Skip to main content
Log in

Integrated Full-Waveform Analysis and Classification Approaches for Topo-Bathymetric Data Processing and Visualization in HydroVISH

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Topo-bathymetric LiDAR data captured with modern systems are complex. The primary information received is a time-dependent amplitude variation of the reflected light. These so-called waveforms are processed into singular points with 3D coordinates by advanced on-board devices of the LiDAR sensor (online waveform processing), but the full-waveform (FWF) information may be available as well. However, available software tools are often insufficient to manage all required processing steps. Common file formats do not allow to store originally recorded sensor parameters together with subsequently processed parameters in one database or file. The FWF, however, can contain information to better cover the terrain below dense vegetation, and to improve aerial coverage of the water ground. Thus, we extended the software suite HydroVISH with respect to an integrated FWF processing pipeline. Employing the open-source Hierarchical Data Format V5 (HDF5) with the F5 layout thereby allows for efficient data storage and handling throughout the processing chain. The potential benefit of performing a comprehensive FWF analysis can be assessed via the simultaneous visualization of the complete FWF information on all points in an interactive display environment. Next, the valuable point information is extracted using various provided FWF processing tools, such as Richardson–Lucy deconvolution or Gaussian decomposition. For topo-bathymetric data, the correct point classification of the terrain above and below water as well as the actual water surface is crucial to correctly calculate the refraction correction for points beneath the water surface. Finally, we also outline the implemented classification approach for the terrain and water surface.

Zusammenfassung

Integrierte Full-Waveform Analyse und Klassifizierungsansätze für topo-bathymetrische Datenverarbeitung und Visualisierung in HydroVISH. Topo-bathymetrische LiDAR-Daten, wie sie mit modernen Sensoren gewonnen werden, sind komplex. Die vom Sensor empfangene Primärinformation ist dabei eine zeitabhängige Variation der Signalamplitude des reflektierten Lichts. Diese sogenannten Wellenformen (Full-Waveform, FWF) werden mittels On-Board-Komponenten des jeweiligen LiDAR-Systems zu einzelnen Punkten mit 3D-Koordinaten verarbeitet (Online-Waveform Processing), aber auch als Bestandteil der Rohdaten abgespeichert. Mit verfügbaren Software-Lösungen können oftmals nicht alle erforderlichen Schritte im Rahmen der Datenprozessierung abgebildet werden. Zudem können mit gebräuchlichen Dateiformaten nicht alle bei der Datenerhebung ursprünglich aufgezeichneten Parameter zusammen mit nachfolgend berechneten Parametern in einer Datenbank oder einer Datei gespeichert werden. Die FWF kann jedoch wertvolle Informationen enthalten, mit denen sich der Geländeverlauf unter Wasser und unterhalb dichter Vegetation wesentlich besser erfassen lässt und damit eine verbesserte räumliche Abdeckung des Geländes ermöglicht. Wir haben daher das Softwarepaket HydroVISH um eine substantielle FWF-Prozessierungskette erweitert. Die Verwendung des quelloffenen Hierarchical Data Format V5 (HDF5) im F5-Layout ermöglicht dabei eine effiziente Datenspeicherung und -handhabung über die gesamte Prozesskette hinweg. Der potenzielle Mehrwert einer umfassenden FWF-Analyse kann durch die simultane Darstellung aller FWF-Verläufe und Laserpunkte in einer interaktiven Visualisierungsumgebung am besten evaluiert werden. Daran anschließend werden mit Hilfe verschiedener FWF-Verarbeitungswerkzeuge (z.B. Entfaltung nach Richardson-Lucy oder Gauss'sche Zerlegung) die nützlichen Punktinformationen aus der FWF abgeleitet. Für topo-bathymetrische Daten ist die exakte Klassifizierung sowohl von Geländepunkten über und unter Wasser als auch der Wasseroberfläche entscheidend für die korrekte Berechnung der Refraktion bzgl. aller unter Wasser liegenden Punkte. Daher beschreiben wir abschließend den in HydroVISH implementierten Ansatz zur Klassifizierung des Geländes und der Wasseroberfläche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • ASPRS (2019) LAS SPECIFICATION v. 1.4-R15. The American Society for Photogrammetry & Remote Sensing (November 2011):1–28,45, www.asprs.org

  • Benger W (2004) Visualization of general relativistic tensor fields via a fiber bundle data model. PhD thesis, FU Berlin, http://www.lob.de/isbn/3865411088, iSBN 3-86541-108-8

  • Benger W (2009) Classifying data for scientific visualization via fiber bundles. In: Leroy C, Rancoita PG (eds) ICATPP-11, Como, Italy, Oct 5-9, 2009, World Scientific, https://doi.org/10.1142/9789814307529_0109, http://eproceedings.worldscinet.com/9789814307529/9789814307529_0109.html

  • Benger W, Ritter G, Heinzl R (2007) The Concepts of VISH. 4th High-End Visualization Workshop, Berlin. Lehmanns Media-LOB.de, Obergurgl, Austria, pp 26–39

  • Benger W, Ritter M, Acharya S, Roy S, Jijao F (2009) Fiberbundle-based visualization of a stir tank fluid. In: 17th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp 117–124

  • Benger W, Heinzl R, Hildenbrand D, Weinkauf T, Theisel H, Tschumperle D (2011) Differential Methods for Multi-Dimensional Visual Data Analysis, Springer Science + Business Media LLC, chap 50, pp 1533–1595. https://doi.org/10.1007/978-0-387-92920-0_35, http://www.springerlink.com/content/r4j504485j73jk16/

  • Benger W, Dobler W, Steinbacher F, Baran R, (2017) New technical opportunities for efficient management and integration of big data from topo-bathymetric projects in applications, data processing and management: Tera-dot rendering Bavaria in HydroVISH, KomVISH. In: Hydro, (2017) Conference Proceedings. Rotterdam, Netherlands, p 6

  • Benger W, Leimer W, Baran R, (2020) Visualizing massive pristine LIDAR amplitude responses. In: WSCG, (2020) Conference proceedings. Czech Republic, p, Plzen, p 10

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Butler D, Pendley M (1989) A visualization model based on the mathematics of fiber bundles. Comput Phys 3(5):45–51

    Article  Google Scholar 

  • Danielson J, Poppenga S, Brock J, Evans G, Tyler D, Gesch D, Thatcher C, Barras J (2016) Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database. J Coastal Res (SI 76):75–89, https://doi.org/10.2112/si76-008

  • Dobler W, Steinbacher F, Baran R, Ritter M, Aufleger M (2014) High resolution bathymetric lidar data as Base For hydraulic-modelling of a mountain stream. International Conference on Hydroinformatics 2014, New York, http://www.proceedings.com/25674.html

  • Dobler W, Steinbacher F, Baran R, Benger W, Ritter M, Wolfgang L (2019) Dreiländertagung OVG – DGPF – SGPF Photogrammetrie - Fernerkundung - Geoinformation - 2019. Photogrammetrie - Fernerkundung - Geoinformation 28

  • Doneus M, Briese C, Fera M, Janner M (2008) Archaeological prospection of forested areas using fullwaveform airborne laser scanning. J Archaeol Sci 35(4):882–893

    Article  Google Scholar 

  • Dougherty MT, Folk MJ, Bernstein HJ, Bernstein FC, Eliceiri KW, Benger W, Zadok E, Best C (2009) Unifying biological image formats with hdf5. Commun ACM 52(10):42–47. https://doi.org/10.1145/1562764.1562781

    Article  Google Scholar 

  • Eisenmann E, Dunkin L, Hartmann M, Wozencraft J (2019) JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments. Shore & Beach pp 31–40, https://doi.org/10.34237/1008744

  • Fink C, Benedet L, Andrews J (2005) Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. J Coastal Res 213:501–514. https://doi.org/10.2112/05-756A.1

    Article  Google Scholar 

  • Habermann T, Collette A, Vincena S, Billings J, Gerring M, Hinsen K, Benger W, Maia F, Byna S, de Buyl P (2014) The hierarchical data format (hdf): A foundation for sustainable data and software. In: AGU Fall Meeting, San Francisco, U.S

  • Hauer C, Pulg U (2018) The non-fluvial nature of western Norwegian rivers and the implications for channel patterns and sediment composition. Catena. https://doi.org/10.1016/j.catena.2018.06.025

    Article  Google Scholar 

  • Hickman G, Hogg J (1969) Application of an airborne pulsed laser for near shore bathymetric measurements. Remote Sens Environ. https://doi.org/10.1016/S0034-4257(69)90088-1

    Article  Google Scholar 

  • Hollaus M, Höfle B (2010) Terrain roughness parameters from full-waveform airborne LIDAR data. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol 38

  • Hug C, Krzystek P, Fuchs W (2004) ADVANCED LIDAR DATA PROCESSING WITH LASTOOLS. In: XXth ISPRS Congress, Istanbul, Turkey, p 6

  • Isenburg M (2021) LAStools. http://www.lastools.org/

  • Kamp N, Russ S, Sass O, Tiefengraber G, Tiefengraber S (2013) Kombination von GPR- und LiDAR-Daten zur Generierung eines 3D-Modells am Fallbeispiel eines archäologischen Fundorts in Strettweg, Bezirk Murtal. In: Strobl J, Blaschke T, Griesebner G, Zagel B (eds) Angewandte Geoinformatik 2013. Herbert Wichmann Verlag, VDE VERLAG GMBH, Berlin/Offenbach, pp 55–60

    Google Scholar 

  • Karjalainen M, Rönnholm P, Soininen A (2011) Use of roof ridges as 3D line features in registration of Aerial images and laser scanning point clouds. Tech. rep., EuroSDR No 59, Registration quality - towards integration of laser scanning and photogrammetry

  • Kinzel P, Legleiter C (2019) SUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric Lidar. Remote Sens. https://doi.org/10.3390/rs11192317

    Article  Google Scholar 

  • Kobler A, Pfeifer N, Ogrinc P, Todorovski L, Oštir K, Džeroskic S (2007) Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sens Environ 108(1):9–23

    Article  Google Scholar 

  • Kraus K, Pfeifer N (1997) A new method for surface reconstruction from laser scanner data. In: IAPRS, XXXII, 3/2W3, Haifa, Israel

  • Leica (2015) Leica LiDAR Survey Studio Flyer. http://leica-geosystems.com/products/%0Aairborne-systems/software/leica-lidar-survey-studio

  • Lohani B, Ghosh S (2017) Airborne LiDAR technology: a review of data collection and processing systems. Proc Natl Acad Sci, India, Sect A 87:567–579

    Article  Google Scholar 

  • Lohmann P, Koch A, Schäffer M (2000) Approaches to the filtering of laser scanner data. Int Arch Photogrammetry Remote Sens XXXII I(B3/1):534–541

    Google Scholar 

  • Maas HG, Mader D, Richter K, Westfeld P (2019) IMPROVEMENTS IN LIDAR BATHYMETRY DATA ANALYSIS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W10:113–117, https://doi.org/10.5194/isprs-archives-XLII-2-W10-113-2019, https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W10/113/2019/

  • Mader D, Richter K, Westfeld P, Weiß R, Maas HG (2019) Detection and extraction of water bottom topography from laserbathymetry data by using full-waveform-stacking techniques. Int Arch Photogrammetry Remote Sens Spatial Inf Sci ISPRS Arch 42:1053–1059. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1053-2019

    Article  Google Scholar 

  • Magruder LA, Neuenschwander AL, Marmillion SP (2010) Lidar waveform stacking techniques for faint ground return extraction. J Appl Remote Sens 4(1):1–13. https://doi.org/10.1117/1.3299657

    Article  Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art. ISPRS J Photogrammetry Remote Sens. https://doi.org/10.1016/j.isprsjprs.2008.09.007

    Article  Google Scholar 

  • Mandlburger G (2020) A review of airborne laser bathymetry for mapping of inland and coastal waters. J Appl Hydrogr HN 116(06/2020):6–15. https://doi.org/10.23784/HN116-01

    Article  Google Scholar 

  • Mandlburger G, Otepka J, Karel W, Wagner W, Pfeifer N (2009) Orientation And Processing Of Airborne Laser Scanning Data (OPALS) - Concept And First Results Of A Comprehensive Als Software. IAPRS XXXVIII(Part 3/W8):55–60

  • Mandlburger G, Pfennigbauer M, Pfeifer N (2013) Analyzing near water surface penetration in laser bathymetry - A case study at the River Pielach. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-5/W2, pp 175–180, https://doi.org/10.5194/isprsannals-II-5-W2-175-2013, http://publik.tuwien.ac.at/files/PubDat_221149.pdf

  • Matteoli S, Corsini G, Diani M, Cecchi G, Toci G (2015) Automated underwater object recognition by means of fluorescence LIDAR. IEEE Trans Geosci Remote Sens 53(1):375–393. https://doi.org/10.1109/TGRS.2014.2322676

    Article  Google Scholar 

  • Meng X, Wang L, Silván-Cárdenas J, Currit N (2009) A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS J Photogrammetry Remote Sens 64(1):117–124

    Article  Google Scholar 

  • Meng X, Currit N, Zhao K (2010) Ground filtering algorithms for airborne LiDAR data: a review of critical issues. Remote Sens 2(3):833–860

    Article  Google Scholar 

  • Miller P, Addy S (2019) Topo-bathymetric Lidar in support of hydromorphological assessment, river restoration and flood risk management. Tech. rep., James Hutton Institute, Craigiebuckler, Aberdeen. AB15 8QH. UK, Aberdeen, www.crew.ac.uk/

  • Optech (2020) Optech HydroFusion Information Sheet. https://www.teledyneoptech.com/en/products/software/hydrofusion/

  • Otepka J, Mandlburger G, Karel W (2012) The OPALS data manager—efficient data management for processing large airborne laser scanning projects. ISPRS Ann 1–3:153–159

    Google Scholar 

  • Parrish C, Magruder L, Neuenschwander A, Forfinski-Sarkozi N (2019) Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. https://doi.org/10.3390/rs11141634

    Article  Google Scholar 

  • Parrish CE, Scarpace FL (2007) Investigating full-waveform lidar data for detection and recognition of vertical objects. American Society for Photogrammetry and Remote Sensing - ASPRS Annual Conference 2007: Identifying Geospatial Solutions 2

  • Petzold T (1972) Volume Scattering Functions for Selected Ocean Waters. Scripps Institution of Oceanograph https://doi.org/10.5811/westjem.2013.7.18472

  • Pfeifer N, Mandlburger G, Otepka J, Karel W (2014) OPALS—a framework for airborne laser scanning data analysis. Comput Environ Urban Syst 45:125–236

    Article  Google Scholar 

  • Pfennigbauer M, Wolf C, Weinkopf J, Ullrich A (2014) Online waveform processing for demanding target situations. Proc SPIE 10(1117/12):2052994

    Google Scholar 

  • Plenkers K, Ritter JRR, Schindler M (2012) Low signal-to-noise event detection based on waveform stacking and cross-correlation: application to a stimulation experiment. J Seismol. https://doi.org/10.1007/s10950-012-9284-9

    Article  Google Scholar 

  • Richter K, Maas HG, Westfeld P, Weiß R (2017) An approach to determining turbidity and correcting for signal attenuation in airborne lidar bathymetry. J Photogrammetry Remote Sens Geoinf Sci 85:31–40

    Google Scholar 

  • Riegl (2016) Riegl VQ-880-NG data sheet

  • Riegl (2020) Data Processing Software RiPROCESS for Riegl Scan Data. http://www.riegl.com/uploads/tx_pxpriegldownloads/RiProcess_Datasheet_2020-08-20_01.pdf

  • Roncat A, Mandlburger G (2016) Enhanced detection of water and ground surface in airborne laser bathymetry data using waveform stacking. In: Geophysical Research Abstracts, vol Volume 18, pp EGU2016–17016, http://publik.tuwien.ac.at/files/PubDat_249010.pdf

  • Roncat A, Bergauer G, Pfeifer N (2010) Retrieval of the backscatter cross-section in full-waveform LIDAR data using B-splines. Proc Int Archives Photogramm Remote Sens Spatial Inf Sci

  • Rückemann CPC (2012) Comparison of Stacking Methods Regarding Processing and Computing of Geoscientific Depth Data. In Proc Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services (GEOProcessing 2012) (c)

  • Schwarz R, Pfeifer N, Pfennigbauer M, Ullrich A (2017) Exponential decomposition with implicit deconvolution of lidar backscatter from the water column. PFG J Photogrammetry Remote Sens Geoinf Sci. https://doi.org/10.1007/s41064-017-0018-z

    Article  Google Scholar 

  • Sithole G (2001) Filtering of laser altimetry data using a slope adaptive filter. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV(3/4):203–210

  • Sithole G, Vosselmann G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point cloudse. ISPRS J Photogrammetry Remote Sens 59:85–101

    Article  Google Scholar 

  • Sorensen G, Honey R, Payne J (1966) Analysis of the use of airborne laser radar for submarine detection and ranging. Tech. rep, SRI Report, p 5583

  • Stilla U, Yao W, Jutzi B (2007) Detection of weak laser pulses by full waveform stacking. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences

  • The HDF5 Group (2018) Hierarchical data format version 5

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006a) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogrammetry Remote Sens. https://doi.org/10.1016/j.isprsjprs.2005.12.001

    Article  Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006b) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitizing airborne laser scannerTitle. ISPRS J Photogrammetry Remote Sens 60(2):100–112

    Article  Google Scholar 

  • Wang C, Li Q, Liu Y, Wu G, Liu P, Ding X (2015) A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry. ISPRS J Photogrammetry Remote Sens. https://doi.org/10.1016/j.isprsjprs.2014.11.005

    Article  Google Scholar 

  • Wedding L, Friedlander A, McGranaghan M, Yost R (2008) Using bathymetric Lidar to define nearshore benthic habitat complexity: implications for management of reef fish assemblages in Hawaii. Remote Sens Environ 112(11):4159–4165. https://doi.org/10.1016/j.rse.2008.01.025

    Article  Google Scholar 

  • Wilson N, Parrish C, Battista T, Wright C, Costa B, Slocum R, Dijkstra J, Tyler M (2019) Mapping seafloor relative reflectance and assessing coral reef morphology with EAARL-B topobathymetric Lidar waveforms. Estuaries Coasts. https://doi.org/10.1007/s12237-019-00652-9

    Article  Google Scholar 

  • Wozencraft J, Lillycrop W (2003) SHOALS airborne coastal mapping: Past, present, and future. Journal of Coastal Research (SP 38):207–215

  • Wright C, Troche R, Kranenburg C, Klipp E, Fredericks X, Nagle D (2014) EAARL-B submerged topography: Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012-2013. Tech. rep., Data Series 887, U.S. Geological Survey, https://doi.org/10.3133/ds887

  • Wright C, Kranenburg C, Troche R, Mitchell R, Nagle D (2016) Depth Calibration of the Experimental Advanced Airborne Research Lidar, EAARL-B. Tech. rep., Open File Report 2016-1048, U.S. Geological Survey

  • Wu J, Van Aardt JA, Asner GP (2011) A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2010.2103080

    Article  Google Scholar 

  • Zhang K, Whitman D, Leatherman S, Robertson W (2005) Quantification of beach changes caused by hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys. J Coastal Res 211:123–134. https://doi.org/10.2112/02057.1

    Article  Google Scholar 

  • Zhao X, Zhao J, Zhang H, Zhou F (2018) Remote sensing of suspended sediment concentrations based on the waveform decomposition of airborne LiDAR bathymetry. Remote Sens 247(10):10

    Google Scholar 

Download references

Acknowledgements

We are especially grateful to two anonymous reviewers as well as Guest Editor Gottfried Mandlburger for their insightful reviews and thorough comments that helped us to substantially improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Baran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbacher, F., Dobler, W., Benger, W. et al. Integrated Full-Waveform Analysis and Classification Approaches for Topo-Bathymetric Data Processing and Visualization in HydroVISH. PFG 89, 159–175 (2021). https://doi.org/10.1007/s41064-021-00150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-021-00150-3

Keywords

Navigation