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Abstract
Knowledge of the static and morphodynamic components of the river bed is important for the maintenance of waterways. 
Under the action of a current, parts of the river bed sediments can move in the form of dunes. Recordings of the river bed by 
multibeam echosounding are used as input data within a morphological analysis in order to compute the bedload transport 
rate using detected dune shape and migration. Before the morphological analysis, a suitable processing of the measurement 
data is essential to minimize inherent uncertainties. This paper presents a simulation-based evaluation of suitable data 
processing concepts for vertical sections of bed forms based on a case study at the river Rhine. For the presented spatial 
approaches, suitable parameter sets are found, which allow the reproduction of nominal dune parameters in the range of a 
few centimetres. However, if parameter sets are chosen inadequately, the subsequently derived dune parameters can deviate 
by several decimetres from the simulated truth. A simulation-based workflow is presented, to find the optimal hydrographic 
data processing strategy for a given dune geometry.

Keywords Dune tracking · Hydrography · Outlier detection · Parameterized point cloud approximation · Geometric 
simulation

Zusammenfassung
Simulationsbasierte Bewertung hydrographischer Datenanalyse zur Dünenverfolgung am Rhein. Für die Unterhaltung von 
Wasserstraßen ist die Kenntnis der statischen und morphodynamischen Komponenten des Flussbetts wichtig. Aufgrund der 
Strömungswirkung können sich die Sedimente des Flussbetts in Form von Dünen bewegen. Dabei werden Aufnahmen der 
Flusssohle mittels Fächerecholot als Eingangsdaten für morphologische Analyse verwendet, um anhand der detektierten 
Dünenformen und deren Migration die Geschiebetransportrate zu berechnen. Vor der morphologischen Analyse ist eine 
geeignete Aufbereitung der Messdaten notwendig, um inhärente Unsicherheiten zu minimieren. In diesem Beitrag wird 
anhand einer Fallstudie am Rhein eine simulationsbasierte Auswertung geeigneter Datenverarbeitungskonzepte für vertikale 
Schnitte von Dünen präsentiert. Für die vorgestellten flächenhaften Ansätze werden geeignete Parametersätze gefunden,  
die eine Reproduktion der nominalen Dünenparameter im Bereich von wenigen Zentimetern erlauben. Werden die 
 Parametersätze jedoch unzureichend gewählt, können die anschließend abgeleiteten Dünenparameter um mehrere Dezimeter 
von der simulierten Referenz abweichen. Der Artikel beschreibt einen simulationsbasierten Arbeitsablauf, um die optimale 
hydrographische Datenverarbeitungsstrategie für eine gegebene Dünengeometrie zu finden.

1 Introduction

The safety and ease of navigation on waterways is an impor-
tant part of the traffic infrastructure. Thus, in Germany, the 
German Federal Waterways and Shipping Administration 
(Wasserstraßen- und Schifffahrtsverwaltung, WSV) is 
responsible for the implementation of maintenance meas-
ures such as traffic safety soundings, maintenance dredging, 
or bedload input to stabilize the river bed. As the supreme 
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authority within the Federal Ministry of Transport and Digi-
tal Infrastructure (Bundesministerium für Verkehr und digi-
tale Infrastruktur, BMVI), the Federal Institute of Hydrology 
(Bundesanstalt für Gewässerkunde, BfG) supports the WSV 
with research and development (R&D) and consulting. One 
of those R&D projects is the MAhyD project (morphody-
namic analyses using hydroacoustic data, Morphodynami-
sche Analysen mittels hydroakustischer Daten – Sohlstruk-
turen und Geschiebetransport).

Within the scope of maintenance surveys, the knowledge 
of both the static and morphodynamic component of the 
river bed is of great importance. Due to sediment transport, 
in most cases mobile unevenness is formed on the river 
bed, which are referred to as bed forms (Bechteler 2006) 
or dunes, leading to short-term changes in depth within the 
fairway. The ability to accurately predict dune dimensions 
and hindcast flows is limited by an incomplete understanding 
of what controls dune size and shape in rivers (Bradley and 
Venditti 2019). Thus, the available water depth for shipping 
needs to be monitored regularly by echosounding measure-
ments. A suitable concept for the evaluation of the bed forms 
with regard to their geometry is necessary in order to esti-
mate the extent of potential shoals in the active shipping area 
(fairway box). Due to objects on the river bed, measurement 
uncertainty and errors, such data processing is necessary.

In order to derive a high quality user product from the 
unevenly spaced 3D bathymetric data, grid-based methods 
for outlier detection (Debese and Bisquay 1999; Lu et al. 
2010) and processing of digital terrain models (Segu 1985; 
Claussen and Kruse 1988) have been applied. In literature, 
dune tracking based on 2D bed form profiles (BFP) is often 
applied in order to estimate bedload transport rates using 
dune shape and migration (Claude et al. 2012; Gutierrez 
et al. 2013; van der Mark and Blom 2007). In this work, 
BFPs have been derived by cutting vertical sections from 
multibeam echosounder (MBES)-based digital terrain mod-
els (DTM), to overcome the deficiencies of single beam 
measurements. However, the process from high-quality 
measurement data acquisition and almost traditional surface-
based data processing to BFP is only rarely discussed in bed 
form related publications, although it is crucial for morpho-
logical analysis. Thus, a workflow of automatic MBES data 
processing, including surface-based outlier detection and 
DTM generation with a comprehensive description of the 
applied methods is presented in this paper. In this way, we 
demonstrate the sensitivity of morphological analysis on the 
hydrographic data processing.

Basis of the outlier detection and DTM generation is the 
approximation of gridded 3D points by the estimation of 
polynomial parameters. The derivation of morphological 
parameters (here: dune parameters) are crucially affected 

by parameter settings in data processing. As a part of the 
presented workflow, suitable processing parameters are 
found using a geometrical simulation in order to conduct 
nominal-actual comparisons. One major task of the MAhyD 
project is the generation of suitable data input for dune track-
ing analysis. The main goals of this paper are to underline 
the necessity of correctly applied data processing of MBES 
data for further morphological analysis and to present one 
possible method on how to handle this issue.

The paper is structured as follows: In Sect. 2 a description 
of the conducted measurements is given. Section 3 describes 
the processing methods, including automatic outlier detec-
tion (3.1), point cloud approximation (3.2), and dune track-
ing analysis (3.3).

The methods for outlier detection and point cloud approx-
imation are based on classical geodetic methods. A simu-
lated sampling of a known reference surface, which is pre-
sented in Sect. 3.4, enables the conduction of nominal-actual 
comparisons. These nominal-actual comparisons are used to 
evaluate suitable parameter sets for the presented process-
ing methods. Section 4 presents the simulation-based results 
of these nominal-actual comparisons for outlier detection 
(Sect. 4.1) and point cloud approximation (Sect. 4.2), which 
are applied to real measurement data in Sect. 4.3. These 
results are discussed in Sect. 5 and all crucial findings are 
summarized in Sect. 6.

2  Data Acquisition

The main focus of this paper is on synthetic data. However, 
real measurement data is necessary in order to generate a simu-
lation using realistic dune shapes. Furthermore, results of the 
methods applied to synthetic as well as to real data can be 
compared. Thus, special dune tracking surveys on the river 
Rhine have been carried out. These echosoundings were col-
lected by a measurement vessel using Kongsberg Maritime 
multibeam echosounder EM3002. Combined with the posi-
tioning by a Trimble antenna SPS185 in PDGPS mode, an 
estimation of heading by a Seapath 330 system and an inertial 
measurement unit (MRU5+), measurement points in a consist-
ent reference frame can be retrieved. A typical average depth 
of 3.5 m below the transducer with a beam divergence of 
1.5◦ × 1.5◦ yield beam footprints in the range of 0.09–0.27 m, 
depending on the beam angle. According to the measurement 
setup the sampling rate of the transducer is 20Hz . Due to the 
limited measurement frequency a high point cloud density can 
only be achieved at a low velocity of the vessel. On the river 
Rhine, a velocity of 1m

s
 over ground can be considered as very 

low while preserving the manoeuvrability. The point cloud 
density is about 400 points per m2.
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3  Methods for 3D Data Analysis and Dune 
Tracking

To demonstrate the importance of a thorough hydrographic 
data processing, the applied methods are described in this 
section. Our approaches of both data cleaning and subse-
quent grid modeling are based on the approximation of poly-
nomials to the raw 3D point cloud. Finally, profiles are cut 
from the DTM of the river bed to derive an input for the bed 
form analysis.

3.1  Outlier Detection

MBES data is available in large numbers and is affected 
by multiple random and systematic deviations (Hare 1995). 
Furthermore, there may be disturbed measurements or points 
due to resuspension, wash of propellers, vegetation, et cet-
era, which are not part of the river bed. Thus, in bathymetry, 
the percentage of outliers in local areas can be very high. In 
a spatial outlier detection approach, the erroneous measure-
ments and the points not belonging to the river bed should 
be detected and marked as invalid and excluded from further 
processing. In contrast to traffic safety measurements, the 
focus of the MAhyD project is only on the river bed includ-
ing the bed forms, not on objects lying on it. The outlier 
detection should not be too restrained, so points not belong-
ing to the river bed should be marked as invalid. False nega-
tives (i.e. outliers marked as river bed points) should strictly 
be avoided.

In order to enable automatic spatial outlier detection, the 
river bed can be described mathematically by a continuous 
surface in three-dimensional Cartesian space. For this pur-
pose rational polynomials as a function of the easting (E) 
and northing (N) of the river bed points

are approximated to the measured data with the polynomial 
parameters a and b (Artz and Willersin 2020), whereby the 
polynomial order is given by l and t (see Table 1). In order to 
enable a reliable detection of outliers, the robust parameter 
estimation in the form of an L1 norm estimator is used. Con-
trasting the least squares approximation (L2-Norm estimator, 

(1)z = �(E,N) =

l∑

i=0

t∑

j=0

aiE
i
⋅ bjN

j

e.g. Koch 1999), the weighted sum of absolute residuals � is 
minimized. By applying an iterative weight adjustment, the 
L1-Norm approximation can be transferred to the classical 
least squares solution scheme. Thus, as a starting point

is solved in order to estimate the polynomial parameters 
� =

[
a0, ..., al, b0, ..., bt

]
 from the observations � (z-compo-

nent of the 3D points). Subsequently, the main diagonal 
elements wi,k of the weight matrix �k are redefined in each 
iteration k (Neitzel 2004; Schlossmacher 1973)

by taking the residuals � into account. In order to avoid divi-
sion by zero, a small value � is added to the residuals. When 
all weights are unchanged, the iterative L1-norm approxima-
tion has converged. Then, with the help of the studentized 
residuals

for each observation a critical value as a function of the 
a posteriori variance factor

and the partial redundancies �i is calculated. This informa-
tion is used in order to perform a hypothesis test with a 
significance level of 95% , to decide whether an observa-
tion represents an outlier or not (Koch and Yang 1998). 
Controlled by the parameter tstatmin , residuals ti ≤ tstatmin are 
not marked as outliers in order to compensate for ground 
roughness.

At places with large terrain inclinations, such as a dune’s 
lee side, large residuals can occur, while the perpendicular 
distance of a point to the model surface is small. As a fur-
ther optional criterion, it is checked whether this distance 
also exceeds the specified geometric limit. To determine the 
distance between point and surface function, an extremum 
problem is solved. The roots of the first derivative of the func-
tion are calculated numerically using the Newtonian method 
(Gellert et al. 1978).

The outlier detection procedure is applied locally. For this 
purpose, a gridding of the point cloud with a given grid cell 
size cs is performed. The approximation and the statistical test 
are performed only for the measurement data within a sin-
gle grid cell, whereby the easting and northing of the data is 
reduced to the cell centre.

(2)

(
�

T
�k�

)
� = �

T
�k�

� =
��(E,N)

��

(3)wi,k =
1

|ri,k−1| + �

(4)ti =
ri

s2
0
�i

(5)s2
0
=

�T ⋅� ⋅ �

n − u
, u = l + t + 2, n = #observations

Table 1  Polynomial parameters ai , bj of different model types mt

mt l t max(l + t) Description of model type

2 1 1 1 Plane
3 1 1 2 Hyperbolic paraboloid
4 2 2 2 Elliptical paraboloid
5 3 3 3 Cubic function
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In the actual outlier elimination process, only four types of 
polynomials –  with specific order l and t – are used. These are 
described by the model type mt and are depicted in Table 1. 
Only polynomial parameters being significant in a student’s t 
test (Koch 1999) are used in the further computation in order 
to use the best performing model type.

3.2  DTM Modeling

A transition from point clouds to a surface model is neces-
sary due to the existing measurement noise (even after out-
lier detection). To obtain a homogeneous DTM for the dune 
tracking analysis, the measurement data is gridded. Due to the 
high point cloud density of the dune tracking measurements, 
comparatively small cell sizes cs can be used. Decreasing the 
cell size leads to a smaller grid point distance, which should 
not be less than the footprint size (see Sect. 2).

For each grid point, a polynomial is approximated to the 
subset of the 3D point cloud within a given radius according to 
Eq. 1. In this adjustment approach, there are differences to the 
outlier detection described in Sect. 3.1. There is no reduction 
to an L1 norm estimator, but a least squares adjustment (L2 
norm estimator) is applied.

Furthermore, the diagonal entries of the weight matrix � 
are filled by a distance dependent weighting function

The points within a selected influence radius rA,B are 
included in the estimation with a weight depending on their 
horizontal distances to the grid point di . A maximum weight 
of Wi,i = 1 is given by di = 0 and di = rA,B yields the mini-
mum weight of Wi,i =

1

w
 . A higher value for w results in a 

lower weighting of remote points. If the specified redun-
dancy is not achieved with the radius of influence rA , this 
radius is incrementally increased to the extended radius of 
influence rB . Given the high point densities and high grid 
resolution, the distant depending weighting might be not 

(6)
a =

rA,B

w − 1
+

√
r2
A,B

(1 − w)2
−

r2
A,B

1 − w

Wi,i =
a2

(di + a)2
.

necessary. However, to preserve the local consistency at the 
crest and trough of the dunes, this approach might be con-
sidered expedient.

The evaluation of the spatial polynomial at the position 
of the respective grid point results in the grid point height. 
Including the height information, the grid represents a DTM. 
In contrast to an averaging per grid cell, the adjustment of 
polynomials represent the rather smooth but variable struc-
ture of the bed forms in a more realistic way.

By triangular meshing of the DTM, a BFP can be deter-
mined with a mathematically clean profile section (i.e. the 
height of the triangular surfaces along the profile line) for 
further dune tracking analysis.

3.3  Bedforms ATM and RhenoBT

The applied dune tracking method in this work is based on 
the software RhenoBT (Frings et al. 2012) and Bedforms 
ATM (Gutierrez et al. 2018). For the MAhyD project both 
applications have been combined and automatized for pro-
cessing large numbers of data sets. It is a 2D profile (ver-
tical section) based method for the determination of geo-
metric parameters and migration of bed forms. In a first 
step a wavelet analysis is performed to identify dominant 
wavelengths in a signal (Bedforms ATM). Related to a 2D 
profile of the river bed, it delivers information about pre-
dominant bed form lengths. Thus, it provides an objective 
decision basis for the definition of the input parameters 
of the subsequent zero-crossing procedure (van der Mark 
and Blom 2007), which is performed in RhenoBT. Within 
that procedure, the wavelet analysis specifies the window 
size used to compute the moving average of the 2D profile. 
The window size should approximately correspond to the 
expected bed form length, which has been determined before 
by the wavelet analysis. A constructed baseline (i.e. the line 
connecting two adjacent troughs) separates the bed forms 
from the immobile river bed. The RhenoBT software yields 
the geometrical attributes of each individual bed form (e.g. 
height and length). As depicted in Fig. 1, the dune length 
� is the distance between two troughs, while the bed form 
height h is the height of the triangle formed by a crest and 
its two adjacent troughs.

Besides the determination of the geometric parameters, 
the profile-related bed form migration can be determined 
according to Frings et al. (2012) from data sets of different 
points in time by cross correlation.

3.4  Dune Simulation

In order to evaluate suitable parameter sets for the presented 
processing methods, a synthetic data set of a geometrically 
simulated dune field is applied. Generating a known refer-
ence enables accurate nominal-actual comparisons. This is a 

Fig. 1  Principal dune parameters length ( � ), height ( h ) defined by the 
crest and the line connecting two adjacent troughs
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purely geometric simulation and not a physical simulation as 
applied for example in Goll (2017) or in Nabi et al. (2013).

The longitudinal profile of a dune is mainly described 
by the parameters dune length � and dune height h (see 
Sect. 3.3). Further dune parameters describe the course of 
the stoss and lee side, the skewness and curvature of the 
dune, and the height difference from adjacent troughs. Using 
these parameters various types of dune segments (see Lefe-
bvre et al. 2016) can be generated.

To ensure comparability of simulation and real measure-
ment (and thus to create transferability of findings from sim-
ulation to real measurement) it is important to create realistic 
dune shapes. Data from previous measurement campaigns 
(see Sect. 2) are used to gather realistic shapes. Large dunes 
( � = 6–8.5 m, h = 0.3–0.45 m) and small dunes ( � = 2.6

–3.3 m, h = 0.17–0.35 m) are constructed. The main points 
of a dune (beginning trough, crest, end trough) result from 
the definition of dune length and height (Sect. 3.3). Further 
condensing points on the dune profile can be determined 
by an Akima interpolation. Akima interpolation allows a 
smooth and natural behaviour of a curve (see Akima 1969). 
A resampling of the interpolation influences the achiev-
able resolution of the 3D surface in the later course. Sev-
eral 2D profiles of different dune parameters, compiled and 
arranged along a main axis, result in a three-dimensional 
dune field. Finally, a Delaunay triangulation of the result-
ing 3D point cloud is performed. This nominal surface can 
now be sampled as a synthetic echosounding data set using 
the Visualization Toolkit (VTK) (Schroeder et al. 2006). 
Considering the echosounder sampling rate and a realistic 
speed over ground, as presented in Sect. 2, every equidis-
tant sampled point in a ping fan is a result of a sequence of 
transformations starting from the position and orientation 

of the vessel. As the simulation is only used to obtain meas-
urement points of a reference river bed with a realistic point 
density, further influences of the measurement process (e.g. 
footprint) are not of interest in the scope of this simulation. 
Thus, a specific sonar measurement principle is not con-
sidered. Random noise is added to the z-component of the 
sampled points in order to consider possible measurement 
noise of the multibeam echosounder, sediment turbulence, 
and all other influences that contribute to the noise band of 
the river bed.

4  Data Analysis Approaches and Results

4.1  Outlier Detection

Table 2 shows the different parameter sets (pp: plausibility 
parameters) for outlier detection. To evaluate the perfor-
mance of various outlier detection approaches, the number 
of false negatives and false positives are compared, whereby 
false negatives are considered more problematic than false 
positives. Furthermore, the outlier detection as a binary clas-
sifier is evaluated by the Matthew Correlation Coefficient 
mcc as this evaluation measure is particularly suitable for 
highly uneven classes (Chicco and Jurman 2020), because 
all elements of the confusion matrix are considered.

Random noise is added to the sampling of the simulated 
nominal surface, which is generated according to Sect. 3.4. 
From the central area to the outer area of the measured strip, 
the level of added noise is increased from � = 0.01 m over 
� = 0.015 m to � = 0.025 m. This reflects the increasing 
uncertainty potential of MBES measurements towards the 
border of the beam. These standard deviations were not 
derived from an uncertainty propagation (Hare 1995), but 
empirically derived from existing dune tracking measure-
ments on the river Rhine. The feasibility of this approach 
can be seen by comparing real measurements (Fig. 2) with 
the synthetic data set (Fig. 3) as either noise floor is on the 
same level.

In addition to the noise, several pings were also distorted 
in order to generate erroneous observations. According to 
the grain size of coarse gravel, which is to be preserved, a 
point is considered an outlier if the difference compared to 

Fig. 2  Profile section of real MBES data reveals the noise level of 3D 
measurement points

Table 2  Parameter sets and score of outlier detections applied to syn-
thetic data

Set c
s
 , [m] False negtives False positives mcc , [−]

(phase 1,2)

pp1    5 4675 0 0.04
pp2 1, 0.3 856 1023   0.8
pp3 2 903 6799 0.53
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the nominal height exceeds 0.05 m. The measurement set 
contains 4682 outliers and 366,544 points in total.

In order to demonstrate the necessity of the outlier detec-
tion, some outliers in the range of –0.21–0.3 m have been 
added at several positions of the sampled dunes. A DTM has 
been derived from the 3D point cloud according to Sect. 3.2 
to evaluate the impact of remaining outliers in the data set. 
Anticipating the findings in Sect. 5.2, the most suitable mod-
eling parameter set mp3.1 (see Table 4) has been applied. 
The impact is evaluated by the average of the absolute values 
of the nominal-actual dune parameter differences |��| and 
|�h| in Table 3.

4.2  Modeling

Depending on the choice of the parameter set for mod-
eling, the DTM (and thus finally any BFP derived from it) 
represents the river bed in more or less detail. Unfavour-
ably chosen modeling parameters can result in incorrectly 
determined dune parameters. In the dune simulation, a 
noise band with a standard deviation of � = 0.025  m, 
which has been chosen to match test surveys on the river 
Rhine, is applied. The choice of suitable modeling param-
eter sets should not be influenced by the outlier detection. 
However, in contrast to Sect. 4.1, no artificial outliers 
have been added. Several DTMs have been derived from 
the 3D point cloud by approximating polynomials (see 
Sect. 3.2) to evaluate the impact of various modeling 
parameters on the computation of dune parameters, which 
are depicted in Table 4. The dune parameters have been 
derived according to Sect. 3.3. The impact is evaluated by 
|��| and |�h| in Table 4 and by differences of the nominal 
and actual point cloud height in Fig. 4.

Table 3  Effect of remaining outliers on the derivation of dune param-
eters based on synthetic data

Outlier description |��| , [m] |�h| , [m]

Outliers remaining at crest, trough 0.38 0.02
Outliers eliminated at crest, trough 0.1 0.005
Outliers remaining before crest, at slip face 0.04 0.01

Table 4  Effect of modeling 
parameter sets—applied 
to synthetic measurement 
data—on the computation 
of dune parameters, grid cell 
average (avg) and median 
(med) compared to nominal 
parameters

Set c
s

r
A

r
B

m
t

w |��| |�h|
[m] [m] [m] [−] [−] [m] [m]

mp0.0 0.5 1.0 5.0 3 100 0.788 0.08
mp0.1 0.1 1.0 5.0 3 100 0.728 0.072
mp1.1 0.1 0.16 0.26 3 50 0.099 0.008
mp1.2 0.1 0.16 0.26 3 25 0.089 0.008

mp2.0 0.1 0.4 0.8 3 0 0.094 0.018
mp2.1 0.1 0.4 0.8 3 2 0.087 0.017
mp2.2 0.1 0.4 0.8 3 25 0.072 0.012
mp2.3 0.1 0.4 0.8 3 50 0.075 0.01
mp2.4 0.1 0.4 0.8 3 75 0.083 0.009
mp2.5 0.1 0.4 0.8 3 100 0.084 0.009

mp3.0 0.1 0.4 0.8 4 0 0.09 0.006
mp3.1 0.1 0.4 0.8 4 2 0.064 0.003
mp3.2 0.1 0.4 0.8 4 25 0.07 0.005
mp3.3 0.1 0.4 0.8 4 50 0.092 0.006
mp3.4 0.1 0.4 0.8 4 75 0.091 0.007
mp3.5 0.1 0.4 0.8 4 100 0.093 0.007

mp4.1 0.25 0.4 0.8 4 2 0.105 0.004
mp4.2 0.25 0.4 0.8 4 25 0.102 0.003

avg1 0.1 Avg 0.126 0.017
avg2 0.5 Avg 0.213 0.018
med1 0.1 Med 0.143 0.019
med2 0.5 Med 0.203 0.016
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4.3  Modeling of Measured Data

In this section, the presented method for surface modeling 
is applied to real measurements, whereby the crucial ques-
tion is whether the lessons learned from the simulation 
(Sect. 4.2) can be found in real measurements. The differ-
ences in dune parameters from BFPs consisting of 13 dunes 
are compared, which are based on different parameter sets 
for modeling (see Table 5). According to previous results, 

the BFP with set pp2.2 (outlier detection) and set mp3.1 
(modeling) serves as reference. Differences in model height 
due to different modeling parameters are presented in Fig. 5.

5  Discussion

5.1  Evaluation of Outlier Detection

A suitable outlier detection set in terms of a traffic safety 
survey is given by pp1 (see Table 2). In order to preserve 
objects lying on the river bed, pp1 uses tstatmin = 0.30 m. 
Using this parameter set, the vast majority of outliers 
remains undetected, the value of the mcc score is 0.04. 
For bed form analysis this approach is obviously not fea-
sible as –  in contrast to traffic safety surveys – the outlier 
detection should classify rather too many points as outli-
ers, since the river bed and not the objects on it are of 
interest within dune tracking analysis. Applying Param-
eter set pp3 yields a high number of false positives. Since 
pp3 is too sensitive due to the large cell size of cs = 2 m 
( mcc = 0.53 ), the cell size has to be reduced. Yielding 
the best outlier detection performance of mcc = 0.8 , the 
most suitable set is given by pp2, an approach consist-
ing of two phases of outlier detection with decreasing cell 
size. The remaining outliers (false positives) are close to 
the nominal height and therefore do not affect the further 
data processing. As a single outlier detection phase can 
be either too restrained or too sensitive, more phases have 
to be added successively. Here, these two phases are suffi-
cient. In order to remove outliers close to the true surface, 

Fig. 3  BFP of set mp0.0, mp3.1 and nominal BFP based on synthetic 
measurement data

Fig. 4  Height differences in [m] to nominal height (left side: mp0.0, 
centre: mp3.2, right side: mp3.1) of the synthetic measurement data

Table 5  Effect of different 
modeling sets—applied to real 
measurement data—on the 
derivation of dune parameters in 
relation to the dune parameters 
derived by mp3.1. The outlier 
detection set is pp2.2

Set |��| , [m] |�h| , [m]

mp0.0 0.212 0.042
mp0.1 0.194 0.036

mp1.1 0.126 0.007
mp1.2 0.104 0.006

mp2.0 0.146 0.014
mp2.1 0.145 0.014
mp2.2 0.112 0.011
mp2.3 0.104 0.009
mp2.4 0.102 0.008
mp2.5 0.093 0.007

mp3.0 0.059 0.002
mp3.2 0.077 0.003
mp3.3 0.046 0.004
mp3.4 0.069 0.005
mp3.5 0.099 0.005

mp4.1 0.103 0.005
mp4.2 0.189 0.004



118 PFG (2021) 89:111–120

1 3

the outlier detection parameters have to be adapted to the 
geometric conditions of the specific river bed. Thus, a rule 
of thumb regarding the best possible parameter set for out-
lier detection cannot be pointed out. Hence, experience 
and a stepwise approach using the presented simulation 
are useful in order to apply a suitable outlier detection.

As shown in Table 3, remaining outliers in the data set 
have an impact on the derivation of dune parameters, espe-
cially if these outliers are located at critical positions of the 
dunes, which are the crest and trough. The detection and 
elimination of these outliers yield a better estimation of the 
dune parameters. Remaining outliers located before the crest 
and at the slip face have a significant smaller impact. How-
ever, these effects on the derivation of the dune parameters 
are in the range of the variations induced by employing dif-
ferent modeling parameters.

5.2  Evaluation of DTM Modeling

The objective of DTM modeling is to reduce the inherent 
measurement noise and to represent the dune geometry with 
a smooth model. Especially at the dunes crest and trough the 
actual geometry has to be represented adequately. Several 
parameters can be used to control the DTM modeling.

The effect of parameter variation on the derivation of 
dune parameters can be found in Table 4. Using set mp0.0, 
which is suitable for traffic safety sounding surveys, causes 
a loss of dune geometry due to the relatively large cell size. 

A smaller cell size does not necessarily yield a more detailed 
approximation of the dune structure as the large influence 
radius in mp0.1 causes a strong smoothing effect.

Applying a too small influence radius (mp1.x) the DTM is 
rough, because the measurement noise can not be eliminated 
adequately.

A comparison of the parameter set groups mp2.x with 
mp3.x clarifies the benefit of a higher model type for the 
representation of the actual dune geometry. This effect is 
particularly evident in the estimation of dune height (see 
Table 4). In mp2.x a suitable influence radius is chosen, but 
the dune geometry cannot be approximated in detail by using 
model type mt = 3 . Especially lower model types require 
a high weighting factor in order to represent the structure 
of the dunes. Using a higher weighting factor results in a 
rough model due to the measurement noise. The considered 
dune geometry can only be suitably represented by using 
the model type mt = 4 . To reduce model roughness a small 
weighting factor should be applied. However, using equal 
weights is not an optimal approach as relatively large influ-
ence radii in combination with the variable dune geometry 
require a slight down-weighting of more distant measure-
ment points. Increasing the weighting factor decreases the 
reduction of measurement noise (Fig. 4 centre and right 
side). All of these discussed effects of the various modeling 
parameters on the DTM can be found in Fig. 4. The results 
of applying parameter set group mp4.x demonstrate the 
necessity of a small cell size.

Systematic effects, visible as stripes in Fig. 4, are a result 
of the smoothing effect of the modeling and of the limited 
ground sampling, which is 0.05m along track. These sys-
tematic effects could be reduced by applying a smaller cell 
size, but due to the echosounding footprint (see Sect. 2), a 
cell size less than cs = 0.1 m is not feasible. Compared to 
the DTM derived by using mp3.2 (Fig. 4 centre), the sys-
tematic effects are more visible due to the smoother surface, 
retrieved by applying mp3.1. The reason for this phenom-
enon is that the model by applying mp3.1 is more consistent 
in transverse direction. Using parameter set mp3.2 yields a 
model, where systematic deviations are superimposed by 
random deviations.

Both the computation of average (avg1,2) and median 
(med1,2) of comparably small cells of 10 cm or 50 cm, 
respectively, lead to better results than set mp0.0 without 
any choice of further parameters. However, these approaches 
are not relevant for dune tracking, since the river bed is inac-
curately represented due to the neglection of topographic 
parameters like slope or curvature around the point.

Based on the visual and numerical quality assessment, set 
mp3.1 is considered the most suitable one for the given dune 
geometry and the simulated survey characteristics.

Fig. 5  Height differences in [m] of a DTM using mp2.4 to a DTM 
using mp3.1 based on real measured data



119PFG (2021) 89:111–120 

1 3

5.3  Evaluation of DTM Modeling of Measured Data

The lessons learned from the simulation can be found again 
in the processing of real measurement data. As shown in 
Sect. 4.2, parameter group mp3.x yields comparable results 
(Table 5). Figure. 5 again reveals the importance of an 
appropriately chosen model type. By applying a too small 
chosen model type (parameter set mp2.4) the dune struc-
ture cannot be sufficiently represented. This leads to larger 
systematic model differences at the dunes crest and slope. 
Furthermore, small ( < 1 cm) systematic differences appear, 
which are part of further investigations.

Thus, the findings of the simulation have been confirmed 
by the analysis of the real measurements. Finally, to find the 
optimal analysis procedure for a new dune tracking survey, 
the following procedure should be applied: (1) a rough esti-
mation of the dune geometry should be done; (2) a simula-
tion of the dunes in the surveyed area should be performed; 
(3) various analysis options should be tested by nominal-
actual comparisons; (4) the actual measurements should be 
analysed with the best setting of step (3).

6  Conclusion

This paper presented spatial methods with suitable param-
eter sets for preparing MBES measurements to compute 
clean BFPs for further dune tracking analysis. The choice of 
parameters for the outlier detection and point cloud approxi-
mation has an impact on the derivation of dune parameters 
and finally on the estimation of bed load transport. Using 
the presented simulation, the effect of parameter variation 
is demonstrated.

Suitable parameter sets can be determined by nominal-
actual comparisons, which are possible by simulation-based 
generation of known reference bed form data. Outliers have 
to be properly removed from the data set in order to estimate 
correct dune parameters. The outlier detection parameters 
have to be adapted to the specific geometrical conditions of 
the analysed river bed. Here, two phases of outlier detection 
are necessary as a single phase is either too restrained or too 
sensitive. For the river Rhine, a small cell size of cs = 0.1 m 
with a wider influence radius rA = 0.4 m and model type 
mt = 4 is a preferred modeling parameter set.

The conducted simulation-based nominal-actual com-
parisons demonstrate reproducibility of the nominal dune 
parameters in the range of a few centimetres. In general, the 
height of dunes is easier to determine than the length.

Comparable impacts on the derivation of dune parameters 
can be found based on simulated as well as on real data. All 
investigations refer to simulated and real measurements of 
the river Rhine. In order to estimate parameter sets that are 

suitable for other territories, a simulation adapted to that 
territory has to be carried out.

Assuming the approximate dune shapes of a conducted 
survey are known, optimized parameter sets for data process-
ing can be determined using dune simulation. It is advis-
able, to analyse the impact of the processing options on the 
morphological analysis by simulation-based nominal-actual 
comparisons. In this way, the optimal processing strategy 
for the final analysis of the real measurements can be found. 
Furthermore, the simulation-based approach enables an 
evaluation of a suitable measurement concept to provide the 
best possible data input for dune tracking analyses.
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