walls with drawn-in bounding boxes. Right column: Point 
cloud-to-wall distances mapped to the wall structures of the input. 

The shown colour gradient for deviations is set to the interval of 
[0.0m,  0.5m]. Reconstructed walls follow the underlying geometry 
closely, with large deviations only being visible for floor planes and 
clutter objects
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of points. However, for point clouds with a similar num-
ber of points, the combined execution times of both steps 
are consistently higher compared to the presented method. 
Shi et al. (2019) provide results for the UZH dataset (Mura 
2016) and thus allow for direct comparison where the com-
bined execution times are in favour of this work’s workflow.

This makes the workflow particularly attractive for large 
collections of MLS-scanned facilities and allows for them 
to be processed and documented quickly. In addition, the 
accuracy of the automatically generated models is below 

3.5cm in 8 out of 10 tested scenarios which seems absolutely 
sufficient for CAFM applications. It is only slightly worse in 
two scenarios, with accuracies of 5cm and 7cm respectively. 
Overall robustness is also quite high, even delivering solid 
results for point clouds captured with MLS.

Due to the way, storeys are being handled, stairwells are 
split and assigned to different storeys. Other potential short-
comings can be observed in the room extraction and para-
metric wall reconstruction steps. Both can run into problems 
if large vertical furniture pieces such as shelves are present, 

Fig. 11  Results of parametric wall reconstruction for synthetic data 
from the ISPRS dataset (Khoshelham et al. 2017). All ceilings have 
been removed for visibility. Left column: Input point cloud. Center 
column: Reconstructed walls with drawn-in bounding boxes. Right 
column: Point cloud-to-wall distances mapped to the wall structures 

of the input. The shown colour gradient for deviations is set to the 
interval of [0.0m,  0.5m]. Small wall structures not present in the 
reconstructed model strongly contribute to the overall distance devia-
tions
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Fig. 12  Results of parametric wall reconstruction for real-world 
data. All ceilings have been removed for visibility. Left column: 
Input point cloud. Center column: Reconstructed walls with drawn-
in bounding boxes. Right column: Point cloud-to-wall distances 
mapped to the wall structures of the input. The shown colour gradient 

for deviations is set to the interval of [0.0m,  0.5m]. Walls generally 
coincide with the provided point cloud, complex wall structures such 
as closets and recessed wall niches can introduce deviations though. 
Notable deviations occur at windows, shelves and furniture close to 
the walls
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Fig. 13  Distribution of geometric deviations for the point clouds 
shown in Table 3 within the range of 0.0m and 0.3m. Generally, the 
vast bulk of deviations is lower than 0.1 m

◂

Fig. 14  IFC models reconstructed from single-storey and multi-storey point clouds. Building storeys and slabs are shown in the first column, 
spaces representing rooms in the second column and walls in the third column

as these can be misinterpreted as walls. Algorithm param-
eters are quite flexible though and allow such corner cases 
to be taken into account.

Given the workflow’s capabilities, embedding it into an 
automated CAFM infrastructure where changes are quickly 

captured using mobile reality capturing systems (e.g. MLS) 
and periodically integrated into the model akin to a digital 
twin is an attractive option (Lu et al. 2020). The relations 
between storeys, rooms and walls are already preserved and 
with pre-segmented point clouds suitable for asset detec-
tion being the result. Additionally, the reconstructed walls 
and floor plans could be useful for indoor navigation and 
minor extensions of the methods would also allow for the 
reconstruction of indoor network graphs akin to IndoorGML 
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Table 1  Averaged execution times of storey segmentation algorithm 
for various point clouds captured with terrestrial laser scanning (TLS) 
(using a Riegl VZ-400 laser scanner) and mobile laser scanning 

(MLS) (using a ZEB Revo RT laser scanner) after five runs, including 
reading and writing input and output data

Due to the voxelization-based nature of the method, point cloud size and volume both factor into the execution time

Point cloud Capturing method Number of points Number of storeys Execution time (s)

tub2 MLS 21648386 2 73.532
agk MLS 8000000 2 21.569
Faculty_highres TLS 28680967 2 38.498
agk_filtered MLS 5793587 1 8.927
Staircase TLS 26555142 4 52.025

Table 2  Averaged execution times of room segmentation algorithm 
for various point clouds captured with terrestrial laser scanning (TLS) 
(using a Riegl VZ-400 laser scanner) and mobile laser scanning 

(MLS) (using a ZEB Revo RT and backpack-based laser scanners 
presented by Filgueira et al. (2016)) after five runs, including reading 
and writing input and output data

Due to postprocessing not being required for IFC reconstruction and room footprint creation, results with and without this optional step are 
shown. The first three rows show results for synthetic point clouds. The final two rows relate to point clouds extracted from a multi-storey point 
cloud

Point cloud Capturing method Number of points Unlabeled points 
before postproc.

Execution time without 
postproc. (s)

Execution time 
with postproc. 
(s)

synth1 Synthetic 19345772 6237 24.706 28.788
synth2 Synthetic 19258559 92409 30.830 71.291
synth3 Synthetic 68513293 263539 89.289 731.450
tub1 MLS 32597694 1957022 52.945 1278.433
uvigo MLS 8805311 1212365 31.714 57.276
Grainger_museum MLS 23454115 4113002 44.615 832.715
agk_filtered MLS 5793587 54681 12.926 39.221
Scan1-8 TLS 17527772 468228 22.588 476.643
Offices TLS 1425787 12984 6.705 16.226
Faculty_floor_0 TLS 2374272 15023 6.030 9.321
Faculty_floor_1 TLS 3617918 47092 8.175 70.310

Table 3  Averaged execution 
times and geometric 
deviations of parametric wall 
reconstruction algorithm for 
synthetic point clouds and 
various point clouds captured 
with terrestrial laser scanning 
(TLS) (using a Riegl VZ-400 
laser scanner) and mobile laser 
scanning (MLS) (using ZEB 
Revo RT, Leica BLK2GO and 
backpack-based laser scanners 
by Filgueira et al. (2016)) after 
five runs, including reading and 
writing input and output data

The mean and median deviations of the reconstructed walls and point clouds have been estimated with 
floor and ceiling planes removed and with the maximum point-to-wall distance set to 0.3m. The distribu-
tion of geometric deviations is depicted in Fig. 13

Point cloud Capturing method Number of points Mean 
deviation 
(m)

Median 
deviation 
(m)

Execution time (s)

synth1 Synthetic 19345772 0.005 0.005 13.133
synth2 Synthetic 19258559 0.054 0.010 16.290
synth3 Synthetic 68513293 0.077 0.052 47.525
tub1 MLS 32597694 0.088 0.030 26.579
uvigo MLS 8805311 0.086 0.036 16.814
Grainger_museum MLS 23454115 0.133 0.074 28.259
agk_filtered MLS 5793587 0.056 0.008 6.513
Faculty_floor_0 TLS 2374272 0.045 0.004 3.048
Faculty_floor_1 TLS 3617918 0.062 0.012 4.022
blegge MLS 32619768 0.077 0.028 27.329
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(Chair 2013), by analysing adjacencies of the extracted room 
segment boundaries. Furthermore, the modular implemen-
tation allows for other extensions and drop-in replace-
ments of any method to achieve improved accuracy or to 
obtain additional semantic information. This would include 
sophisticated schemes for modelling surface openings such 
as windows and differentiating them from occluded sur-
face sections. The integration of specialized methods for 
the detection and modelling of other architectural elements 
such as windows, doors and staircases represent another 
option for expanding on the established concepts. Driving 
home this idea of a full-fledges automated analysis suite, 
asset detection performed on extracted room segments using 
machine learning (Han et al. 2020; Qi et al. 2019) or the 
possible classification of rooms into functional types would 
represent the next logical step.

Acknowledgements This work has been supported and funded by the 
company “Aachener Grundvermögen Kapitalgesellschaft”.

Author Contributions All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were 
performed by JM. The first draft of the manuscript was written by Jan 
Martens with and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Availability of data and material Not applicable.

Code Availability Not applicable.

Declarations 

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ambruş R, Claici S, Wendt A (2017) Automatic room segmentation 
from unstructured 3-d data of indoor environments. IEEE Robot 
Autom Lett 2(2):749–756. https:// doi. org/ 10. 1109/ LRA. 2017. 
26519 39

Borrmann A, König M, Koch C, Beetz J (eds) (2018) Building Sur-
veying for As-Built Modeling, Springer International Publishing, 

Cham, pp 393–411. https:// doi. org/ 10. 1007/ 978-3- 319- 92862-3_ 
24

Bosché F, O’Keeffe S (2015) The need for convergence of bim and 3d 
imaging in the open world. In: CitA BIM Gathering Proceedings 
2015, The Construction IT Alliance

Braun HP, Reents M, Zahn P, Wenzel P (2013) Facility Management: 
Erfolg in der Immobilienbewirtschaftung. Springer Vieweg Berlin 
Heidelberg. https:// doi. org/ 10. 1007/ 978-3- 642- 39083-8

Carbonari G, Stravoravdis S, Gausden C (2015) Building information 
model implementation for existing buildings for facilities man-
agement: A framework and two case studies. WIT Trans Built 
Environ 149:395–406

Chair OIS (2013) Indoorgml ogc standard for indoor spatial informa-
tion. http:// indoo rgml. net/

Deng M, Menassa C, Kamat V (2021) From bim to digital twins: a 
systematic review of the evolution of intelligent building represen-
tations in the aec-fm industry. J Inform Technol Constr 26:58–83. 
https:// doi. org/ 10. 36680/j. itcon. 2021. 005

Díaz-Vilariño L, Verbree E, Zlatanova S, Diakité A (2017) Indoor mod-
elling from slam-based laser scanner: door detection to envelope 
reconstruction. ISPRS Int Arch Photogr Remote Sens Spat Inform 
Sci XLII–2/W7:345–352. https:// doi. org/ 10. 5194/ isprs- archi 
ves- XLII-2- W7- 345- 2017

Douglas DH, Peucker TK (1973) Algorithms for the reduction of the 
number of points required to represent a digitized line for its cari-
cature. Cartogr Int J Geogr Inform Geovisualization 10(2):112–
122. https:// doi. org/ 10. 3138/ FM57- 6770- U75U- 7727

Filgueira A, Laguela S, Arias P, Bueon M (2016) Novel inspection 
system, backpack-based, for 3d modelling of indoor scenes. Pro-
ceedings of the International Conference on Indoor Positioning 
and Indoor Navigation IPIN

Gao X, Pishdad-Bozorgi P (2019) Bim-enabled facilities operation and 
maintenance: A review. Adv Eng Inform 39:227–247. https:// doi. 
org/ 10. 1016/j. aei. 2019. 01. 005

Guennebaud G, Jacob B, et al. (2010) Eigen v3. http:// eigen. tuxfa mily. 
org

Han L, Zheng T, Xu L, Fang L (2020) Occuseg: Occupancy-aware 3d 
instance segmentation. 2003.06537

Hong S, Jung J, Kim S, Cho H, Lee J, Heo J (2015) Semi-automated 
approach to indoor mapping for 3d as-built building information 
modeling. Comput Environ Urban Syst 51:34–46. https:// doi. org/ 
10. 1016/j. compe nvurb sys. 2015. 01. 005

Hough PV (1962) Method and means for recognizing complex patterns. 
US Patent 30696541962

Ikehata S, Yang H, Furukawa Y (2015) Structured indoor modeling. 
Proceedings of the 2015 IEEE International Conference on Com-
puter Vision (ICCV) p 1323-1331, https:// doi. org/ 10. 1109/ ICCV. 
2015. 156

Itseez (2015) Open source computer vision library. https:// github. com/ 
itseez/ opencv

Jung J, Stachniss C, Kim C (2017) Automatic room segmentation of 
3d laser data using morphological processing. ISPRS Int J Geo-
Inform. https:// doi. org/ 10. 3390/ ijgi6 070206

Khoshelham K, Díaz Vilariño L, Peter M, Kang Z, Acharya D (2017) 
The isprs benchmark on indoor modelling. Int Arch Photogramm 
Remote Sens Spat Inf Sci. https:// doi. org/ 10. 5194/ isprs- archi 
ves- XLII-2- W7- 367- 2017

Li L, Su F, Yang F, Zhu H, Li D, Zuo X, Li F, Liu Y, Ying S (2018) 
Reconstruction of three-dimensional (3d) indoor interiors with 
multiple stories via comprehensive segmentation. Remote Sens. 
https:// doi. org/ 10. 3390/ rs100 81281

Lu Q, Xie X, Parlikad AK, Schooling JM (2020) Digital twin-ena-
bled anomaly detection for built asset monitoring in operation 
and maintenance. Autom Constr 118:103277. https:// doi. org/ 10. 
1016/j. autcon. 2020. 103277

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/LRA.2017.2651939
https://doi.org/10.1109/LRA.2017.2651939
https://doi.org/10.1007/978-3-319-92862-3_24
https://doi.org/10.1007/978-3-319-92862-3_24
https://doi.org/10.1007/978-3-642-39083-8
http://indoorgml.net/
https://doi.org/10.36680/j.itcon.2021.005
https://doi.org/10.5194/isprs-archives-XLII-2-W7-345-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-345-2017
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1016/j.aei.2019.01.005
https://doi.org/10.1016/j.aei.2019.01.005
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1016/j.compenvurbsys.2015.01.005
https://doi.org/10.1016/j.compenvurbsys.2015.01.005
https://doi.org/10.1109/ICCV.2015.156
https://doi.org/10.1109/ICCV.2015.156
https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://doi.org/10.3390/ijgi6070206
https://doi.org/10.5194/isprs-archives-XLII-2-W7-367-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-367-2017
https://doi.org/10.3390/rs10081281
https://doi.org/10.1016/j.autcon.2020.103277
https://doi.org/10.1016/j.autcon.2020.103277


294 PFG (2023) 91:273–294

1 3

Macher H, Landes T, Grussenmeyer P (2017) From point clouds to 
building information models: 3d semi-automatic reconstruction 
of indoors of existing buildings. Appl Sci 7(10):1030. https:// doi. 
org/ 10. 3390/ app71 01030

Martens J, Blankenbach J (2020) An evaluation of pose-normalization 
algorithms for point clouds introducing a novel histogram-based 
approach. Adv Eng Inform 46:101132. https:// doi. org/ 10. 1016/j. 
aei. 2020. 101132

Martens J, Blankenbach J (2021) VOX2BIM : A fast method for auto-
mated point cloud segmentation. In: EG-ICE 2021 proceedings: 
Workshop on Intelligent Computing in Engineering 30th June-2nd 
July 2021, Technische Universität Berlin, EG-ICE 2021 Workshop 
on Intelligent Computing in Engineering, Berlin (Germany), 30 
Jun 2021 - 2 Jul 2021, Universitätsverlag der TU Berlin, Berlin, 
pp 442–450, https:// doi. org/ 10. 18154/ RWTH- 2022- 02755, https:// 
publi catio ns. rwth- aachen. de/ record/ 842885

Matheron G (1967) Éléments pour une théorie des milieux poreux. 
Mason et cie Editeurs Paris; 1967, P 5 A 164

Motamedi A, Hammad A, Asen Y (2014) Knowledge-assisted bim-
based visual analytics for failure root cause detection in facilities 
management. Autom Constr 43:73–83. https:// doi. org/ 10. 1016/j. 
autcon. 2014. 03. 012

Mura C (2016) University of zurich research datasets. https:// www. ifi. 
uzh. ch/ en/ vmml/ resea rch/ datas ets. html

Mura C, Mattausch O, Jaspe Villanueva A, Gobbetti E, Pajarola R 
(2014) Automatic room detection and reconstruction in cluttered 
indoor environments with complex room layouts. Comput Graph 
(Pergamon) 44(1):20–32. https:// doi. org/ 10. 1016/j. cag. 2014. 07. 
005

Murali S, Speciale P, Oswald MR, Pollefeys M (2017) Indoor Scan-
2BIM: Building information models of house interiors. IEEE Int 
Conf Intell Robots Syst. https:// doi. org/ 10. 1109/ IROS. 2017. 82065 
13

Nävy J (2013) Facil Manag Grundl. Springer Vieweg Berlin Heidel-
berg, Computerunterstützung, Systemeinführung, Anwendungs-
beispiele. https:// doi. org/ 10. 1007/ 978-3- 662- 07165-6

Ochmann S, Vock R, Wessel R, Klein R (2016) Automatic recon-
struction of parametric building models from indoor point 
clouds. Comput Graph (Pergamon) 54:94–103. https:// doi. org/ 
10. 1016/j. cag. 2015. 07. 008

Ochmann S, Vock R, Wessel R, Tamke M, Klein R (2014) Automatic 
Generation of Structural Building Descriptions from 3D Point 
Cloud Scans. Proceedings of GRAPP 2014 - International Con-
ference on Computer Graphics Theory and Applications Janu-
ary, http:// cg. cs. uni- bonn. de/ aigai on2ro ot/ attac hments/ GRAPP_ 
2014_ 54_ CR. pdf

Oesau S, Lafarge F, Alliez P (2013) Indoor scene reconstruction using 
primitive-driven space partitioning and graph-cut. Eurograph 
Workshop Urban Data Model Vis, UDMV 2013:9–12. https:// 
doi. org/ 10. 2312/ UDMV/ UDMV13/ 009- 012

Okorn B, Xiong X, Akinci B, Huber D (2016) Toward automated mod-
eling of floor plans. Proceedings of the Symposium on 3D Data 
Processing. Vis Transm 2(October 2014):8–15. https:// doi. org/ 10. 
20431/ 2454- 8693. 02030 02

Otero R, Lagüela S, Garrido I, Arias P (2020) Mobile indoor mapping 
technologies: A review. Autom Constr 120:103399. https:// doi. 
org/ 10. 1016/j. autcon. 2020. 103399

Otsu N (1979) A threshold selection method from gray-level histo-
grams. IEEE Trans Syst Man Cybern 9(1):62–66. https:// doi. org/ 
10. 1109/ TSMC. 1979. 43100 76

Patacas J, Dawood N, Kassem M (2020) Bim for facilities manage-
ment: A framework and a common data environment using open 
standards. Autom Constr 120:103366. https:// doi. org/ 10. 1016/j. 
autcon. 2020. 103366

Perez-Perez Y, Golparvar-Fard M, El-Rayes K (2021) Scan2bim-
net: Deep learning method for segmentation of point clouds for 

scan-to-bim. J Constr Eng Manag 147(9):04021107. https:// doi. 
org/ 10. 1061/ (ASCE) CO. 1943- 7862. 00021 32

Perez-Perez Y, Golparvar-Fard M, El-Rayes K (2021) Segmentation 
of point clouds via joint semantic and geometric features for 3d 
modeling of the built environment. Autom Constr 125:103584. 
https:// doi. org/ 10. 1016/j. autcon. 2021. 103584

Pishdad-Bozorgi P, Gao X, Eastman C, Self AP (2018) Planning and 
developing facility management-enabled building information 
model (fm-enabled bim). Autom Constr 87:22–38. https:// doi. 
org/ 10. 1016/j. autcon. 2017. 12. 004

Previtali M, Barazzetti L, Brumana R, Scaioni M (2014) Towards auto-
matic indoor reconstruction of cluttered building rooms from point 
clouds. ISPRS Ann Photogramm Remote Sens Spat Inform Sci 
II–5:281–288. https:// doi. org/ 10. 5194/ isprs annals- II-5- 281- 2014

Previtali M, Diaz Vilarino L, Scaioni M (2018) Towards automatic 
reconstruction of indoor scenes from incomplete point clouds: 
door and window detection and regularization. ISPRS - Int Arch 
Photogram Remote Sens Spat Inform Sci XLII–4:507–514. 
https:// doi. org/ 10. 5194/ isprs- archi ves- XLII-4- 507- 2018

Qi CR, Litany O, He K, Guibas LJ (2019) Deep hough voting for 
3d object detection in point clouds. In: Proceedings of the IEEE 
International Conference on Computer Vision

Ròka-Madaràsz L, Màlyusz L, Tuczai P (2016) Benchmarking facili-
ties operation and maintenance management using cafm database: 
Data analysis and new results. J Build Eng 6:184–195. https:// doi. 
org/ 10. 1016/j. jobe. 2016. 03. 007

Rusu RB (2009) Semantic 3d object maps for everyday manipulation 
in human living environments. PhD thesis, Computer Science 
department, Technische Universitaet Muenchen, Germany

Sanchez V, Zakhor A (2012) Planar 3d modeling of building interiors 
from point cloud data. IEEE Int Conf Image Process. https:// doi. 
org/ 10. 1109/ ICIP. 2012. 64672 25

Schnabel R, Wahl R, Klein R (2007) Efficient ransac for point-cloud 
shape detection. Comput Graph Forum 26(2):214–226

Shi W, Ahmed W, Li N, Fan W, Xiang H, Wang M (2019) Semantic 
geometric modelling of unstructured indoor point cloud. ISPRS 
Int J Geo-Inform. https:// doi. org/ 10. 3390/ ijgi8 010009

Tang P, Huber D, Akinci B, Lipman R, Lytle A (2010) Automatic 
reconstruction of as-built building information models from laser-
scanned point clouds: A review of related techniques. Autom Con-
str 19(7):829–843. https:// doi. org/ 10. 1016/j. autcon. 2010. 06. 007

Thomson C, Boehm J (2015) Automatic geometry generation from 
point clouds for bim. Remote Sens 7(9):11753–11775. https:// doi. 
org/ 10. 3390/ rs709 11753

Tran H, Khoshelham K, Kealy A (2019) Geometric comparison and 
quality evaluation of 3d models of indoor environments. ISPRS J 
Photogramm Remote Sens 149:29–39. https:// doi. org/ 10. 1016/j. 
isprs jprs. 2019. 01. 012

Turner E, Zakhor A (2015) Multistory floor plan generation and room 
labeling of building interiors from laser range data. In: Battiato 
S, Coquillart S, Pettré J, Laramee RS, Kerren A, Braz J (eds) 
Computer vision. Springer International Publishing, Cham, Imag-
ing and Computer Graphics - Theory and Applications, pp 29–44

Turner E, Zakhor A (2014) Floor plan generation and room labeling 
of indoor environments from laser range data. In: 2014 Interna-
tional Conference on Computer Graphics Theory and Applications 
(GRAPP), pp 1–12

Wang R, Xie L, Chen D (2017) Modeling indoor spaces using decom-
position and reconstruction of structural elements. Photogramm 
Eng Remote Sens 83(12):827–841

Young IT (1983) Image analysis and mathematical morphology, by 
j. serra. academic press, london, 1982, xviii + 610 p. \$90.00. 
Cytometry 4(2):184–185. https:// doi. org/ 10. 1002/ cyto. 99004 0213

Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digi-
tal patterns. Commun ACM 27(3):236–239. https:// doi. org/ 10. 
1145/ 357994. 358023

https://doi.org/10.3390/app7101030
https://doi.org/10.3390/app7101030
https://doi.org/10.1016/j.aei.2020.101132
https://doi.org/10.1016/j.aei.2020.101132
https://doi.org/10.18154/RWTH-2022-02755
https://publications.rwth-aachen.de/record/842885
https://publications.rwth-aachen.de/record/842885
https://doi.org/10.1016/j.autcon.2014.03.012
https://doi.org/10.1016/j.autcon.2014.03.012
https://www.ifi.uzh.ch/en/vmml/research/datasets.html
https://www.ifi.uzh.ch/en/vmml/research/datasets.html
https://doi.org/10.1016/j.cag.2014.07.005
https://doi.org/10.1016/j.cag.2014.07.005
https://doi.org/10.1109/IROS.2017.8206513
https://doi.org/10.1109/IROS.2017.8206513
https://doi.org/10.1007/978-3-662-07165-6
https://doi.org/10.1016/j.cag.2015.07.008
https://doi.org/10.1016/j.cag.2015.07.008
http://cg.cs.uni-bonn.de/aigaion2root/attachments/GRAPP_2014_54_CR.pdf
http://cg.cs.uni-bonn.de/aigaion2root/attachments/GRAPP_2014_54_CR.pdf
https://doi.org/10.2312/UDMV/UDMV13/009-012
https://doi.org/10.2312/UDMV/UDMV13/009-012
https://doi.org/10.20431/2454-8693.0203002
https://doi.org/10.20431/2454-8693.0203002
https://doi.org/10.1016/j.autcon.2020.103399
https://doi.org/10.1016/j.autcon.2020.103399
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.autcon.2020.103366
https://doi.org/10.1016/j.autcon.2020.103366
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002132
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002132
https://doi.org/10.1016/j.autcon.2021.103584
https://doi.org/10.1016/j.autcon.2017.12.004
https://doi.org/10.1016/j.autcon.2017.12.004
https://doi.org/10.5194/isprsannals-II-5-281-2014
https://doi.org/10.5194/isprs-archives-XLII-4-507-2018
https://doi.org/10.1016/j.jobe.2016.03.007
https://doi.org/10.1016/j.jobe.2016.03.007
https://doi.org/10.1109/ICIP.2012.6467225
https://doi.org/10.1109/ICIP.2012.6467225
https://doi.org/10.3390/ijgi8010009
https://doi.org/10.1016/j.autcon.2010.06.007
https://doi.org/10.3390/rs70911753
https://doi.org/10.3390/rs70911753
https://doi.org/10.1016/j.isprsjprs.2019.01.012
https://doi.org/10.1016/j.isprsjprs.2019.01.012
https://doi.org/10.1002/cyto.990040213
https://doi.org/10.1145/357994.358023
https://doi.org/10.1145/357994.358023

	VOX2BIM+ - A Fast and Robust Approach for Automated Indoor Point Cloud Segmentation and Building Model Generation
	Abstract
	1 Introduction
	2 Related Work
	2.1 BIM and CAFM
	2.2 Storey Segmentation
	2.3 Room Segmentation
	2.4 Parametric Wall Reconstruction

	3 Methods
	3.1 Storey Segmentation
	3.2 Room Segmentation
	3.3 Parametric Wall Reconstruction

	4 Results
	4.1 Storey Segmentation
	4.2 Room Segmentation
	4.3 Parametric Wall Reconstruction
	4.4 IFC Model Reconstruction

	5 Discussion and Conclusion
	Acknowledgements 
	References




