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Abstract
An image sequence analysis procedure is developed to quantitatively analyze complex multiple crack patterns in tension tests 
of fiber-reinforced composite specimens. Planar textured surfaces of such specimens can be observed with a monocular image 
sequence using a camera of suitable spatial and temporal resolution. Due to the narrow crack paths, a dense high-precision 
displacement vector field is computed applying least-squares image matching techniques. Some uniformly distributed match-
ing points are triangulated into a mesh. To measure deformations, principal strains and crack widths are computed for each 
face. Stretched triangles presumably containing one or multiple cracks are subdivided into three new triangles in order to 
densify the mesh in critical regions. The subdivision is repeated for some iterations. The crack width computation of the 
triangles requires at least three vertices and its displacements. Due to the dense displacement vector field, there are more 
points available. In this paper, an algorithm for the crack width computation in a least-squares fit is presented.

Keywords Crack width · Multiple crack pattern · Deformation measurement · Triangle mesh

Zusammenfassung
Strategie zur Rissbreitenmessung multipler Rissstrukturen in monokularen Bildsequenzen bei der Materialprüfung 
im Bauwesen
Zur quantitativen Untersuchung komplexer multipler Rissmuster in Dehnungsversuchen mit Probekörpern bestehend aus 
faserbewährten Kompositen wird eine auf Bildsequenzanalyse basierende Methode vorgestellt. Planare, texturierte Ober-
flächen solcher Probekörper können mit monokularen Bildsequenzen unter Nutzung einer Kamera mit geeigneter räumlicher 
und zeitlicher Auflösung beobachtet werden. Aufgrund der engen Risspfade wird ein dichtes, hochgenaues Verschiebungs-
vektorfeld mit der Punktverfolgungstechnik der Kleinsten-Quadrate-Anpassung berechnet. Eine gleichverteilte Auswahl der 
verfolgten Punkte bildet eine ausgedünnte Punktmenge, mit Hilfe derer ein Dreiecksnetz bestimmt wird. Um Deformationen 
zu messen, werden Hauptdehnungen und Rissbreiten für jede Facette berechnet. Gedehnte Dreiecke, die möglicherweise von 
einem oder mehreren Risse durchlaufen werden, werden in 3 neue Dreiecke unterteilt, um das Netz in kritischen Regionen zu 
verdichten. Die Unterteilung wird mehrfach wiederholt. Für die Rissbreitenberechnung von Dreiecken werden mindestens 3 
Punkte mit ihren Verschiebungen benötigt. Wegen des dichten Verschiebungsfeldes stehen mehr Punkte zur Verfügung. In 
dieser Publikation wird ein Algorithmus zur Rissbreitenberechnung in Form einer Ausgleichung vorgestellt.

1 Introduction

1.1  Review of Related Work

Photogrammetry has a high potential in deformation meas-
urement in civil engineering material testing due to its high 
accuracy and high resolution. Classical methods such as 
inductive displacement transducers, inclinometers, or strain 
gauges offer only point-wise measurements. During the 
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last few years, several contributions about photogrammetry 
in material testing were published. Early photogrammet-
ric applications in the field of deformation measurement 
dealt with artificial targets that were tracked in an image 
sequence of monocular or multi-ocular camera systems 
(Maas 1998; Fraser and Riedel 2000; Whiteman et al. 2002; 
Benning et al. 2004; Lange et al. 2006; Hampel and Maas 
2003; Barazzetti and Scaioni 2010). For example, Barazzetti 
and Scaioni (2009) presented a 2D image-based method for 
crack analysis using a digital camera, an orientation frame, 
and a pair of signalized supports. Other authors used digital 
image correlation techniques for tracking natural points or 
artificial random patterns on the surface of the probe (Maas 
and Hampel 2006; Hampel and Maas 2009; Koschitzki et al. 
2011; Liebold and Maas 2016, 2018). There are further pub-
lications considering image processing techniques (edge 
detection) to extract cracks as the Route-Finder algorithm 
as well as the Fly-Fisher algorithm (Dare et al. 2002; Nie-
meier et al. 2008; Detchev et al. 2012). In addition, Detchev 
et al. (2016) also used a multi-camera system to observe 
beams in a cyclic load test. There, the amplitudes and offsets 
of a sinusoidal function for each coordinate as a function 
of time were determined in a least-squares fit. Concerning 
crack movements, Lange and Benning (2006) pointed out 
that the crack opening vector has got three components. The 
first one is the crack width that is normal to the crack, the 
second one is parallel to the crack course, and the third one 
is perpendicular to the first two components (perpendicular 
to the surface). Lange and Benning (2006) also refer to Irwin 
(1958) describing several theoretical modes of fracture. Not 
all of them can be captured correctly by monocular image 
observations. In case of movements perpendicular to the 
surface (out-of-plane movements), 3D systems like stereo 
cameras have to be used. Görtz (2004) presented an algo-
rithm to compute crack widths in rectangle elements based 
on the displacement vectors of the vertices. He considered 
two components: parallel and perpendicular to the crack 
course. However, global rotations between the reference and 
the subsequent epochs are not considered.

Furthermore, there exist several companies offering ste-
reo systems and software using digital image correlation 
(DIC) techniques (e.g., GOM ARAMIS from GOM or VIC-
3D from Correlated Solutions, Inc.). These commercial soft-
ware packages analyze image sequences, compute displace-
ment fields, and visualize principal strains. However, actual 
metric crack widths have to be measured manually by click-
ing points to define distances that should be observed. In 
the work of Liebold and Maas (2018), three approaches for 
automatic crack width computation in triangle meshes are 
presented. These methods also consider rotations between 
the epochs of monocular image sequences and represent an 
extension to the approach of Görtz (2004). In this publica-
tion, the work of Liebold and Maas (2018) is continued. 

One of the algorithms is extended and applied to analyze 
multiple crack patterns rather than single cracks. The exten-
sion includes the subdivision of the mesh in critical areas 
and a least-squares refinement for the crack width compu-
tation. Multiple crack structures appear in tension tests of 
specimens consisting of special composites (here, SHCC: 
Strain-Hardening Cement-based Composites). This multiple 
cracking ensures the ductility behaviour that is intended for 
special applications in civil engineering and the measure-
ment of crack widths is an important issue (Curosu et al. 
2017). Figure 1 shows an example of a multiple crack pattern 
of a deformed SHCC specimen.

1.2  Image Analysis—Basic Algorithm

The basic algorithm of crack detection on the basis of ana-
lyzing discontinuities in deformation vector fields deter-
mined by least-squares matching has been described in 
detail by Liebold and Maas (2018). An overview is also 
given here: a tension test is performed on an SHCC speci-
men with a planar surface. This experiment is observed by 
a monocular camera system whose optical axis is perpen-
dicular to the surface. During the whole experiment, the 
relative orientation between camera and surface must not 
change and deformations must only appear in the plane to 
be observed. In addition, the surface must show a suitable 
natural or artificial pattern, such that there is enough tex-
ture for the matching process. During the tension test, an 
image sequence is recorded whose first image under zero 
load is defined as the reference image. In this image, a set 
of points is defined. These vertices can be arranged in a 
regular grid or can be computed by an interest operator; for 
instance, the Harris operator (Harris and Stephens 1988). In 
the subsequent images, the displacements of the points are 
determined with sub-pixel accuracy by least-squares match-
ing (Ackermann 1984; Förstner 1984; Grün 1985, 2012). In 
each epoch, the vertices are triangulated into a mesh using 
the Delaunay algorithm, see Fig. 2.

Fig. 1  Example of a multiple crack structure
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Subsequently, the triangles are analyzed for changes. 
Deformations can be detected by the computation of prin-
cipal strains (Appendix A) as shown by Liebold and Maas 
(2016). A visualization of these values is depicted in Fig. 3.

The principal strains only show deformed regions. How-
ever, there is no information about the actual crack widths 
yet.

1.3  Limitations of Monocular Observations

Monocular observations of crack patterns require some 
assumptions. If these assumptions are not fulfilled, system-
atic errors can influence the measurements:

• There are alignment errors if the optical axis is not per-
fectly perpendicular to the surface.

• Moreover, errors due to relative movements between 
camera and specimen during the experiment are possible.

• In addition, there are perspective errors due to out-of-
plane movements on the surface of the specimen.

• If the measured values are transformed from image to 
object space, scaling errors can appear.

• There are further errors due to lens distortion which are 
minimized by camera calibration for instance using the 
Brown parameters (Brown 1971).

The projective errors of the first and the second point could 
be minimized using an orientation frame with at least four 
targets with known coordinates (similar to approach of 
Barazzetti and Scaioni 2009). The inner geometry of the 
frame has to stay constant during the load test and the frame 
has to be attached to the surface, such that it stays unde-
formed but parallel to it. The measured image coordinates 
can then be corrected using a projective transformation to 
the frame system. However, this is not applied in the experi-
ments of this publication.

1.4  Differences of Principal Strains and Crack 
Widths

This subsection explains why we use another model for the 
deformation measurement (crack width algorithm). Several 
free and commercial software packages as well as Liebold 
and Maas (2016) use the computation of principal strains 
to detect deformed areas as it is shown for triangle meshes 
in Appendix A. Another way for deformation detection 
is the determination of crack widths in triangle meshes is 
presented by Liebold and Maas (2018), a short overview is 
given in Appendix B. An important difference between both 
quantities is the underlying model. For principal strains, it is 
assumed that the surface element is deformed in a nonrigid 
way. Mathematically, the model is based on an affine trans-
formation (see Appendix A). On the other hand, the crack 
width computation assumes that the triangle is split into two 
parts and one of these parts has experienced a relative rigid 
movement, see also Appendix B, Figs. 4 and  5 for the effect 
in the mesh.

Another difference is that the principal strain is a unit-less 
quantity, whereas the crack width is a metric quantity. The 
principal strain can be interpreted as a ratio of lengths, while 

Fig. 2  Triangle mesh of interest points (according to Liebold and 
Maas 2018)

Fig. 3  Colour-coded visualization of the principal strains

(a) (b) (c)

Fig. 4  Differences of models. a Reference triangle, b model of non-
rigid deformation which is assumed for principal strains, and c split-
ting the triangle into two parts at the crack front and relative rigid 
movement of the upper part (assumed for crack width computation)
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the crack width represents the distance of the perpendicular 
movement between the parts left and right of the crack.

In the following, some additional considerations to the 
work of Liebold and Maas (2018) are presented. First, 
the effect of the triangle size on principle strains is con-
sidered. The principle strains are varying according to the 
size, because they represent a relative change. The follow-
ing example illustrates this effect, see Fig. 6. There are two 
triangles; the bigger one has twice the size of the smaller 
one. Due to a crack opening with the width r, the triangles 
are deformed.

We consider the simple case that the heights hi of the tri-
angles are parallel to the crack normal. Then, the principal 
strain for the smaller triangle can be computed as follows: it 
can be obtained by the stretch ratio d1 of the heights of the 
subsequent and the reference triangle:

Or rather, the Cauchy strain e1 is:

The strain d2 of the second triangle with twice the size of 
the first triangle ( h2 = 2 ⋅ h1 ) and the same crack width r is:

(1)d1 =
h1 + r

h1
.

(2)e1 = d1 − 1 =
r

h1
.

(3)d2 =
h2 + r

h2
=

2 ⋅ h1 + r

2 ⋅ h1
=

h1 +
r

2

h1
.

And the Cauchy strain e2 is:

The Cauchy strain is halved if the triangle edge sizes are 
doubled in this example:

In particular, this effect leads to two problems: first, if there 
are different triangle sizes in a mesh, then the principal strain 
values are not comparable. Second, it is difficult to define 
thresholds for critical strains if the sizes differ. Figure 7 
depicts the latter case. In the figure, some matches fail (red 
points), because the crack runs through the corresponding 
patches (grey squares). Therefore, some triangles are larger 
in the crack region.

The computation of crack widths avoids these problems, 
as the crack width is an absolute quantity and not a ratio as 
the strain. Therefore, crack widths are used for the analysis 
in this paper. Nevertheless, the calculation of crack widths 
also has got some limits. An important intermediate result is 
the relative translation vector. Different relative movements 
within a triangle mesh could lead to the same relative trans-
lation vector of the upper point (single point on one side of 
the crack) in the triangle, see Fig. 8. The cases (a) and (b) 

(4)e2 = d2 − 1 =
r

2 ⋅ h1
.

(5)e1 = 2 ⋅ e2.

(a) (b) (c)

Fig. 5  Differences of the models in the meshes. a Reference state 
with the crack line of a later crack, b mesh in the deformed epoch 
with nonrigid model, and c mesh in deformed epoch with the split 
triangles

Fig. 6  Effect of the triangle size 
on the strains if the crack width 
r is constant; � : crack normal; 
h: height of the triangle

(b)(a)

Fig. 7  a Triangulation of the reference points (black nodes); b tri-
angulation of the points (black nodes) of the subsequent epoch with 
successful matches, matching fails for the red points. The matching 
patches are shown as grey squares

(a) (b) (c) (d)

Fig. 8  Possible cases of the course of the crack if the same relative 
translation vector (red) is given: a translation of the upper part, b 
translation of the upper part but the crack is shifted, c translation of 
the upper part but the crack has another direction, and d translation 
and rotation of the upper part
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illustrate that it is not possible to say where the crack runs 
through the triangle. It is somewhere between the baseline 
and the upper point. Moreover, it is not unambiguous which 
direction the crack has got if only the displacements of the 
triangle vertices are analyzed; compare (a) and (c). Further 
information is required. With the help of the crack normal 
�⃗n , the direction of the crack is given and the crack width can 
be computed by projecting the relative translation vector t⃗rel 
onto this normal vector �⃗n . Otherwise, only an upper limit for 
the crack width can be computed with the length of the rela-
tive translation vector. Appendix C shows the computation 
of the crack normals as shown by Liebold and Maas (2018). 
As one can see from Fig. 8d, it is possible that the upper part 
has an additional relative rotation. If only the displacements 
of the triangle vertices are given, the relative rotation can-
not be derived. In the model, it is assumed that there is no 
relative rotation.

Although the whole SHCC specimen has a ductile behav-
iour, the concrete between cracks can be considered as a stiff 
material, especially if there are multiple cracks, such that the 
model with two rigid parts inside the triangle fits better than 
the affine model using the principle strains. For other, more 
ductile materials as steel, the affine model should be used, 
especially if cracks do not appear.

2  Image Analysis for Multiple Crack Patterns

In this section, a strategy for the deformation analysis of 
multiple crack patterns is presented. The single steps are 
explained in the following subsections. Figure 9 depicts the 
steps of the presented algorithm in a flowchart. The algo-
rithm is designed hierarchically to analyze critical regions 
by a denser mesh. The workflow begins with the tracking 
of a dense point grid due to the narrow crack paths. In the 
second step, a uniformly distributed selection of these points 
is triangulated into a mesh to avoid small triangles due to 
inaccuracies in computing crack widths. Next, the mesh is 
densified in regions where cracks appear. Then, the relative 
translation vectors are computed including points inside the 
triangles from the dense point grid. At the end, crack nor-
mals and widths are calculated for deformed triangles.

2.1  Dense Displacement Field

Due to the narrow crack structures of the fiber-reinforced 
probes, a dense regular grid of points is used, such that the 
patches have a big overlap. These points are tracked using 
least-squares matching (LSM) in the following epochs. If 
cracks cross matching patches, the assumption of a linear 
patch deformation in LSM may not be justified, and either 
the standard deviation of the shifts becomes large or the 
algorithm does not converge and fails, see Fig. 10a. The first 

case is typical for thin cracks and large patch sizes. In this 
approach, it is considered to be failed if the standard devia-
tions of the shifts exceed a threshold. To increase the success 

Fig. 9  Flowchart of the analysis. � and � are user-defined thresholds

(b)(a)

Fig. 10  a Cracks are running through a grid of points (black points) 
enclosed by their matching patches. Crossed patches are labeled as 
red squares; the other patches are depicted in green. b Adaption of 
patch size in cases where cracks are running through. The crack does 
not cross the blue adapted patches (blue triangles) anymore. Some 
patches are still crossed by the crack (red rectangles)
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rate, the patches of the matching points where LSM fails 
can be adapted, such that the crack does not cross the patch 
anymore. LSM is repeated with different predefined patch 
sizes, but in several cases, LSM fails for all these patch sizes. 
As shown in Fig. 10b, LSM succeeds for the blue patches 
now, but it still fails for the red patches. In Fig. 10, possible 
overlap of the patches is not shown. Successful matching 
requires suitable texture within the patch in both coordinate 
directions, and, thus, requires a certain minimum patch size.

2.2  Triangle Mesh Creation and Analysis

The crack width analysis for small triangles is inaccurate. In 
addition, when using larger triangles, areas not affected by 
cracks can be detected more efficiently. Therefore, a coarse 
set of points is used for the triangulation. These points can 
be obtained as follows: all successful matching points from 
the dense grid are inserted in a regular grid with a defined 
grid size. Then, the nearest neighbours to the centers of the 
grid cells are used to define the coarse set of points, see 
also Fig. 11a. If the cell is empty (no successful matching 
points inside), it is not considered. After this, the coarse set 
of points (red encircled points in Fig. 11) is triangulated 
into a mesh using the Delaunay algorithm, see Fig. 11b. The 
blue points are the centers of the grid cells. Points where 
matching fails have a grey colour. The triangle edges of the 
thinned-out mesh are depicted in green.

Figure 12 shows a thinned-out triangle mesh of a regular 
coarse set of points from an experiment.

Next, for each triangle, the norm of the relative transla-
tion vector ||⃗trel|| is computed using the algorithm shown in 
Appendix B.

2.3  Densification of the Mesh

Subsequently, the resolution of the mesh is increased in 
regions where cracks appear. To achieve the densifica-
tion, triangles with lengths of the relative translation vec-
tors (Appendix B) larger than a user-defined threshold 
( ||⃗trel|| > 𝛿 ) are split into three parts, see Fig. 13. The thresh-
old � should be in the same order of magnitude as the preci-
sion of least-squares matching [sub-pixel precision, in bad 
cases 0.1 px (Grün 2012)]. In the experiments presented in 
this approach, a threshold � of 0.075 px is used. The trian-
gle is split as follows: the new vertex for the mesh is in the 
set of successful matching points inside the triangle (green 
points in Fig. 13) and it is also the nearest neighbour to the 
triangle center (red point in Fig. 13). A triangle will not be 
subdivided if the new triangles would have too small edge 
lengths. The minimal possible edge length is set to 5 px. 
This subdivision procedure is repeated for some iterations 
(here, five iterations).

The effect of densification is visualized in Fig. 14.

2.4  Crack Width Computation in a Dense 
Displacement Field

This section deals with the refinement of the relative transla-
tion vectors, which is the central innovation of the algorithm 
presented in this paper.

2.4.1  Model

First, the displacement vectors of the matching points are 
computed as follows:

To model the crack movement, the displacement vectors are 
partitioned into two clusters (set M1 and set M2 ). Each set 

(6)�⃗𝛥j = �⃗pj − �⃗pref,j.Fig. 11  a Regular grid cells with the matching points inside (black, 
matching patches are not shown). The red encircled points are the 
nearest neighbours to the center of the cells (blue points). Points 
where matching fails are depicted in grey. b Triangulation (green 
edges) of those points that are the nearest neighbours of the cell cent-
ers (blue points) and that are also matched successfully

Fig. 12  Example of a thinned-out triangle mesh of the coarse set of 
points
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belongs to one side of the crack, see Fig. 15. A method for 
clustering is described in the following subsection.

The mathematical description can be done as follows: The 
points of set M1 are transformed using a rigid transformation 
with the parameters t⃗ and � due to some movement in the 

planar space as a consequence of the application of a force to 
the specimen. For the second set ( M2 ), a relative translation 
vector t⃗rel is added to the transformation due to the crack 
opening, see Eq. (7). The presented model is a simplifica-
tion of the model used for extended finite-element method 
(Moes et al. 1999). For each triangle, there is a separate set 
of parameters:

where �⃗pj includes the coordinates of the subsequent epoch, 
�⃗pref,j includes the coordinates of the reference epoch, t⃗ is 
the translation vector, � is the rotation matrix, and t⃗rel is the 
relative translation vector.

The rotation matrix � is parameterized with two param-
eters (c and s, see Eq. 8). They are linear in the observation 
equations, but necessitate a constraint:

where c is cos � , first rotation parameter, s is sin � , second 
rotation parameter, and � is the rotation angle.

The first step for the computation is the cluster analysis to 
know which point belongs to which set. The next subsection 
concentrates on this.

2.4.2  Clustering

For the classification, the parameters from Appendix B ( � , 
t⃗ , t⃗rel ) derived from the three vertices of the triangle can be 
used. According to Eq. (7), it is tested for each point inside 
the triangle if the upper part or the lower part of the equation 
leads to a smaller deviation �i.

Equation 9 shows how to decide whether the point with 
index k is assigned to the set M1 or to the set M2:

Figure 16 shows an example from experimental data. One 
triangle is shown, and the red and blue points belong to the 
two sets of the clustering result. The crack running through 
the triangle is visible and separates the two sets.

2.4.3  Alternative Method for Clustering

There are also alternatives to partition sets. Several methods 
are known from machine learning. In our case, the unsuper-
vised k-means algorithm (Lloyd 1982) with k = 2 can be 
used. The input data for k-means are the displacement vec-
tors of the matching points. Due to the relative translation 

(7)�⃗pj =

{
t⃗ + � ⋅ �⃗pref,j ∀j ∈ M1

t⃗ + � ⋅ �⃗pref,j + t⃗rel ∀j ∈ M2,

(8)� =

(
c s

−s c

)
subject to c2 + s2 = 1,

(9)

𝜖1 = || �⃗pj − t⃗ − � ⋅ �⃗pref,j||
𝜖2 = || �⃗pj − t⃗ − � ⋅ �⃗pref,j − t⃗rel||
If 𝜖1 < 𝜖2, then k ∈ M1, otherwise k ∈ M2.

Fig. 13  Subdivision of a triangle crossed by a crack. Points being 
inside the triangle are shown in green, for the grey points, matching 
fails, because the crack crosses their patches (patches are not shown 
here), the center point of the triangle is depicted in red, and the black 
points are outside the triangle. The nearest neighbour of the green 
points to the red center is added to the mesh

Fig. 14  Triangle mesh after densification in critical regions

Fig. 15  Sets of displacements belonging to two crack sides
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of set M2 , the displacement vectors should differ from the 
first set. Initial centroids for the clusters can be obtained 
with k-means++ (Arthur and Vassilvitskii 2007). Figure 17a 
depicts the displacement vectors between the epochs if there 
is only a translation and a relative shift. Figure 17b shows 
the two clusters of their coordinates. The scattering is only 
caused by random errors in the matching process.

If there are global rotations, the displacement vectors will 
show according systematic effects. Figure 18a, b depict an 
example. The scattering of the vector clusters that is visible 
is only caused by the global rotation, not by random errors 
from matching. This could lead to wrong classifications if 
the relative translations are smaller than the systematic scat-
tering. In most of our experiments, global rotations were 
very small such that the effect can be ignored in the cluster-
ing with k-means.

If there are significant rotations, the k-means method can 
fail. In that case, the first presented algorithm should be pre-
ferred for clustering.

2.4.4  Least‑Squares Adjustment

The dense displacement field offers the possibility to con-
sider more than the three triangle vertices for computing 
the relative translation vector. Therefore, the model is over-
determined and the parameters can be calculated in a least-
squares fit. The observation equations are derived from 
Eq. 7:

where �⃗vj is the residual vector of point j.
The number of points n is equal to the cardinality (#) of 

the union of sets M1 and M2 and is also the sum of the indi-
vidual cardinalities of the sets.

The coordinates of the subsequent epoch are considered as 
observations. The translation vector t⃗ , the rotation matrix � 
of the rigid body transformation and the relative translation 
vector t⃗rel are unknowns. Next, the observation equations 
have to be linearized. Only rotation parameters are linearized 
applying Taylor’s theorem because they are nonlinear in the 
constraint equation:

where c0 and s0 are the initial values of c and s, dc and ds 
are the corrections to c and s.

If there are small global rotations, the initial value of c0 
can be set to 1 and s0 can be set to 0. The linearized observa-
tion equations can be expressed as:

where l⃗j is the reduced observation for �⃗pj , �0 is the initial 
rotation matrix, �� is the matrix with corrections to �.

The parameters are collected in the vector of unknowns �:

and it can be decomposed in the vector of initial parameters 
�0 and the vector of corrections to the unknowns ��.

The initial parameter vector �0 is

(10)�⃗pj + �⃗vj =

{
t⃗ + � ⋅ �⃗pref,j ∀j ∈ M1

t⃗ + � ⋅ �⃗pref,j + t⃗rel ∀j ∈ M2

(11)n = n1 + n2 = #M1 + #M2 = #(M1 ∪M2).

(12)c2
0
+ s2

0
+ 2 ⋅ c0 ⋅ dc + 2 ⋅ s0 ⋅ ds = 1

(13)

l⃗j + �⃗vj =

{
t⃗ + �� ⋅ �⃗pref,j ∀j ∈ M1

t⃗ + �� ⋅ �⃗pref,j + t⃗rel ∀j ∈ M2

with

l⃗j = �⃗pj − �0 ⋅ �⃗pref,j,

�0 =

(
c0 s0
−s0 c0

)
and �� =

(
dc ds

−ds dc

)

(14)� =
(
tx ty c s trel,x trel,y

)T

(15)� = �0 + ��.

Fig. 16  Experimental example 
of the clustering method

(a) (b)

Fig. 17  a Displacement vectors due to global translation and relative 
translation from reference to subsequent epoch. b k-means clustering 
of the displacement vector coordinates

(a) (b)

Fig. 18  a Displacement vectors due to global translation, global rota-
tion and relative translation from reference to subsequent epoch. b 
Variations of the displacement vectors of M

1
 (magenta) and M

2
 (cyan) 

due to a global rotation
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The vector of corrections to the unknowns �� is

In matrix notation, the linearized observation equations can 
be written as:

where � is the reduced observation vector, � is the residual 
vector, � is the Jacobian matrix, � is the condition matrix, 
� is the vector of inconsistencies.

(16)�0 =
(
0 0 c0 s0 0 0

)T
.

(17)�� =
(
tx ty dc ds trel,x trel,y

)T
.

(18)� + � = � ⋅ �� subject to � ⋅ �� = �

Due to the constraint, the Gauss–Markov model is extended 
with the method of the Lagrange multipliers �.

The solution of this system can be obtained with the 
extended normal equations:

where � = 1
2
⋅ � , vector of Lagrangian multipliers.

where n2 is the number of points in set M2.

The upper part of the normal matrix �T ⋅ � can be computed 
directly (see Eq. 25) such that it is not necessary to com-
pute the Jacobian matrix � and the observation vector � in 
order to be more efficient. The right hand side vector �T ⋅ � 
is expressed in Eq. 26.

The parameter vector �� is obtained by solving the 
extended normal equations (Eq. 24). The translation param-
eters t⃗ and t⃗rel can be found directly in the �� vector. The 
rotation parameters c and s have to be corrected:

The process of the computing of the normal equations with 
the new �-matrix should be repeated until the absolute cor-
rections to the unknowns dc and ds fall below a threshold. 
Considering the relative translation vector t⃗rel , it can be 

(22)� =
(
1 − c2

0
− s2

0

)
.

(23)� = �
T
⋅ � + �

T
⋅ (� ⋅ �� − �) → min

��

.

(24)
(
�

T ⋅ � �
T

� �

)
⋅

(
��

�

)
=

(
�

T ⋅ �

�

)

(25)
�

T
⋅ � =

⎛
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(27)
c = c0 + dc

s = s0 + ds.

The Jacobian matrix � is

where
n1is the number of points in setM1.
The reduced observation vector � is

The condition matrix � is

The vector of inconsistencies � can be written as:

(19)� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 xref,1 yref,1 0 0

0 1 yref,1 − xref,1 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 0 xref,n1 yref,n1 0 0

0 1 yref,n1 − xref,n1 0 0

1 0 xref,n1+1 yref,n1+1 1 0

0 1 yref,n1+1 − xref,n1+1 0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 0 xref,n yref,n 1 0

0 1 yref,n − xref,n 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)� =

⎛
⎜⎜⎜⎜⎜⎝

x1 − c0 ⋅ xref,1 − s0 ⋅ yref,1
y1 + s0 ⋅ xref,1 − c0 ⋅ yref,1

⋮

xn − c0 ⋅ xref,n − s0 ⋅ yref,n
yn + s0 ⋅ xref,n − c0 ⋅ yref,n.

⎞⎟⎟⎟⎟⎟⎠

(21)� =
(
0 0 2 ⋅ c0 2 ⋅ s0 0 0

)
.
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decomposed in a part perpendicular to the crack and another 
part parallel to the crack. The crack width r is computed by 
the scalar projection of the relative translation vector t⃗rel 
onto the crack normal �⃗n , see Appendix B (crack width com-
putation in triangles), Appendix C (crack normal determina-
tion), Fig. 32b and Eq. 28.

The algorithm for the computation of the absolute value of 
the relative translation vector ||⃗trel|| can also be applied on 
triangles on 3D surfaces. The 3D coordinates of the vertices 
of the triangle can be transformed to a local 2D system in the 
reference and in the subsequent epoch. Then, the 2D algo-
rithm can be applied. Global translation and rotation have to 
be discarded due to the transformation to 2D.

3  Experimental Results

In this section, some results of a quasi-static tension test of 
a SHCC specimen are shown. The loading force is increased 
stepwise that leads to increasing multiple cracking. The 
resolution of the observing camera is 5184 × 2912  px. 
The width of the probe is 4 cm and the length between the 
clamps is approximately 10 cm. The following parameters 
are used for the geometric analysis:

• The size of the grid cells for the definition of the coarse 
subset of points is set to 150 px.

• The number of iterations for the densification of the mesh 
is set to 5.

• A triangle is subdivided if ||⃗trel|| > 𝛿 = 0.075 px and if 
the side lengths of the new triangles are greater than or 
equal to 5 px.

• The 1st method of Sect. 2.4.2 is used for clustering in the 
least-squares method.

• If ||⃗trel|| > 𝜖 = 0.15 px, the triangle is considered as crack 
candidate (Appendices B and C).

The crack widths r (or rather ||⃗trel|| for triangles with 
||⃗trel|| ≤ 𝛿 ) can be visualized in a colour-coded map. The 
triangle crack widths are depicted for four epochs of an 
experiment in Fig. 19. The increasing multiple cracking is 
shown and this behaviour is typical for SHCC. It ensures the 
ductility of the material.

Furthermore, it is possible to create 3D visualizations 
where triangles are transformed to prisms whose heights 
correspond to the crack widths in addition to the colour 
code, see Fig. 20.

As already described in Sect. 1.4, principal strains depend 
on triangle size, whereas the crack width values should not 

(28)r =
|| �⃗nT ⋅ t⃗rel||

|| �⃗n|| ≤ ||⃗trel||.

Fig. 19  Colour-coded visualization of the crack widths of different 
epochs: a epoch 10, b epoch 30, c epoch 50, d epoch 80
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change. In Fig. 21, the influence of different triangle sizes 
on the principal strains and on the crack widths is shown. In 
the right images, the edge lengths of the triangles are divided 
in half, and as expected, the strains appear much greater in 
the right image. Considering the crack widths, only small 
differences caused by discretization can be seen.

As already mentioned, the presented results in this sec-
tion show a typical behaviour of a tension test with a SHCC 
specimen. The comparison to other measuring methods is 
very difficult: Strain gauges cannot be fixed to the probe, 
because they would influence the development of the mul-
tiple cracking. Two inductive displacement transducers are 
used to measure the entire extension between the measuring 
area between the clamps, but they only give single values.

4  Detailed Test of the Algorithm on the Basis 
of Synthetic Image Data

The photogrammetric crack pattern analysis procedure as 
described above delivers results with rather high internal 
precision figures and rather high spatial resolution. As a con-
sequence, it is almost impossible to provide independent 

reference measurements which could serve for an external 
accuracy test. Therefore, we decided to use a synthetic data 
set with synthetic images containing defined deformations 
as a basis to test the developed algorithms.

Herein, precision, accuracy, and reliability are analyzed. 
Accuracy describes the deviations between the measurements 
and the true values including systematic errors, whereas pre-
cision shows how measurements differ from each other due to 
random errors. In this paper, reliability describes the robust-
ness of the algorithm, and therefore, the ratio of outliers is 
used for the evaluation. The given shifts are compared to the 
measured vectors in two ways: the first one is the analysis of 
the 2D relative translation vectors and the second one is the 
1D analysis of the computed crack widths. The following 
parameters are used for the geometric analysis:

• The size of the grid cells for the definition of the coarse 
subset of points is set to 75 px.

• The number of iterations for the densification of the mesh 
is set to 5.

• A triangle is subdivided if ||⃗trel|| > 𝛿 = 0.075 px and if 
the side lengths of the new triangles are greater than or 
equal to 5 px.

• The 1st method of Sect. 2.4.2 is used for clustering in the 
least-squares method.

• If ||⃗trel|| > 𝜖 = 0.15 px, the triangle is considered as crack 
candidate (Appendices B and C).

4.1  Generation of the Images

To get a reference image (undeformed state), a random pattern 
is generated onto a grey (almost white) background. The reso-
lution of the image is set to 300 × 2000 px. Because of sharp 
edges, the image is blurred with a Gaussian smoothing filter, 
see Fig. 22a. For the deformed state, a rotation with an angle 
of � = 2◦ (rotation about the image center 

(
xc; yc

)T ) and a 
translation of ⃗ t =

(
3 px; −1 px

)T was simulated for the whole 
image. For the right part of the image, an additional relative 

Fig. 20  Colour-coded 3D visualization of the crack widths. The 
heights of the prisms as well as their colours correspond to the crack 
widths

Fig. 21  Upper part: visualization of principal strains in triangle 
meshes using different triangle sizes. Lower part: crack widths

Fig. 22  a Random pattern, b only relative shift in x, c relative shift in 
y, and d relative shift in x and y 
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translation ⃗ trel is applied. The left and the right parts are trans-
formed in different ways. The grey values of the deformed 
images are computed according to the indirect method using 
bicubic interpolation, while the grey values of the crack are 
set to zero. Equation (29) shows the transformation formula 
applied to the right and the left side of the image:

where xref, yref are the coordinates in the reference, xref, yref 
are the coordinates in the reference image, and x, y are the 
coordinates in the deformed image.

In addition, a zero mean Gaussian noise with a standard 
deviation of �Gauss = 5 is added to each pixel for each image. 
14 × 3 deformed images were generated with different rela-
tive translation vectors. Fourteen different shifts v are simu-
lated (0.2 px; 0.3 px; 0.4 px; 0.5 px; 0.6 px; 0.7 px; 0.8 px; 
0.9 px; 1 px; 1.5 px; 2 px; 3 px; 4 px; 5 px) with the three 
cases: ⃗trel,ref =

(
v; 0

)T , ⃗trel,ref =
(
0; v

)T and ⃗trel,ref =
(
v; v

)T . 
Figure 22b–d shows three examples of the three different 
cases of relative translation vectors.

4.2  Measurements

For all generated images, the procedure of Sect. 2 is applied. 
For each triangle, the relative translation vector and the 
crack width are computed and the data are analyzed below. 
The test is done with the three-point algorithm (labeled with 
3p, Appendix B) where only the three vertices of the tri-
angle are used and it is done with the least-squares adjust-
ment algorithm (labeled with ls, Sect. 2.4) including also 
the matching points not belonging to the mesh inside the 
triangle. Figure 23 shows the result of the algorithm for the 
crack width computation of one of the cases. The deformed 
triangles are detected correctly.

4.3  Statistics of the Relative Translation Vectors

First, the relative translation vectors are considered. The 
relative shifts are measured in the coordinate system of the 
deformed state. To compare the given values used in the 

(29)

For the left side of the crack:(
xref
yref

)
= �

T ⋅ �⃗𝛥 +

(
xc
yc

)

For the right side of the crack:(
xref
yref

)
= �

T ⋅ �⃗𝛥 +

(
xc
yc

)
− t⃗rel,ref

with

�⃗𝛥 =

(
x

y

)
−

(
xc
yc

)
− t⃗ and

(
xc
yc

)
=

(
0.5 ⋅ number of columns

0.5 ⋅ number of rows

)
and

� =

(
cos 𝜗 sin𝜗

− sin 𝜗 cos 𝜗

)
,

image generation step (Sect. 4.1), these reference vectors 
have to be transformed:

where �⃗𝜇 is the expected relative translation vector in the 
deformed state, �⃗𝜇ref is the expected relative translation vector 
in the undeformed state.

The vectors of the measurements are composed of x and 
y coordinates:

where i is the index of the crack triangle. The mean of the n 
relative translation vectors for all crack triangles is:

where
n is the number of crack triangles/observations.
The empirical covariance matrix � is computed as 

follows:

where s2
x
 is the variance of the x values of t⃗rel , s2y is the vari-

ance of the y values of t⃗rel , and sxy is the covariance of x and 
y of t⃗rel.

(30)�⃗𝜇 = � ⋅ �⃗𝜇ref =

(
cos𝜗 sin𝜗

− sin𝜗 cos 𝜗

)
⋅ �⃗𝜇ref,

(31)t⃗rel,i =

(
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yi

)
,
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Fig. 23  a Colour-coded visualization of crack widths, b extracted 
crack triangles
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To find multivariate outliers, the Mahalanobis distance 
can be used if the data is normally distributed. The squared 
Mahalanobis distance MD2 is distributed according to the 
�2 distribution:

where b is the dimension (here b = 2).
According to the 3-� rule in the one-dimensional case, 

the confidence level � = 1 − � is set to 99.73% . A data vec-
tor is considered as outlier if the following condition for the 
squared Mahalanobis distance is fulfilled:

where � is the significance level.
The outlier test is done in an iterative process. The mean 

vector and the empirical covariance matrix are computed 
in each iteration and only the data vector with the high-
est Mahalanobis distance is rejected if Eq. (35) is fulfilled. 
The process is repeated until the maximum of the squared 
Mahalanobis distances is below the critical value from the 
�2 distribution.

To evaluate the precision, an eigenvalue decomposition 
of the empirical covariance � is conducted:

where � is the eigenvector matrix; � is the eigenvalue matrix 
(diagonal).

s1 and s2 are the square roots of the eigenvalues and can be 
used as a quantity for the precision measurement.

Figure 24 shows the scatter plots for the smallest shift 
distance of v = 0.2 px computed with the three-point algo-
rithm. Table 1 depicts the relative translation vectors in the 
reference coordinate system and the corresponding vectors 
in the deformed state. On the left side of Fig. 24, some outli-
ers are visible. In the center plots, the outliers are removed 
and the confidence ellipses with a confidence level of 95 % 
(red dashed ellipses) and 99.73 % (red dotted ellipses) are 
plotted. On the right side, the histograms of the crack widths 
and the kernel density estimation (magenta dashed line) are 
depicted. There, the red dotted vertical lines mark the refer-
ence values.

Figure  25 depicts the plots for the simulated shift 
v = 0.2 px computed with the least-squares algorithm. In 
Figs. 26 and  27, there are the plots for the simulated shift 
of v = 0.6 px.

To evaluate the accuracy, the empirical covariance matrix 
�
∗ is computed using the given expected vector �⃗𝜇 used for 

the image generation:

(34)MD2(�⃗xi) = (�⃗xi − �⃗xm)
T
⋅ �

−1
⋅ (�⃗xi − �⃗xm) ∼ 𝜒2

b
,

(35)�⃗xi is an outlier if MD2(�⃗xi) > 𝜒2
b,1−𝛼

,

(36)� = � ⋅ � ⋅ �
T = � ⋅

(
s2
1
0

0 s2
2

)
⋅ �

T,

where s∗2
x

 is the variance of the x values of t⃗rel , s∗2y  is the 
variance of the y values of t⃗rel , and s∗

xy
 is the covariance of 

x and y of t⃗rel.
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Fig. 24  Simulated shift of v = 0.2  px with different relative transla-
tion directions (from top to bottom); left: scatter plot of relative trans-
lation vectors with the three-point algorithm for all triangles along the 
crack; center: scatter plot without outliers; blue: reference vector; red: 
mean vector and confidence ellipses with 95  % and 99.73  %; right: 
histogram of the corresponding crack widths, the expected value is 
shown as red vertical dotted line, and the kernel density estimate 
(Gaussian kernel) is depicted as magenta dashed line

Table 1  Expected relative 
translation vectors in the 
undeformed state �

ref
 and 

in the deformed state � with 
v = 0.2 px used for the analysis

�⃗𝜇ref �⃗𝜇

Case 1
(
0.2 px

0

) (
0.20 px

−0.01 px

)

Case 2
(

0

0.2 px

) (
0.01 px

0.20 px

)

Case 3
(
0.2 px

0.2 px

) (
0.21 px

0.19 px

)
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The principal standard deviations can be obtained by 
an eigenvalue decomposition of the empirical covariance 
matrix �∗:

where �∗ is the eigenvector matrix; �∗ is the eigenvalue 
matrix (diagonal).

s∗
1
 and s∗

2
 can be used as a quantity for the accuracy meas-

urement. In addition, the accuracy can also be estimated by 
the following three quantities:

The distance from the mean to the reference vector is:

The mean distance to reference vector is:

The maximum distance to reference vector is:

To conclude the results, the precision and accuracy meas-
urements are plotted in diagrams, see Fig. 28. The plots for 

(38)�
∗ = �

∗
⋅ �

∗
⋅ �

∗T = �
∗
⋅

(
s∗
1

2 0

0 s∗
2

2

)
⋅ �

∗T,

(39)d𝜇−m = ||�⃗xm − �⃗𝜇||.

(40)d𝜇 =
1

n

n∑
i=1

||�⃗xi − �⃗𝜇||.

(41)d̂𝜇 = max
i
(||�⃗xi − �⃗𝜇||).

the precision and accuracy are very similar. The maximum 
principal standard deviations are about 0.06 px. The maxi-
mum distance between the mean and the expected value is 
max(d�−m) = 0.026 px in case of a relative shift v = 0.2 px 
along the crack ( ⃗trel =

(
0.01 px; 0.20 px

)T ). This devia-
tion can also be seen in Fig. 24 and in Fig. 25. It is much 
greater than the distance between the red point and the blue 
point in Figs. 26 and  27 with v = 0.6 px. Considering all the 
other experiments, the distances between the mean and the 
expected value d�−m are below 0.015 px. The mean distance 
to the expected value is about d� ≈ 0.05 px in all experi-
ments. The maximum distances to the expected values d̂𝜇 
are in a range of 0.1–0.2 px.

The reliability is evaluated with the help of the outlier 
ratio. The Gaussian noise added to the images leads to noise 
in the displacements. Sometimes, the wrong base edge is 
determined by Eq. 51 in Appendix B due to noise effects. 
In such cases, outliers appear. Figure 29 depicts the out-
lier ratios of all the experiments. The mean outlier ratio 
is approximately 2%. The highest outlier ratio appears in 
the experiment with t⃗rel =

(
0.05 px; 1.50 px

)T . Again, the 
experiment with t⃗rel =

(
0.01 px; 0.20 px

)T shows a special 
behaviour, too. It has one of the highest outlier ratios and it 
has a high number of crack triangles that were not detected 

Fig. 25  Simulated shift of v = 0.2  px with different relative transla-
tion directions (from top to bottom); left: scatter plot of relative trans-
lation vectors with the least-squares algorithm for all triangles along 
the crack; center: scatter plot without outliers; blue: reference vector; 
red: mean vector and confidence ellipses with 95  % and 99.73  %; 
right: histogram of the corresponding crack widths; the expected 
value is shown as red vertical dotted line; the kernel density estimate 
(Gaussian kernel) is depicted as magenta dashed line

Fig. 26  Simulated shift of v = 0.6  px with different relative transla-
tion directions (from top to bottom); left: scatter plot of relative trans-
lation vectors with the three-point algorithm for all triangles along the 
crack; center: scatter plot without outliers; blue: reference vector; red: 
mean vector and confidence ellipses with 95  % and 99.73  %; right: 
histogram of the corresponding crack widths; the expected value is 
shown as red vertical dotted line; the kernel density estimate (Gauss-
ian kernel) is depicted as magenta dashed line



233PFG (2020) 88:219–238 

1 3

(false negatives). In this case, the small relative shift is 
almost perpendicular to one triangle edge crossed by the 
crack, such that its length rarely changes (smaller than the 
precision of LSM). Because of that, there are two edges that 
have almost constant side lengths. In such cases, it is difficult 
for the algorithm to decide which edge is the baseline for the 
crack width computation. If the wrong side is chosen, the 
computed relative translation vector is an outlier.

In conclusion, the precision and accuracy of the rela-
tive translation vector components is below 0.06 px. Under 
suboptimal conditions, the accuracy may reach values up to 
0.2 px. The ratio of outliers as a measure of reliability is on 
average 2%, but the maximum value is about 7%.

4.4  Statistics of the Crack Widths

After computing the crack width by projecting the relative 
translation vector onto the crack normal (Eq. 28), these val-
ues can also be analyzed statistically. Because of the projec-
tion, the crack normal �⃗n is a further quantity that influences 
the scattering. It is to be expected that the accuracy of the 
crack normal �⃗n is not that high due to discretization errors 
(line fit with the center points of the crack triangle and its 
neighbours, see Appendix C), such that the accuracy of the 
crack widths should be worse than the accuracy of the rela-
tive translation vectors.

Fig. 27  Simulated shift of v = 0.6  px with different relative transla-
tion directions (from top to bottom); left: scatter plot of relative trans-
lation vectors with the least-squares algorithm for all triangles along 
the crack; center: scatter plot without outliers; blue: reference vector; 
red: mean vector and confidence ellipses with 95  % and 99.73  %; 
right: histogram of the corresponding crack widths; the expected 
value is shown as red vertical dotted line; the kernel density estimate 
(Gaussian kernel) is depicted as magenta dashed line

Fig. 28  Precision and accuracy of the relative translation vectors 
for all reference crack widths for the three-point (3p) and the least-
squares algorithm (ls). Left: precision using principle standard devia-
tions from the empirical covariance matrix; center: accuracy using 
principle standard deviations from the covariance matrix with the 

given reference shift as average; right: other quantities for accuracy 
measurement, distance from the mean to the reference relative shift, 
mean distance from the single to the reference relative translation 
vector, and maximum distance to the reference relative shift vector
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The expected crack widths �r are the x components of the 
relative translation vector t⃗rel,ref used for image generation:

The mean of the measured crack widths rm is:

where ri is the crack width of the ith crack triangle; n is the 
number of crack triangles.

The standard deviation of the crack widths sr is used as a 
quantity for precision:

The standard deviation s∗
r
 with the reference crack width 

�r as expected value is used as a quantity for the accuracy:

(42)�r = trel,ref,x.

(43)rm =
1

n
⋅

n∑
i=1

ri,

(44)sr =

√√√√ 1

n − 1
⋅

n∑
i=1

(ri − rm)
2.

(45)s∗
r
=

√√√√1

n
⋅

n∑
i=1

(ri − �r)
2.

Figure 30 shows the precision and accuracy of the crack 
widths of all experiments in two charts. The difference 
between the three-point and the least-squares algorithm is 
very small. Considering the experiments with the relative 
translation vector in x-direction 

(
t⃗rel,ref =

(
v; 0

)T) , the preci-
sion and the accuracy values are similar and on a constant 
level at 0.03 px. In case of ⃗ trel,ref =

(
v; v

)T , the precision and 
the accuracy of the crack widths are also similar. Only the 
y-direction (⃗trel,ref =

(
0; v

)T
) is an exception, because the 

mean and the expected value differ ( sr,y < s∗
r,y

 ). The expected 
value �r,y is zero, because there are only movements along 
the crack, whereas the mean is greater than zero, because all 
computed crack widths are positive (absolute values), see 
also the histograms in the second rows of Figs. 24, 25, 26, 
and 27. The crack widths are not normally distributed. For 
the shifts in y as well as in x and y, the precision and accu-
racy values are higher in case of higher shifts v. This behav-
iour is expected due to the fluctuation in the crack normal 
estimation. Higher relative shifts should lead to higher 
deviations.

In summary, the precision and accuracy of the crack 
widths is better than 0.10 px for crack widths below 2 px. 
The accuracy and the precision depends on the crack width 
itself. Crack widths up to 5 px can lead to accuracy values 
up to 0.25 px.

4.5  Further Remarks

In real monocular experiments, there are further systematic 
errors. Some of the points are already listed in Sect. 1.3. In 
addition to these points, in case of measurements with induc-
tive displacement transducers as comparing method, clamps 
can cause occlusions.

However, the error analysis in this section only considers 
the computation of displacements as well as the geometric 
analysis and is separated from the other effects mentioned 
in Sect. 1.3 and at the begin of this subsection, although the 
results may be too optimistic.

Fig. 29  Reliability: outlier ratio � in percent for all experiments 
[three-point algorithm (3p) and the least-squares algorithm (ls)]

Fig. 30  Accuracy and precision 
of crack widths
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5  Conclusion and Outlook

This paper presents a strategy to detect cracks and com-
pute their widths in multiple crack structures. The method 
is based on the deformation analysis of triangle meshes. The 
reliability, the precision, and the accuracy are checked using 
different simulated images with known deformations. Crack 
widths can be determined with an accuracy of better than 
0.1 px in most cases, with lesser accuracy up to 0.25 px 
under suboptimal conditions. Further work should concen-
trate on model extensions using angles obtained by least-
squares matching. Another extension could be the rotation of 
the upper part of the triangle. In addition, the accuracy can 
be determined with other reference measurements. A further 
interesting issue would be the application of the algorithm 
on triangle meshes of 3D surfaces.
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Appendix A: Computation of Principal 
Strains of Triangles

This section gives a short overview of the calculation of 
principal strains in triangle meshes according to the work 
of Liebold and Maas (2016). The principal strains of trian-
gles are computed using the coordinates of its vertices in 
the reference and in the subsequent epoch. First, the param-
eters of an affine transformation between the coordinates 
are calculated:

where x, y are the coordinates of the subsequent epoch; 
xref, yref are the coordinates of the reference epoch; aij are 
the affine parameters.

The deformation gradient � is composed of four of the 
affine parameters. It is a product of a symmetric matrix � 
and rotation matrix �:

(46)
(
x

y

)
=

(
a11 + a12 ⋅ xref + a13 ⋅ yref
a21 + a22 ⋅ xref + a23 ⋅ yref

)
,

To compute the polar decomposition, the left Cauchy–Green 
deformation tensor �2 is calculated:

After this, an eigenvalue decomposition of the left Cauchy-
Green deformation tensor is applied:

where � is the eigenvector matrix (orthogonal matrix), � 
is the eigenvalue matrix (diagonal matrix), and �i is the ith 
eigenvalue, diagonal element of �.

The greater eigenvalue �2 is used to compute the principal 
strain s using the square root (Eq. 50). The principal strain s 
is a dimensionless quantity.

In case of cracks running through a triangle, there will be an 
extension and the triangle will thus have a larger principle 
strain s. The direction of the strain is given by the corre-
sponding eigenvector (column of �).

Appendix B: Crack Width Computation 
in Triangles

In this appendix, a short overview of the algorithm according 
to the approach of Liebold and Maas (2018) is given. Between 
the reference and the subsequent epoch, a rigid movement for 
the three vertices of the triangle is assumed, and in case of 
a crack running through the triangle, an additional relative 
translation is added to one of the vertices. Figure 31 shows an 
example of the movement of the vertices of a crack triangle.

(47)� =

(
a12 a13
a22 a23

)
= � ⋅ �.

(48)�
2 = � ⋅ � = � ⋅ �

T = � ⋅ �
T.

(49)�
2 = � ⋅ � ⋅ �

T = � ⋅

(
�1 0

0 �2

)
⋅ �

T,

(50)s =
√
�2.

Fig. 31  Movement of a crack triangle

http://creativecommons.org/licenses/by/4.0/
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First, the rigid transformation concerning all vertices has 
to be separated from the relative translation concerning only 
one vertex. For that purpose, the minimal absolute difference 
of the edge lengths between the reference and the subsequent 
epoch is determined and the corresponding edge is consid-
ered as constant base edge. The indices of the vertices cor-
responding to the edge with the minimal absolute distance 
change imin and jmin are the baseline indices b1 and b2:

The remaining index of the triangle belongs to the upper 
point. The coordinates of the two vertices of the base edges 
in the reference and subsequent epoch are used to compute 
the parameters of the rigid body transformation ( ⃗t and �):

where t⃗ the translation vector; � is the rotation matrix.
The formula is extended with the relative translation vec-

tor t⃗rel for the upper vertex �⃗pup:

Then, the upper vertex of the reference epoch is transformed 
in the subsequent epoch using the parameters t⃗ and � . 
According to Eq. (53), the relative translation is computed 
by the difference of the upper point in the subsequent epoch 
and transformed reference point:

The relative shift t⃗rel is composed of a component perpen-
dicular to the crack and another part parallel to the crack t⃗|| , 
see Fig. 32a, b.

(51)

b1, b2 = imin, jmin = argmin
i,j

𝛥di,j

with

𝛥di,j = |||| �⃗pj − �⃗pi|| − || �⃗pref,j − �⃗pref,i||||.

(52)
�⃗pb1 = t⃗ + � ⋅ �⃗pref ,b1
�⃗pb2 = t⃗ + � ⋅ �⃗pref ,b2,

(53)�⃗pup = t⃗ + � ⋅ �⃗pref,up + t⃗rel.

(54)t⃗rel = �⃗pup − t⃗ − � ⋅ �⃗pref,up.

The crack width r is the absolute value of the part of the 
relative translation vector t⃗rel that is perpendicular to the 
crack course. It is computed by the scalar projection of the 
relative translation vector t⃗rel onto the crack normal �⃗n , see 
Eq. 55 and Fig. 32b:

The determination of the crack normal �⃗n is described in 
Appendix C. If there is no information about the normal 
direction �⃗n , the translation along the crack t⃗|| can be ignored; 
the crack width is approximately:

The perpendicular part and the parallel part to the crack can-
not cancel each other out. Because of that, the absolute value 
of the relative translation vector ||⃗trel|| can be used as an 
upper bound for the crack width r because 0 ≤ || cos �|| ≤ 1 . 
The crack width r is an absolute quantity and also has a unit. 
In the image space, it is measured in pixels.

Appendix C: Crack Normal Computation

The crack normal describes the direction that is perpendicu-
lar to the crack course. As a first assumption, the princi-
pal strain direction can be used as crack normal. In case of 
mechanical shear forces, the relative movement between the 

(55)r = ||⃗trel|| ⋅ || cos 𝛽|| =
|| �⃗nT ⋅ t⃗rel||

|| �⃗n|| ≤ ||⃗trel||.

(56)r ≈ ||⃗trel||.

(a) (b)

Fig. 32  a Transformed reference and subsequent triangle according 
to Liebold and Maas (2018); b components of the relative translation 
vector

Fig. 33  Mechanical shear forces; red: extended triangles; blue: trian-
gles with ||�

rel
|| ≤ � ; direction of the relative translation vector �

rel
 is 

not parallel to the crack normal � anymore. This figure is according to 
Liebold and Maas (2018)
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left side and right side of the crack is composed of a perpen-
dicular part and a parallel part, see Fig. 32b. The presented 
algorithm is based on the approach of Liebold and Maas 
(2018).

In case of shear effects, the crack normal can be deter-
mined as follows:

• First of all, the approximate crack width is computed 
with Eq. (56) for each triangle. If the absolute value of 
the relative shift is greater than a threshold ( ||⃗trel|| > 𝜖 ), 
the triangle is considered as a critical candidate.

• Then, for each critical candidate, all critical triangles of 
the second-order neighbourhood (neighbours and neigh-
bours of neighbours) are determined. Triangles are con-
sidered as neighbours if they have at least one common 
vertex.

• After this, a line fit of the center points of the critical 
triangles is computed.

• The perpendicular on this line is an approximation for the 
crack normal �⃗n (Fig. 33).

In Fig. 34, the line fit is visualized.
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