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Abstract
The mapping of water bodies is an important application area of satellite-based remote sensing. In this contribution, a sim-
ple framework based on supervised learning and automatic training data annotation is shown, which allows to map inland 
water bodies from Sentinel satellite data on large scale, i.e. on state level. Using the German state of Bavaria as an example 
and different combinations of Sentinel-1 SAR and Sentinel-2 multi-spectral imagery as inputs, potentials and limits for the 
automatic detection of water surfaces for rivers, lakes, and reservoirs are investigated. Both quantitative and qualitative results 
confirm that fully automatic large-scale inland water body mapping is generally possible from Sentinel data; whereas, the 
best result is achieved when all available surface-related bands of both Sentinel-1 and Sentinel-2 are fused on a pixel level. 
The main limitation arises from missed smaller water bodies, which are not observed in bands with a resolution of about 
20 m. Given the simplicity of the proposed approach and the open availability of the Sentinel data, the study confirms the 
potential for a fully automatic large-scale mapping of inland water with cloud-based remote sensing techniques.

Keywords Remote sensing · Data fusion · Water mapping · Machine learning · Copernicus data

Zusammenfassung
Potenzial der großräumigen Binnengewässerkartierung mittels Sentinel-1/2-Daten am Beispiel der bayerischen Seen und 
Flüsse. Die Kartierung von Gewässern ist eine wichtige Anwendung der satellitengestützten Fernerkundung. In diesem 
Beitrag wird ein einfacher Ansatz gezeigt, der auf überwachtem Lernen und automatischer Annotierung von Trainingsdaten 
basiert und es ermöglicht, Binnengewässer aus Sentinel-Satellitendaten großräumig, d.h. auf Landesebene, zu kartieren. 
Am Beispiel des deutschen Bundeslandes Bayern und verschiedener Kombinationen von Sentinel-1 SAR und Sentinel-2 
Multispektralbildern als Input werden Potenziale und Grenzen für die automatische Erkennung von Wasseroberflächen für 
Flüsse, Seen und Stauseen untersucht. Sowohl die quantitativen als auch die qualitativen Ergebnisse bestätigen, dass eine voll-
automatische großflächige Kartierung von Binnengewässern aus Sentinel-Daten grundsätzlich möglich ist, wobei das beste 
Ergebnis erzielt wird, wenn alle verfügbaren oberflächenbezogenen Bänder von Sentinel-1 und Sentinel-2 auf Pixelebene 
fusioniert werden. Die Haupteinschränkung des Ansatzes ergibt sich aus den nicht detektierten kleineren Gewässern, die von 
den Bändern mit einer Auflösung von etwa 20 m nicht beobachtet werden. Angesichts der Einfachheit des vorgeschlagenen 
Ansatzes und der offenen Verfügbarkeit der Sentinel-Daten bestätigt die Studie das Potenzial für eine vollautomatische 
großräumige Kartierung von Binnengewässern mit Hilfe von Cloud-basierter Fernerkundungsdatenauswertung.

1 Introduction

Remote sensing has long been an important means for 
the mapping—and potential monitoring—of the surface 
water resources of the Earth (Palmer et al. 2015). Gener-
ally, for this purpose, data from all possible scales, i.e. from 
very-high-resolution UAV-borne data (Flener et al. 2013; 
Rivas Casado et al. 2015; Rusnak et al. 2018) to high- and 
medium-resolution satellite imagery (Isikdogan et al. 2017; 
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Yang et al. 2017; Rishikeshan and Ramesh 2018), have been 
used. However, the greatest potential of spaceborne remote 
sensing lies in the possibility to observe surface water on 
large scales—from country-wide (Mueller et al. 2016) to 
even global coverage (Pekel et al. 2016).

The work presented in this contribution seeks to comple-
ment the existing large-scale approaches of Mueller et al. 
(2016) and Pekel et al. (2016). While they were based on 
information extraction from long-term optical archives and 
classification systems utilizing expert knowledge, in this 
contribution the focus lies on the following points:

– While much of the available literature focuses on the 
utilization of only optical imagery or only SAR data for 
water mapping, in this work, the joint use of the multi-
spectral optical data provided by Sentinel-2, as well as 
the synthetic aperture radar (SAR) observations provided 
by Sentinel-1 is emphasised. An important reason for 
this choice is the fact that SAR imagery does not suffer 
from obstruction by clouds or other atmospheric effects. 
It is, thus, theoretically allowing for a more continuous 
monitoring of important water bodies or wetlands (see, 
e.g. Zeng et al. 2017). Furthermore, the great potential 
of SAR-optical data fusion for water mapping was only 
recently confirmed by Bioresita et al. (2019) and Slinski 
et al. (2019). While the former focused on decision-level 
fusion of water probability maps calculated from mono-
sensor Sentinel-1 and Sentinel-2 time series, the latter 
used pixel-level fusion of SAR backscatter and multi-
temporal modified normalised difference water index 
(MNDWI) composites derived from Landsat observa-
tions. Study results for test scenes located in Ireland and 
Ethiopia, respectively, confirmed the robustness of those 
fusion-based approaches.

– By utilising a simple classifier based on supervised 
learning and automated training data generation from 
globally available volunteered geographic information 
(VGI), freely available remote sensing data provided by 

the Sentinel missions of the European Copernicus pro-
gram, and the cloud computation platform Google Earth 
Engine, the proposed approach can easily be applied to 
arbitrary regions of the world. It is assumed that this will 
enable also laypersons to map inland water on a large 
scale without the need for expert knowledge or manual 
intervention.

For the experimental investigations, the state of Bavaria is 
used as the study scene. The region is a typical representa-
tive of the temperate biome, located in the heart of Europe. 
Since Bavaria contains many kinds of possible inland 
water bodies, from small mountain creeks to large drain-
age rivers, from districts of small ponds to large freshwa-
ter lakes, the results of this work are expected to provide 
sufficient relevance to generalize beyond the study scene.

Thus, while using a central European region as an 
example, it has to be stressed that the main purpose of 
this work is to explore the general potential of a fully auto-
matic, cloud-based framework that allows fast and cheap 
large-scale mapping of surface water for complete coun-
tries, continents, or even the whole globe.

In this context, it has to be stressed that the term “sur-
face water” in this work refers to the very water extent that 
is visible in seasonal Sentinel-1 and Sentinel-2 composites 
(cf. Sect. 3.2.1).

The remainder of this article is organised as follows: 
Sect. 2 describes the Sentinel-1 and Sentinel-2 missions 
with a focus on system-inherent water mapping capabili-
ties. In Sect. 3.2 a simple, yet fully automatic, water detec-
tion framework based on supervised learning is proposed, 
whose results for the study area of Bavaria are summarised 
in Sect. 4.

Finally, Sect. 5 discusses the quality of the presented 
water detection approach and possible sources of errors, 
while Sect.  6 presents summary and conclusion of the 
findings.

Table 1  Channels and their meaning of Sentinel-1 and Sentinel-2

System Channels Description Resolution

Sentinel-1 VV Vertical transmit/vertical receive, ideal for observation of wave-induced water surface roughness 20 m × 22 m
VH Vertical transmit/horizontal receive, much weaker backscatter return from water, higher return from 

volumetric targets
20 m × 22 m

Sentinel-2 B1, B9, B10 Related to atmospheric parameters, not relevant for Earth surface 60 m
B2, B3, B4 Visible bands (blue, green, red), high reflectivity of water in blue and green bands 10 m
B5, B6, B7 Vegetation red edge, relevant for vegetation sensing, water is highly absorbed 20 m
B8 Broadband near infrared, main infrared band, water is highly absorbed 10 m
B8a Narrowband near infrared, designed to avoid contamination from water vapour, surface water is highly 

absorbed
20 m

B11, B12 Short-wave infrared, important for determining materials, detecting water and fire 20 m
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2  Sentinel‑1 and Sentinel‑2

The Copernicus program is the Earth Observation program 
of the European Union (Desnos et al. 2014). While it also 
provides data from in situ sources, its core is comprised of 
the Sentinel satellite family. These Sentinel missions were 

specifically designed to meet versatile end user require-
ments. Among the Sentinel missions, Sentinel-1 and Sen-
tinel-2 are classical Earth observation platforms and pro-
vide SAR and multi-spectral image data, respectively, in 
the metre-resolution domain. Thus, they are certainly the 
most relevant for inland water body monitoring; whereas, 
Sentinel-3 is specifically aimed at ocean and land monitor-
ing with its low spatial resolution multi-spectral images and 
altimeter capabilities.

In the frame of this study, which focuses on inland fresh-
water (i.e. river and lake) mapping, thus only Sentinel-1 
and Sentinel-2 are considered, whose channels are summa-
rised in Table 1, and whose attributes are described in the 
following.

2.1  Sentinel‑1

The Sentinel-1 mission (Torres et al. 2012) currently con-
sists of two polar-orbiting satellites, which are equipped 

Fig. 1  Map of the largest rivers and bodies of stagnant water in 
Bavaria (This work, “Largest water bodies of Bavaria”, is a deriva-
tive of “Bavaria relief location map” by Alexrk2, used under CC-SA. 
“Largest water bodies of Bavaria” is licensed under CC-SA by 
Michael Schmitt.). The coloured boxes indicate the different test areas 
shown in Figs. 6, 7, 8, 9, 10, 11, 12

Fig. 2  Two-dimensional feature space created from Sentinel-1 VV 
backscatter (normalised to [0;  1]) and Sentinel-2 MNDWI magni-
tudes for the discrimination of water and background

Fig. 3  The denoising effect of temporal averaging: a single Sentinel-1 
scene, b temporal mean map achieved by averaging 59 multi-tem-
poral acquisitions acquired within a time period of 3 months during 
summer 2018
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with C-band SAR sensors enabling them to acquire imagery 
regardless of metereological conditions.

Sentinel-1 works in a pre-programmed operation mode to 
avoid conflicts and to produce a consistent long-term data 
archive built for applications based on long time series. 
Depending on which SAR imaging mode is used, either high 
resolutions down to 5 m (at a swath width of 80 km) or wide 
coverages of up to 400 km (at a resolution of 20 m × 40 m) 
can be achieved.

Furthermore, Sentinel-1 provides dual polarisation capa-
bilities and very short revisit times of about one week at 
the equator. Since highly precise spacecraft positions and 
attitudes are combined with the high accuracy of the range-
based SAR imaging principle, Sentinel-1 images come 
with high out-of-the-box geolocation accuracy (Schubert 
et al. 2015). In the frame of the presented study, the most 
widely available standard product was used, i.e. ground-
range-detected (GRD) imagery acquired in the so-called 

interferometric wide swath mode (IW). The GRD images 
display �0 backscatter coefficient values for both verti-
cal (VV) and cross (VH) polarization in dB scale and are 
projected to ground range using the Earth ellipsoid model 
WGS84. For precise ortho-rectification, restituted orbit 
information is combined with the 30 m-SRTM-DEM or 
the ASTER DEM for high latitude regions where SRTM 
is not available. While the resolution of IW-GRD images is 
20 m × 22 m in range and azimuth, respectively, the products 
are provided with a square pixel spacing of 10 m × 10 m to 
the end user. It has to be noted that SAR imagery is inher-
ently affected by the so-called speckle effect, which appears 
as a form of noise to human analysts and most image pro-
cessing algorithms, so that speckle filtering by dedicated 
algorithms or multi-temporal image fusion must be used 
during pre-processing to enhance the visual image quality.

Fig. 4  Result of a simple multi-temporal cloud removal approach: 
a single Sentinel-2 scene constructed by combining data from two 
neighbouring granules, b cloud-masked median image constructed 
from 20 multi-temporal acquisitions per granule, acquired within a 
time period of 3 months during summer 2018

Fig. 5  NDVI (a) and MNDWI (b) magnitude image examples. While 
there is a high inverse correlation of NDVI magnitude and water, also 
impervious surfaces and some (barren) agricultural areas exhibit low 
NDVI magnitudes. In contrast, high MNDWI magnitudes clearly cor-
relate with water
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2.2  Sentinel‑2

The Sentinel-2 mission (Drusch et al. 2012) at the moment 
comprises two identical polar-orbiting satellites in the same 
orbit, phased at 180◦ to each other. The mission is meant to 
provide continuity for multi-spectral imagery of the SPOT 
and LANDSAT kind, which have provided information 
about the land surfaces of our Earth for many years. With its 
wide swath width of up to 290 km and its high revisit time of 
5 days over the inhabited continents (based on two satellites) 
under cloud-free conditions, the Sentinel-2 mission is spe-
cifically well suited to the monitoring of vegetated land sur-
faces. Sentinel-2 data are provided in the form of so-called 
granules, which cover a ground area of 100 km × 100 km 
at pixel spacings of 10 m, 20 m and 60 m, depending on 
the respective spectral bands. At the most widely available 

Level-1C standard, the end-user products provide orthorec-
tified Top-Of-Atmosphere (TOA) reflectances at sub-pixel 
multispectral registration. Since cloud and land/water masks 
included in the products are rather coarse, these are often not 
very reliable, so that pre-processing is still necessary to deal 
with potential issues of cloud coverage.

2.3  Suitability of Sentinel Data for Water Mapping

The SAR data provided by the Sentinel-1 mission are 
expected to be a good source of information for water map-
ping based on the fact that to C-band radar signals water is 
a smooth surface. This leads to a mirror-like reflection and 
consequently very low backscatter values (i.e. “dark” pix-
els). On the other hand, smooth artificial surfaces (e.g. roads 
or other paved areas) can also lead to specular reflections 

Table 2  Input feature 
combinations used in the 
experiments

System Number Channels Description

Sentinel-1 1 VV Single polarization
2 VH Single polarization
3 VV, VH Dual polarization

Sentinel-2 4 B2, B3, B4, B8 10 m bands
5 B2, B3, B4, B5, B6, B7, 

B8, B8a, B11, B12
All surface-related bands

6 NDVI Vegetation index
7 MNDWI Water index
8 MNDWI, NDVI Combination of water and vegetation indices

Fusion 9 VV, VH, B2, B3, B4, B5, 
B6, B7, B8, B8a, B11, 
B12

All surface-related bands of both systems

10 B2, B3, B4, B8, VH Combination of best single-sensor setups
11 VH, MNDWI Strongest features by expectation

Table 3  Test metrics for the different feature combinations resulting from tenfold cross-validation

Bold numbers indicate the best and italic numbers indicate the worst performance per group (Sentinel-1 only, Sentinel-2 only, Fusion), respec-
tively; while, bold-italic cells indicate the overall best performance for the corresponding metric
PA Producer’s accuracy, UA User’s accuracy, OA overall accuracy

System Number PA (water) PA (non-water) UA (water) UA (non-water) OA κ

Sentinel-1 1 95.08 ± 1.30 99.65 ± 0.32 99.63 ± 0.33 95.31 ± 1.15 97.37 ± 0.68 0.95 ± 0.01
2 97.40 ± 0.75 98.73 ± 0.65 98.72 ± 0.64 97.42 ± 0.80 98.07 ± 0.58 0.96 ± 0.01
3 96.94 ± 0.90 99.39 ± 0.38 99.38 ± 0.39 97.05 ± 0.77 98.18 ± 0.40 0.96 ± 0.01

Sentinel-2 4 97.26 ± 1.06 99.27 ± 0.56 99.26 ± 0.51 97.26 ± 1.18 98.25 ± 0.64 0.96 ± 0.01
5 97.02 ± 0.93 99.24 ± 0.55 99.22 ± 0.57 97.11 ± 0.82 98.13 ± 0.55 0.96 ± 0.01
6 96.65 ± 0.85 83.39 ± 1.15 85.33 ± 1.40 96.16 ± 0.92 90.03 ± 0.97 0.80 ± 0.02
7 89.90 ± 1.93 99.64 ± 0.48 99.61 ± 0.55 90.86 ± 1.28 94.79 ± 0.85 0.90 ± 0.02
8 95.05 ± 1.70 99.33 ± 0.43 99.30 ± 0.45 95.23 ± 1.69 97.17 ± 0.81 0.94 ± 0.02

Fusion 9 97.29 ± 0.91 99.64 ± 0.33 99.63 ± 0.34 97.35 ± 0.91 98.46 ± 0.43 0.97 ± 0.01
10 96.99 ± 1.05 99.64 ± 0.29 99.63 ± 0.28 97.00 ± 1.23 98.30 ± 0.60 0.97 ± 0.01
11 97.75 ± 0.55 98.72 ± 0.52 98.71 ± 0.53 97.73 ± 0.73 98.23 ± 0.40 0.96 ± 0.01
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Fig. 6  Example area showing the Danube river (flowing in west–east 
direction), with the Lech river entering from the south. a Optical ref-
erence image, b GSWL reference layer, c Sentinel-1 VH polarisation 

result, d Sentinel-2 10-m bands result, e Sentinel-1/Sentinel-2 full-
band fusion, f Sentinel-1/Sentinel-2 VH/MNDWI fusion
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causing confusion with water bodies and leading to a high 
false-positive rate, if only SAR data were used as input to 
the water detection procedure.

Besides these radiometric considerations, in the interpre-
tation of SAR imagery geometric effects caused by the side-
looking imaging principle need to be taken into account: if 
the top of an object (e.g. a mountain) is closer to the sensor 
than its bottom, the object appears to “collapse” towards the 
sensor. This is called the layover effect. In correspondence, 
any target lying behind this elevated object will be within 
the so-called radar shadow. Since rivers are often carving 
themselves into canyons, these two effects can impact the 
detection of rivers and lead to both false positives (in the 
case of radar shadow) and false negatives (in the case of a 
river hidden in layover).

The multi-spectral data provided by Sentinel-2 support 
the identification based on the interaction of electromagnetic 
radiation from the optical part of the spectrum with water: 
While for pure water only less than 2–3% of the incoming 
radiation of the visible domain are reflected, almost com-
plete absorption in the near-infrared (NIR) and short-wave 
infrared (SWIR) bands is observed (Hobson and Williams 
1971). On the other hand, in particular, shallow water areas 
are affected by differing penetration depths from the blue to 
the NIR wavelength regions (Bhargava and Mariam 1991). 
Therefore, water level fluctuations will have an impact on 
the robustness of water detection from multi-spectral data. 
Besides, also high turbidity values or floating vegetation can 
lead to mis-classifications with both datasets.

Taking these considerations into account, it is advisable 
to make use of data fusion strategies to mitigate the weak-
nesses of the two sensor principles while benefitting from 
the complementarity of the information contained in the two 
data sources (Schmitt and Zhu 2016).

3  Materials and Methods

3.1  The State of Bavaria as Study Area

For the presented investigations on the potential of Sentinel 
remote sensing data for large-scale inland freshwater map-
ping, the state of Bavaria is used as study area. Bavaria is 
a landlocked federal state of Germany, occupying an area 
of about 70,550 km2 . From the surface water perspective, 
Bavaria is characterised by its location at the Alpine foothills 
with numerous lakes and small- to medium-sized rivers. In 
addition, two major rivers flow through the state: the Dan-
ube, which is Europe’s second longest river, drains about 
48.200 km2 with a 380-km-long Bavarian section; while, 
the Main drains about 23.350 km2 on a 408-km-long stretch. 

The largest natural lakes belonging exclusively to Bavaria 
are Chiemsee with a surface of about 80 km2 , Starnberger 
See with about 58 km2 , and Ammersee with about 47 km2 ; 
whereas, the largest reservoirs are Forggensee with about 15 
km

2 , Großer Brombachsee with about 9 km2 , and Ismaninger 
Speichersee with about 6 km2 . The mentioned water bodies 
are indicated in Fig. 1.

3.2  Water Detection by Support Vector Machines

In spite of the massive success modern deep learning 
approaches showed also in the field of remote sensing in 
recent years (Zhu et al. 2017), it is argued that compli-
cated, data-hungry convolutional neural networks are not 
necessary for water detection, as water can very clearly be 
identified even in simple hand-crafted feature spaces. An 
example for this argument is shown in Fig. 2. As numerous 
researchers have confirmed before, even with only SAR 
backscatter or the modified normalised difference water 
index (MNDWI) (Xu 2006), water and non-water pixels 
can already be distinguished to some extent, e.g. by thresh-
olding techniques (Liebe et al. 2005; Conrad et al. 2016). 
When only slightly more complexity is introduced, i.e. 
when the feature space is extended to two or three dimen-
sions, water becomes clearly separable from the non-water 
background class.

It has to be mentioned, however, that simple threshold-
ing or linear discrimination procedures are not sufficient 
(see, e.g. Klein et al. 2014). As can be seen from Fig. 2, 
quite some overlapping background and water pixels exist. 
This is mainly due to the confusions described in Sect. 2.3. 
In the SAR case, background samples (e.g. paved areas) 
might appear dark and be confused with water, or water 
samples might appear bright and, thus, be confused with 
background due to roughness caused by waves or top-
water vegetation. In the MNDWI case, bare earth or built-
up areas with very high surface temperatures can lead to 
strong reflections in the short-wave infrared (SWIR) band 
and, thus, lead to high MNDWI magnitudes; whereas, 
smaller water bodies might be mixed with soil reflectance 
in the 20 m× 20 m pixels of the Sentinel-2 SWIR band.

In this work, therefore, a simple support vector 
machine (SVM) with radial basis function (RBF) kernel is 
employed. Focus is put mainly on the following questions:

– Which input information that can be derived from 
Sentinel-1 and/or Sentinel-2 data constitutes the best 
source for freshwater mapping?

– Does the fusion of Sentinel-1 SAR and Sentinel-2 opti-
cal data support the water mapping task?
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Fig. 7  Example area showing the Main river (flowing in east–west 
direction), with the Regnitz river entering from the south close to the 
city of Bamberg. a Optical reference image, b GSWL reference layer, 

c Sentinel-1 VH polarisation result, d Sentinel-2 10-m bands result, 
e Sentinel-1/Sentinel-2 full-band fusion, f Sentinel-1/Sentinel-2 VH/
MNDWI fusion
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– What are the data-inherent limitations of Sentinel-based 
freshwater mapping, e.g. with respect to granularity or 
spectral information content?

The application of SVMs for land cover classification has 
a long tradition in the remote sensing community (Moun-
trakis et al. 2011). In this contribution, a fully automatic, 
cloud-based workflow for SVM-based freshwater mapping 
of extensive areas is described.

The workflow is implemented in Google Earth Engine 
(Gorelick et al. 2017) to utilize its curated data catalogue 
and cloud-processing capabilities. The procedure is detailed 
in the following sections.

3.2.1  Data Pre‑Processing

Both Sentinel-1 SAR imagery and Sentinel-2 multi-spec-
tral data come with their own system-inherent limitations, 
which make a reliable deduction of mapping information 
from them more difficult. In the Sentinel-1 case, one is 
mainly dealing with the already mentioned speckle effect, 
which appears as a form of noise to most image analysis 
approaches. While manifold methods for speckle filtering 
exist, most of them degrade the quality of the underlying 
image contents to some extent. Therefore, another option 
is used, which is often applied if precisely aligned multi-
temporal SAR images are available—the creation of a tem-
poral mean map. For this purpose, all Sentinel-1 IW datasets 
acquired in a specified time frame (i.e. the summer months 
June, July and August in 2018) are loaded from the data 
catalogue. For every pixel, then the mean value of all cor-
responding acquisitions is calculated. Afterwards, the �0 
backscatter values are clipped to the interval [−25; 0] as a 
form of data calibration. The effect of this pre-processing is 
illustrated in Fig. 3. The example shows how especially finer 
structures, such as roads, or water bodies, e.g. located in the 
top left corner of the scene, appear much more clearly in 
the temporal mean map than in the single-date SAR image.

When it comes to Sentinel-2, the most severe problem is 
cloud cover. To mitigate information loss caused by cloud-
affected pixels, different pre-processing approaches can be 
utilised (see, e.g. Schmitt et al. 2019). In the frame of the 
presented work, a simple standard method is used, which 
combines multi-temporal median filtering and the cloud 
mask provided with the Sentinel-2 products in form of a 
quality assurance band. In analogy to the Sentinel-1 case, all 
Sentinel-2 scenes with less than 30% of clouds (on granule 
level) acquired in the summer months of 2018 (i.e. June, 
July, and August) are collected from the data catalogue. 

Then, every pixel is masked, which is affected either by 
dense clouds or cirrus clouds (according to the QA60 qual-
ity band). Finally, the median for every pixel from all non-
masked acquisitions is calculated, since the median is sup-
posed to exclude very dark values (often caused by shadows) 
and very bright pixels (often caused by remaining clouds). 
The effect of this simple cloud masking is shown in Fig. 4. 
It becomes obvious that in single-date imagery, many scene 
parts are obstructed by cloud cover or cloud shadow; while, 
combining multi-temporal data allows to create a synthetic 
cloud-free input to subsequent water detection tasks.

While this proceeding is suitable for the creation of water 
maps at loosely sampled, discrete time points, it prevents an 
actual quasi-continuous monitoring of inland water at the 
temporal resolution that would be provided by the Senti-
nel-2 acquisition opportunities. In the future, the presented 
approach has to be extended by a more sophisticated cloud-
mitigation procedure, which still makes use of SAR and 
optical data fusion instead of only relying on SAR data, but 
samples the optical imagery more densely in time. A quite 
inspiring technique tailored to the mapping of croplands 
from Sentinel-2 time series based on a deep neural network, 
which also learned to ignore clouds, was recently presented 
by Rußwurm and Körner (2018).

3.2.2  Automatic Training Data Generation

Since the aim of this work is detecting water surfaces with 
a model based on supervised learning, a suitable training 
dataset is needed, which contains a balanced sample of tar-
get examples, i.e. water pixels, and clutter examples, i.e. 
background pixels. To train a robust and well-generalizing 
model, it is important that the versatility of water observa-
tions (ranging from deep lakes to shallow rivers) is well 
represented in the training data. This holds even more so 
for the background-related observations, as here one has 
to deal with many different forms of land cover. To avoid 
labour-intensive, and often biased, manual annotation of 
training samples, a fully automatic approach is proposed, 
which exploits voluntary geographic information (VGI) in 
the form of the OpenStreetMap (OSM) water layer.

After loading the layer, it is filtered to remove any poly-
gons related to the wetlands class, so that only actual surface 
water bodies (i.e. rivers, lakes etc.) are kept. Then, a nega-
tive buffering of 20 m to each polygon is applied to make 
sure that each polygon really only contains water surfaces and 
not ambiguous areas such as shorelines. Finally, the list of 
polygons is filtered to remove all water polygons with an area 
smaller than 10,000 m2 for the sake of memory requirements 
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Fig. 8  Example area showing the reservoir Forggensee, some smaller 
natural lakes, and the Lech river exiting Forggensee to the north. a 
Optical reference image, b GSWL reference layer, c Sentinel-1 VH 

polarisation result, d Sentinel-2 10-m bands result, e Sentinel-1/Sen-
tinel-2 full-band fusion, f Sentinel-1/Sentinel-2 VH/MNDWI fusion
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and processing speed. In parallel, an inverse, i.e. positive, 
buffering of 50 m is applied to the previously reduced water 
polygons and those enlarged polygons are subtracted from the 
outer polygon describing the Bavarian state borders. Thus, one 
finally has one list of water polygons, and one list of non-
water polygons. This allows to randomly sample 2500 training 
pixel locations each for both the water and the background 
class, as well as 500 pixels each for testing. From those loca-
tions, later the desired remote sensing-derived information are 
extracted to train and test the proposed SVM-based classifica-
tion models.

3.2.3  Features for Water Mapping

From Sentinel-1, both the VV and VH polarisation channels 
are used. From Sentinel-2, all bands with 10-m and 20-m reso-
lution are used, which carry highly relevant information from 
the visible, the near infrared, and the short-wave infrared parts 
of the electromagnetic spectrum. The 60-m bands are ignored, 
as those are primarily intended to provide measurements about 
atmosphere parameters such as aerosoles and clouds. In addi-
tion, two spectral indices are employed. The normalised differ-
ence vegetation index (NDVI) (Rouse 1974) was developed for 
mapping vegetation status and is probably the most frequently 
used spectral index in environmental remote sensing (Pettorelli 
2013). It combines information from the red and near-infrared 
parts of the spectrum and is calculated by

The NDVI is ued based on the assumption that its response 
in case of water is inverse to that of vegetation.

In addition to that, the more relevant modified normalised 
difference water index (MNDWI) (Xu 2006) is employed, 
which is an extension of the normalised difference water index 
(NDWI) (Gao 1996) and is dedicated to the detection of water 
surfaces. It combines information from the green and short-
wave infrared parts of the spectrum and is calculated by

whereas the original NDWI is calculated by

Since the MNDWI was developed to improve the sensitivity 
of the NDWI against a confusion of water with impervious 

(1)NDVI =
NIR − Red

NIR + Red
=

Band 8 − Band 4

Band 8 + Band 4
.

(2)

MNDWI =
Green − SWIR

Green + SWIR
=

Band 3 − Band 11

Band 3 + Band 11
,

(3)NDWI =
NIR − SWIR

NIR + SWIR
=

Band 8 − Band 11

Band 8 + Band 11
.

surfaces, it is expected to be the most powerful feature for 
water detection from optical imagery. To illustrate the use of 
both NDVI and MNDWI, the corresponding feature images 
are displayed in Fig. 5. The illustration also shows the higher 
resolution of the NDVI, which is based on 10-m bands; 
whereas, the MNDWI uses one of the 20 m SWIR bands.

Table 2 summarizes the different feature combinations 
used in the experiments for this work. To analyse the full 
potential of the available Sentinel-1 and Sentinel-2 data, the 
potential of Sentinel-1 only, Sentinel-2 only, and a fusion of 
both data sources is investigated.

4  Results for Rivers and Lakes in Bavaria

Different SVM models for the 10 feature combinations sum-
marised in Table 2 were trained based on the 5,000 training 
samples as described in Sect. 3.2.2. Using tenfold cross-
validation, the 10 models are evaluated on 1,000 test samples 
each. The results are summarised in Table 3. It has to be 
noted that in spite of cross-validation, both training sets and 
test sets are randomly sampled from the same basic distri-
bution. Thus, the results should be considered as optimistic 
estimates for the study area of Bavaria and cannot be used to 
extrapolate accuracies to be expected in unseen areas. Fur-
thermore, due to the automatic training data generation pro-
cedure, small water bodies are not represented in the ground 
truth; this also leads to positively biased values.

Looking at these quantitative results, one can observe the 
following phenomena: 

1. Dual-pol SAR does not provide higher detection accu-
racy

  Accuracy-wise, the best SAR configuration for detect-
ing water is a single-channel analysis of only VH-polar-
ised intensity images (setup 2). This setup provides the 
best producer’s accuracy for water, while overall accu-
racy and kappa coefficient are not significantly differ-
ent from the numerically better dual-pol result. VV 
polarization (setup 1) only performs better with respect 
to producer’s accuracy of non-water and user’s accu-
racy of water. This indicates that it misses some water 
areas, but does usually not lead to a misclassification of 
background. Dual polarisation (setup 3) does not provide 
significantly better metrics in any category, but is one of 
the results with the smallest standard deviations, i.e. the 
highest prediction stability.
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Fig. 9  Example area showing river Inn (flowing in south–north direc-
tion), the Simsee, and the Chiemsee, with the small Alz river exiting 
Chiemsee to the north. a Optical reference image, b GSWL reference 

layer, c Sentinel-1 VH polarisation result, d Sentinel-2 10-m bands 
result, e Sentinel-1/Sentinel-2 full-band fusion, f Sentinel-1/Senti-
nel-2 VH/MNDWI fusion
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2. Optical indices are not as helpful as expected
  While the MNDWI magnitude is at least the most 

powerful feature to reliably decide what pixels belong 
to the background (shown by high producer’s accuracy 
for non-water and user’s accuracy for water in setup 7), 
it does not perform very well in finding all water areas. 
One might think that this is caused by the fact that the 
SWIR bands necessary for MNDWI calculation have a 
resolution of only 20m, so that small water areas will 
simply be missed. However, due to the removal of small 
water bodies in the label pre-processing (cf. Sect. 3.2.2), 
the validation data also do not contain any small water 
bodies with an area less than 10,000m2.

  In contrast to the MNDWI magnitude, the NDVI 
magnitude provides the overall least amount of useful 
information for water detection (see setup 6). At the 
same time, a combination of MNDWI and NDVI (setup 
8) leads to a better but still mediocre water detection 
performance. Using only the 10-m bands of Sentinel-2 
without any previous feature extraction performs best 
(see setup 4); whereas, using all surface-related bands 
(setup 5) provides no additional benefit besides slightly 
better prediction stability.

3. Fusion performs better than single-sensor analysis
  With the highest overall accuracies and at least com-

petitive � coefficients, the fusion-based predictions on 
average perform better than the single-sensor results. 
While the fusion of just VH polarisation and MNDWI 
(setup 11) provides the overall highest producer’s accu-
racy for water, the fusion of all available surface-related 
bands (setup 9) is better with respect to the user’s accu-
racy of the water class as well as overall accuracy and 
� coefficient—at least if rounding errors are ignored. 
Interestingly, leaving out the Sentinel-2 20m bands and 
the Sentinel-1 VV channel (setup 10) unexpectedly does 
not provide any advantage, although they could poten-
tially downgrade the result due to their lower resolution.

4. Detecting water is harder than detecting background
  The mean producer’s accuracy for water detection is 

about 96% , whereas the mean producer’s accuracy for 
background is almost 98% . This indicates that detect-
ing the single, well-defined water class is harder than 
detecting background pixels, which inherently comprise 
a much more versatile sample distribution.

Based on these numerical results, selected visual results are 
shown for several example regions across Bavaria for

– the best Sentinel-1 configuration, i.e. the VH band (setup 
2)

– the best Sentinel-2 configuration, i.e. the 10-m bands 
(setup 4)

– the two best fusion-based configurations, i.e. all bands 
(setup 9) and VH+MNDWI (setup 11)

in terms of mean accuracy achieved in the tenfold cross-
validation experiments.

The selected maps contain sections of the Danube 
(Fig. 6), the Main (Fig. 7), the Lech (Figs. 6 and 8), the 
Inn (Fig. 9), and the Isar (Fig. 10) to illustrate the perfor-
mance on large- and medium-sized rivers. With respect to 
a mapping of bodies of stagnant water, Starnberger See, 
Ammersee, Wörthsee, Pilsensee (all Fig. 11), Chiemsee, 
Simsee (both Fig. 9), Forggensee, Weißensee, Hopfensee, 
Bannwaldsee (all Fig. 8), Großer Brombachsee, Altmühlsee 
(both Fig. 12), and Ismaninger Speichersee (Fig. 10) are 
shown to illustrate the performance on large- and medium-
sized lakes and reservoirs.

For comparison to an independent yet similar reference, 
all figures contain a surface water map extracted from the 
Global Surface Water Layer (GSWL) (Pekel et al. 2016), 
which was generated by a multi-temporal analysis of Land-
sat imagery. The displayed reference map is an aggregation 
of the binary monthly GSWL maps for the summer months 
of 2015, i.e. when a pixel was identified as water in at least 
two out of the three months June, July, and August 2015, 
it is considered to contain surface water.

In these visual results, the following phenomena can 
be observed:

– In the results that utilise Sentinel-1 SAR backscatter 
(subfigures c,e,f) very often false-positive detections 
occur. In Fig. 6, this happens on the eastern edge of 
the scene, which depicts a part of the bog land “Donau-
moos”. In Figs. 7 and 12 the false positives are spread 
out through most parts of the scene for the cases in 
which only VH polarisation and VH polarisation plus 
MNDWI are used. And in Fig.  10, the SAR input 
causes a mis-classification of the Munich airport as 
water.

– Interestingly, false-positive detections also occur in 
urban areas sometimes when only the 10-m bands of 
Sentinel-2 are used. This can be observed in Figs. 7d 
and 10d.

– The continuously most robust results from a visual point 
of view are obtained when all surface-related bands from 
both Sentinel-1 and Sentinel-2 are fused (subfigures e), 
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Fig. 10  Example area showing the northeastern surroundings of the 
city of Munich with the river Isar (flowing in south–north direction), 
the reservoir Ismaninger Speichersee, and the artificial channel Isar-
kanal exiting the Speichersee to the east. a Optical reference image, 

b GSWL reference layer, c Sentinel-1 VH polarisation result, d Sen-
tinel-2 10-m bands result, e Sentinel-1/Sentinel-2 full-band fusion, f 
Sentinel-1/Sentinel-2 VH/MNDWI fusion
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closely followed using only the 10-m bands of Sentinel-2 
(subfigures d).

– Several smaller rivers are not present in the GSWL 
layer, but are found by the all-band fusion (e.g. visible in 
Fig. 6e, southern part of the scene, Fig. 7e on the south-
ern edge of the city of Bamberg or Fig. 10e with the 
Isarkanal running parallel to the river Isar in the eastern 
half of the scene.

– The Forggensee (cf. Fig. 8) is not detected completely in 
terms of its cartographic outline. This is due to the fact 
that Forggensee is a man-made reservoir that is regu-
larly emptied. This illustrates the fact that the proposed 
method only maps the observable water surface extent. It 
is interesting to note, though, that the models giving large 
weight to the VH-polarised SAR information (experi-
ments 2 and 11, Fig. 8c, f, respectively) detect more 
water than the optical-only models.

5  Discussion

5.1  Quality of the Water Detection

Looking at both the quantitative as well as qualitative results 
summarised in Sect. 4, one can see that fully automatic water 
surface detection on a state-wide level is generally possible 
from Sentinel-1/2 data using a simple, SVM-based machine 
learning approach and OpenStreetMap data for training 
the classifier. While the accuracy metrics calculated from 
randomly distributed point samples indicate that the best 
configurations allow a water detection with up to 98% of 
producer’s and overall accuracy, the visual examples show 
that the numeric results have to be taken with a grain of salt. 
Due to the limited resolutions of the Sentinel data (from 
10-m GSD to about 20-m GSD), smaller water bodies of 
course cannot be detected. Since they are not part of the 
OSM-derived reference data nor the GSWL water layer used 
for comparison, this is not reflected by the accuracy metrics. 
Especially setup 11 (Fusion of Sentinel-1 VH and Sentinel-2 
MNDWI) shows a larger amount of missed smaller water 
bodies in comparison to the other results. This is caused by 
the fact that this configuration provides the overall lowest 
resolution (about 20m GSD for both channels). However, 
given the powerful detections provided by the optical 10-m 
bands, a significant improvement could possibly be expected 
if higher-resolution SAR or optical data were available. The 
works of Du et al. (2016) and Yang et al. (2017), which 
aimed at the generation of a super-resolved SWIR band for 

the calculation of a high-resolution MNDWI image, confirm 
the promising potential in this regard.

Apart from the sensor-inherent limitations with respect 
to GSD, the rate of missed water bodies is generally very 
low, i.e. a good level of completeness is achieved.

5.2  False‑Positive Detections

In particular by looking at the visual results, it can be 
observed that some of the results suffer from a certain 
amount of false positives, e.g. by confusing an airport 
with water (e.g. in the test cases relying on Sentinel-1 data 
in Fig. 10). This is also reflected by the low producer’s 
accuracy for the non-water class when using both setup 
2 (Sentinel-1 VH channel only) and setup 11 (Fusion of 
Sentinel-1 VH and Sentinel-2-derived MNDWI), indicat-
ing that while the Sentinel-1 information hardly misses 
any water body that is of sufficient size, it also produces a 
considerable amount of false positive detections.

This is mainly caused by the fact that for C-band radar 
signals also smooth impervious surfaces (e.g. pavement) 
leads to a mirror-like reflection and, thus, very low back-
scatter amplitudes. Interestingly, also an occasional mis-
classification of urban areas as water is observed when the 
10-m Sentinel-2 bands are used as inputs. This indicates 
that the visible plus broadband near-infrared bands (B2, 
B3, B4, B8) are not enough for a robust discriminative 
model trained with automatically generated training data 
as proposed in this contribution. Instead, the short-wave 
infrared information also provided by Sentinel-2 and the 
Sentinel-1 SAR backscatter turn out to be highly useful for 
robustifying the water detection—in spite of extreme cases 
such as the Munich airport (cf. Fig. 10).

This is confirmed by the impression that the overall best 
result is found to be setup 9, i.e. the straight-forward pixel-
level fusion of all surface-related Sentinel-1 and Sentinel-2 
bands, especially with respect to the robustness against false 
water detections. This is not only reflected by the accuracy 
measures provided in Table 3, but also by the visual results 
displayed in Figs. 6, 7, 8, 9, 10, 11, 12. Nevertheless, using 
only the 10-m bands of Sentinel-2 (i.e. setup 4) follows 
closely second with quite similar accuracy values and visual 
results, although the number of false positives is a bit higher. 
This indicates that fusion helps to enhance robustness to 
some extent; while, the detailed information provided by the 
10-m bands is preserved.
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Fig. 11  Example area showing the “Fünfseenland” (with Starnberger 
See, Ammersee, Pilsensee, Wörthsee, and Weßlinger See). a Optical 
reference image, b GSWL reference layer, c Sentinel-1 VH polarisa-

tion result, d Sentinel-2 10-m bands result, e Sentinel-1/Sentinel-2 
full-band fusion, f Sentinel-1/Sentinel-2 VH/MNDWI fusion
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Fig. 12  Example area showing the reservoirs Altmühlsee (includ-
ing the artificial channel Altmühlzuleiter entering on the west) and 
Brombachsee. a Optical reference image, b GSWL reference layer, 

c Sentinel-1 VH polarisation result, d Sentinel-2 10-m bands result, 
e Sentinel-1/Sentinel-2 full-band fusion, f Sentinel-1/Sentinel-2 VH/
MNDWI fusion
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5.3  Influence of Data Pre‑Processing

Besides the findings discussed so far, one important further 
point has to be mentioned. Both the Sentinel-1 and Senti-
nel-2 data as utilised in this study were products of multi-
temporal data fusion to mitigate speckle and cloud coverage 
effects (see Sect. 3.2.1). Therefore, the results must be seen 
as a kind of snapshot for a three-month observation period 
in the summer of 2018. If a denser monitoring of surface 
water extents is desired, other data processing strategies have 
to be used which employ, for example, speckle filtering for 
the SAR imagery, or sophisticated, cloud-robust techniques 
for time series analysis in the optical case. Alternatively, 
instead of a binary water/non-water map, one could seek 
to provide a map containing frequencies of water coverage 
as did (Pekel et al. 2016), whose goal was not to map sur-
face water in a static manner, but rather monitor its dynam-
ics as observed by optical Landsat image time series. As 
mentioned in Sect. 4, the static GWSL maps as displayed 
in Figs. 6, 7, 8, 9, 10, 11, 12 for reference, however, are 
the result of an aggregation of binary monthly water maps 
acquired over a three-month period in summer 2018 for 
the sake of comparability. As can be seen from the results 
presented in this contribution, using Sentinel data and an 
automatically trained supervised learning approach similarly 
robust maps with even slightly more details can be produced. 
This is particularly interesting, as (Pekel et al. 2016) relied 
on a more complicated expert system classifier, which addi-
tionally used different sources of auxiliary data (e.g. digi-
tal elevation models, glacier data, urban area data and lava 
masks) to robustify the water detection.

Finally, it has to be noted that both approaches rely on 
multi-temporal data fusion for surface water detection, so 
it has to be accepted that the resulting water map is neither 
a representation of a single time snapshot, nor following a 
technical definition of the term water body. That is, an area, 
which is mostly experiencing low-water conditions during 
the time frame used in the analysis (as, e.g. the southern end 
of the Forggensee reservoir in Fig. 8), will not necessarily 
be considered as part of the water body—although it might 
be in a hydrological sense.

5.4  Label Noise

The last point to discuss is the effect of using the OSM 
water layer polygons as labels, especially if pre-processed 
as described in Sect. 3.2.2. Most importantly, it has to be 
mentioned that, of course, this layer cannot be considered 
as ground truth. There are various reasons for that: On the 
one hand, water bodies often change their area or shape over 
time, which is not always reflected in OSM. On the other 
hand, the OSM quality is not homogeneously high in all 
regions of the world, which can lead to a significant amount 

of label noise in the form of missed or wrongly mapped 
water bodies. Nevertheless, the advantage of using VGI such 
as OSM data for the automatic training data generation has 
to be highlighted. The main reason to use VGI instead of 
officially available geodata as provided by local governments 
is this work’s goal to provide a simple water mapping tool 
that is potentially applicable to extended regions (e.g. whole 
continents). While for many regions across the world at least 
some amount of OSM information exists, governmental land 
cover information is often not available. As an alternative to 
OSM data, one could also consider the GWSL to be used to 
generate the training labels.

6  Summary and Conclusion

In this work, a simple procedure based on supervised learn-
ing via support vector machines and automatic training data 
annotation with information derived from OpenStreetMap 
for the large-scale detection of inland water bodies was pro-
posed. The performance of the approach for the State of 
Bavaria was illustrated and example mapping results for the 
major rivers, lakes, and reservoirs in that state were pro-
vided. Both qualitative and quantitative results confirm that 
fully automatic large-scale water surface detection is gener-
ally possible. The best configuration of input data seems to 
be a pixel-based fusion of all surface-related Sentinel-1 and 
Sentinel-2 bands for this purpose, providing an acceptable 
trade-off between detection accuracy and a certain robust-
ness against false positives. Nevertheless, for operational 
mapping, post-processing against remaining false positives, 
e.g. by including elevation data, is advisable. Besides, the 
proposed framework should be combined with dedicated 
signal processing algorithms for pre-processing, e.g. filters 
for SAR image despeckling, or single-image cloud-removal 
techniques. When this is done, an approximately weekly 
monitoring of inland water becomes imaginable, as the need 
to fuse data from a three-month period for speckle reduction 
and cloud-removal will be removed.
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