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Abstract
Rapid advances in the Internet of Things (IoT) domain have made it a crucial technology for the real-time structural health 
monitoring (SHM) of civil engineering infrastructures. The availability of quick and accurate vibration data is essential for 
SHM, and such data can be obtained through IoT devices mounted on the structures. This study proposes a real-time damage 
prediction and localization approach using a low-cost "do-it-yourself" wireless sensor node with IoT capabilities for SHM. 
The proposed sensor node comprised a microcontroller (NODE MCU ESP8266) and a 6-axis accelerometer (MPU6050). The 
IoT devices track the real-time frequency of the laboratory-scale structure indirectly via measurement of acceleration-time 
history, and their results are compared with conventional industry-standard accelerometers. Promising results, with a <6% 
average difference from the conventional accelerometer (difference ranging from 1.3 to 14.3%), provided an innovative SHM 
for vibration-based real-time SHM using the IoT paradigm. The performance of the proposed methodology was validated 
numerically and experimentally on two laboratory-scale structures, and the potential of IoT technology for enhancing the 
efficiency of SHM was demonstrated. The proposed method thus can enable the early detection of damages in infrastructures 
such as buildings and bridges and thus can reduce the likelihood of accidents via continuous SHM.

Keywords Real-time monitoring · Internet of things · Structural health monitoring · Nondestructive testing · Intelligent 
sensors · Smart buildings

Introduction

Civil engineering infrastructures are usually monitored 
using wired sensors, and in some cases, wireless sensors, 
but they tend to be cumbersome to install at the site, and 
extensive preparation is required prior to data acquisition. 
Data acquisition has associated costs, as personnel often 
must go to the site to retrieve data manually from the data 
loggers or for maintenance and repair. In this regard, an 
alternative technology to transfer and acquire SHM data is 
the Internet of Things (IoT). IoT-based technologies have 
been pointed out as emerging areas for driving industrial 
revolution 4.0 and future technological growth. IoT can be 
helpful for addressing challenges in traditional SHM. How-
ever, it is a less explored domain in SHM where compact 
alternative solutions are sought for inspection profession-
als. SHM using IoT combines wireless data transfer from 
sensor nodes through WiFi mainly to detect and monitor 
structures in real-time. IoT implementation in SHM can sur-
pass existing limitations by enabling sensor nodes to trans-
mit and process data to cloud devices, enabling real-time 
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SHM. By integrating IoT devices such as sensors, cameras, 
and other monitoring devices mounted on civil engineering 
infrastructures, data on various structural health parameters, 
such as strain, displacement, vibration, relative humidity, 
and temperature, can be collected and analyzed. Applying 
such IoT-based solutions enables monitoring in cases where 
traditional SHM cannot reach. IoT can help improve struc-
tural safety by detecting damage early and enabling timely 
maintenance or repair [1]. IoT-Based real-time data capture 
and monitoring systems can supervise operation of civil 
engineering infrastructure, data, and performance [2].

Mishra et al. [3] discussed IoT’s use for monitoring the 
structural health of civil engineering infrastructure, includ-
ing real-time data collection from various sensors. They 
proposed using these technologies to automate the SHM 
process and extend structures’ service live. Recent studies 
have explored some applications of IoT-based sensors for 
concrete/lime-mortar compressive strength monitoring [4, 
5], real-time monitoring of construction projects [6], energy 
management system for metro rail projects [7], IoT for solar 
energy measurements [8], IoT for automated personal pro-
tective equipment tool for construction safety [9, 10], IoT 
for masonry cultural heritage [11, 12], tunnel construction 
monitoring [13], and checking the vibration quality of fresh 
concrete combining IoT and deep learning [14].

Numerous studies have used IoT devices for SHM of con-
crete structures [15, 16] using the maturity index method and 
micro-climate monitoring [17] where mainly temperature, 
relative humidity, and CO

2
 sensors are deployed. Few stud-

ies have explored the potential applications of IoT in real-
time SHM of infrastructures in the damage detection field 
using vibration signals for SHM [18]. Many existing studies 
have focused on the development of IoT devices and accel-
erometer nodes for monitoring dynamic behavior; however, 
further research is needed to accurately detect and localize 
damage in structures. Additionally, there is a lack of research 
on integrating different types of sensors in a single system 
to improve the accuracy of damage detection for SHM pur-
poses. Additionally, many case studies in the field of dam-
age detection/inverse problems for dynamic SHM, where 
the location and severity of damage are located are based on 
simulated data from finite element analysis [19, 20] of dam-
aged cases, some take into account experimental validation 
data from literature benchmark studies [21] and do not take 
into account experimental field data.

An important aspect of IoT is the network type used for 
data transmission and it varies depending on the need. An 
increasing number of studies are using IoT for SHM; these 
use various networks to communicate data and ensure user 
dependability. For example, some of the communication 
networks used in IoT and SHM include wireless sensor net-
works (WSNs), low-power wide-area networks (LPWANs), 
cellular networks, long-range (LoRa) technology [22], 

and satellite networks for global coverage in remote areas. 
Specifically, WSNs are often used in SHM applications to 
monitor the health conditions of structures such as bridges, 
buildings, and dams [23–25]. LPWANs are well suited for 
IoT applications where devices need to communicate over 
long distances, such as in smart cities and industrial settings. 
Cellular networks are often used in IoT applications, where 
cell phones paired with unmanned aerial vehicles (UAVs) 
process video data with deep learning algorithms [26]. Case 
study applications of such communication technologies in 
engineering include LoRa technology for monitoring of 
early age concrete compressive strength [27], LPWANs for 
slope and river monitoring system [28], GPS systems (sat-
ellite networks) for displacement study in bridges [29], and 
UAVs for fire detection using video-feed [30]. The current 
study uses WSN for transmitting acceleration-time data for 
SHM the case study structures.

One of the most significant and efficient ways to assess 
the current health condition of a structure is through the 
analysis of vibration data, which can describe the dynamic 
response of a structure. These data can then be analyzed 
using machine learning (ML) and other advanced algorithms 
to identify patterns and anomalies that may indicate damage 
or deterioration. Several IoT applications and applications 
supported by IoT-compatible accelerometers use vibration 
data for damage detection in civil engineering structures.

Several applications of SHM systems based on vibra-
tion data from accelerometers have been reported for SHM 
of bridges and buildings. Muttillo et al. [31] used an IoT-
based SHM system for damage detection in a cantilever alu-
minum bar structure. They deployed a triaxial accelerometer 
ADXL355 and used damage indicators that reported a ten-
fold increase in value with a 2.5 mm engraving in aluminum 
bars, compared with healthy beam data. Duc et al. [32] esti-
mated the first mode shape and natural frequencies by using 
a calibrated ADXL345 acceleration sensor in the Arduino 
platform. Reddy et al. [33] compared the results of an analyt-
ical model with natural frequencies obtained experimentally 
via the frequency response function (FRF) of a cantilever 
beam. They concluded that low-cost Arduino-based sensors 
can extract modal parameters with <8% error compared with 
an expensive FFT analyzer. Hassan et al. [34] calculated 
modes for the undamaged and damaged structures of a 
five-story practical building using the IoT SHM system and 
determined that a shift of>5% indicated damage. Chilamkuri 
and Kone [35] performed a field experiment under the Var-
adi Road bridge using an ADXL accelerometer and analyzed 
the vibrations of the bridge deck. They considered a critical 
threshold value of >16 Hz, which indicates a weaker span. 
Peng et al. [36] developed an IoT sensing system for bridge 
SHM to capture the acceleration response, temperature, 
and GPS coordinates of moving vehicles. The test results 
indicated that the IoT-based SHM system captured the 
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first-order natural frequency of a full-scale footbridge, and 
Fourier spectra of the acceleration responses of the devel-
oped IoT sensor matched adequately using wired sensors. 
Koene et al. [37] reported the functionality of an IoT-based 
Memsio accelerometer for capturing the translational motion 
and vibration of the rotating machinery. Similar to our case 
study, Danish et al. [38] instead of a metal beam used a rein-
forced concrete (RC) beam to carry out the real-time SHM 
process using vibration data and then acceleration response 
via fast Fourier transform. Table 1 lists the different accel-
erometer sensors employed by different researchers along 
with their location in the civil engineering infrastructures.

This study deployed IoT for real-time monitoring of the 
modal parameters, such as natural frequencies and mode 
shapes, of two laboratory-scale case study structures. Real-
time frequency analysis was used to continuously monitor 
the health of the laboratory-scale case study structures. 
For SHM purposes, the raw data of the acceleration of a 
structural member, a low-cost IoT-based sensor was used 
herein, resulting in a cost-effective solution. The novelty of 
this study is twofold, (i) damage prediction and localization 
for two case study structures in civil engineering using IoT 
devices, and (ii) validation of the low-cost IoT-based sen-
sor node by comparing the results with a benchmark sensor 
node.

Methodology and framework

When the natural frequency is determined experimen-
tally, it deviates from the analytical value, similar to 
when there may be some deviation in the structural ele-
ment from the ideal condition; this causes the stiffness to 
vary along the beam. When a structure has damage, its 
stiffness decreases, which can lead to a higher period or 
lower frequency. Model updating is an important process 
in structural dynamics, which involves updating the struc-
tural properties such as stiffness and mass based on the 

measured modal parameters such as natural frequencies 
and mode shapes [39, 40]. In this study, ant lion opti-
mizer (ALO) optimizing algorithm is selected for model 
updating because it can efficiently search through a large 
and complex solution space compared with other algo-
rithms. ALO combines local and global search strategies, 
which can prevent it from getting stuck in local optima and 
improve solution quality. ALO is a multi-objective optimi-
zation algorithm inspired by the hunting behavior of ant 
lions; it can efficiently balance exploration and exploita-
tion while searching for optimal solutions. ALO is a flex-
ible algorithm that can be easily customized for optimiza-
tion problems and constraints [41, 42]. It can effectively 
solve complex optimization problems with nonlinear and 
multi-objective objectives, making it suitable for model 
updating.

For model updating for a rectangular cross-sectioned 
beam when analytical and experimental frequencies are 
known, the ALO algorithm can be applied as follows: 

 (i) Initialize the population of antlions with random 
positions: x0

i
 , where i represents the ant lion index, 

and 0 denotes the initial iteration.
 (ii) Update the position of each ant lion using, 

 where xt
i
 is the position of the ant lion at iteration t; 

st
i
 is the step size that controls the movement of the 

ant lion; and dt
i
 is the direction vector indicating the 

movement direction.
 (iii) The step size is updated using a linearly decreasing 

function (Eq. 2) 

 where MaxIter represents the maximum number of 
iterations.

(1)xt
i
= x

(t−1)

i
+ st

i
× dt

i

(2)st
i
= s0

i
× (1 − t)∕MaxIter

Table 1  Accelerometer sensors based on IoT/Arduino-based platforms used in literature for vibration-based SHM and their specifications

References Sensor type Sampling frequency Location

Muttillo et al. [31] ADXL355 250 Hz The first accelerometer is on end of the cantilever bar, and the 
second is 16.6 cm from the blocking point

Duc et al. [32] ADXL345 NA Free end of the cantilever beam
Reddy et al. [33] ADXL355 NA Free end of the cantilever beam
Hassan et al. [34] MPU6050 100 Hz Center of every floor
Chilamkuri and Kone [35] ADXL335 10 Hz to 360 Hz Under the bridge span at one of the piers
Peng et al. [36] ADXL355 120-200 Hz Vehicle body during the drive-by test on footbridge of building
Koene et al. [37] ADXL355 (MEMS 

accelerometer called 
Memsio)

4000 Hz One end of the roller machine and placed on the opposite side 
of the other

Danish et al. [38] waspmote 40 Hz sampling selected Sensors at one-third of the length from both sides



 Innovative Infrastructure Solutions (2024) 9:110110 Page 4 of 15

 (iv) The direction vector is calculated as a weighted aver-
age of three components, 

 where d(t−1)
i

 is the direction vector for ant lion in the 
previous iteration; w

1
 , w

2
 , w

3
 are the weights control-

ling the contribution of each component; c is a con-
stant scaling factor; xbest is the position of the best ant 
lion in the current iteration; and ri is a random vector 
generated from a uniform distribution.

 (v) Evaluate each ant lion’s fitness based on the optimi-
zation problem’s objective function, which in this 
case could be a measure of the discrepancy between 
the analytical and experimental frequencies.

 (vi) Update the best ant lion per fitness value as well as 
the population by applying crossover and mutation 
operations to the antlions, allowing for exploration 
and exploitation of the search space.

 (vii) Repeat steps (ii)–(vi) until a termination condition 
is met (e.g., the maximum number of iterations or 
desired fitness threshold).

Thus, ALO employs the behavioral patterns of ant lions, 
adaptive step size, and direction vector updates to effectively 
navigate the search process toward improved solutions. 
Through iterative population updates, the algorithm system-
atically exploits the search space, aiming to identify optimal 
or near-optimal solutions for the problem of model updating 
in an aluminum rectangular cross-sectioned beam. By lever-
aging the inherent characteristics of ant lions and employ-
ing strategic updates, ALO offers a promising approach to 
efficiently tackle the challenge of optimizing the model in 
this specific context.

One of the methods for quantifying the change in curva-
ture of the mode shape involves using the curvatures of the 
mode shape at two adjacent locations [43]. Considering a 
mode shape at a specific frequency containing n points, the 
following equation can be used to calculate the curvature of 
the mode shape at point i:

where y(i) is the displacement at point i, and d is the distance 
between adjacent points. The nth root of the resulting expres-
sion gives the curvature value at point i, and it is denoted as 
C(i)n . The value of n represents the order of the curvature. It 
is possible to then calculate ΔC(i) between adjacent points i 
and i + 1 using Eq. (5) [44]:

Further, by analyzing the sign and magnitude of the change 
in curvature, the location of the damage was determined. 

(3)dt
i
= w

1
× d

(t−1)

i
+ w

2
× c × (xbest − xt

i
) + w

3
× ri

(4)C(i)n =
y(i + 1) − 2 × y(i) + y(i − 1)

d2

(5)ΔC(i) = C(i + 1)n − C(i)n

Damage in a structure can be determined by observing 
changes in its natural frequency resulting from the addi-
tion or removal of mass. Adding damage alters the stiffness, 
mass, or both and the structure’s natural frequency. Measur-
ing this frequency change enables the detection of damage, 
with the magnitude of the shift indicating the severity of 
the damage. The mode shape’s curvature provides valuable 
information about the location of the damage. Figure 1 pre-
sents a flowchart of a comprehensive IoT environment with 
the full methodology suggested for damage identification. 
In cases where the damage is localized and minor, the local 
deformation of the mode shape in the damaged structure dif-
fers from that of the undamaged structure. Analyzing these 
differences allows for pinpointing the location of the damage 
within the structure [45].

IoT‑based SHM system

Utilizing various materials in IoT systems enables devices 
and components to establish connections, communicate data, 
and interact seamlessly. This study specifically focused on 
the initial component of the system, an MPU6050 acceler-
ometer sensor that plays a vital role in numerous electronic 
applications, including drones, robots, and gaming devices. 
It is commonly integrated into IoT systems because of its 
compact size, low-power consumption, and compatibility 
with various microcontrollers and platforms.

In this laboratory-scale two case studies, the MPU6050 
sensor was employed to collect acceleration-time domain 
data from structures, such as the rectangular cross-sectioned 
aluminum cantilever and fixed-fixed beam mentioned in 
next section on “Experimental investigation”. As pointed 
out by Mishra et al. [3] in their review paper, five IoT lay-
ers should work in tandem for the SHM system. The Layer 
1 (sensors and actuators) in this case study comprises 
(MPU5050 sensor for recording acceleration data) for the 
laboratory-scale structure. Layer 2 (internet gateways and 
network communication) is supported by Node MCU ESP 
8266 microchip with WiFi connecting capabilities. Layer 3 
(data analytics and cloud computing) allows the accelera-
tion data transmitted to extract the natural frequencies of 
the cantilever and fixed beam. Layers 4 and 5 (SHM data 
interpretation and session/message) are carried out to detect 
and locate the location of the damage in the two case study 
structures.

Experimental investigation

An 80 cm x 50 mm × 5 mm cross section of an aluminum 
beam with an elastic modulus of 69 GPa was considered for 
the experiment at structures laboratory of IIT Bhubaneswar, 
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Fig. 1  Comprehensive IoT envi-
ronment: A proposed methodol-
ogy for experimentation on two 
laboratory-scale civil engineer-
ing structures

Fig. 2  Experimental setup of a cantilever beam using MPU6050 and 
the conventional accelerometer: (a) healthy beam; (b) beam with sub-
tracted mass shown in circle; (c) placement of the conventional accel-

erometers, MPU6050 sensors, and node MCU; (d) beam with mass 
added shown in circle
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as shown in Fig. 2. The impact hammer (MEGGITT 2302-
01) was used to provide a sudden impact on the beam, which 
caused it to vibrate at its natural frequency. An MPU6050 
and conventional accelerometers were attached to the beam 
to collect acceleration data. The sampling frequency of the 
MPU6050 sensor was 180 Hz, and the conventional acceler-
ometer was 2048 Hz. These data were transferred to Azure 
IoT Hub for storage. A virtual machine was set up in the 
cloud for post-processing the data set using MATLAB, 
and the natural frequency of the material was determined. 
Frequencies obtained from the MPU6050 sensor were vali-
dated with those obtained by analytical modeling and the 
conventional accelerometer analyzer. The conventional 
accelerometer analyzer offers a range of features, such as fre-
quency analysis, time domain analysis, order tracking, and 
modal analysis, which can be customized to meet specific 
needs. Analytical modeling of a cantilever beam in MAT-
LAB involves using mathematical equations to describe the 
behavior of the beam under different loads and boundary 
conditions. The analytical approach involves using principles 
of mechanics, such as stress and strain, to derive equations 
that relate the loads applied to the beam to its deflection and 
deformation. MATLAB can solve these equations to obtain 
a quantitative understanding of the beam’s behavior. The 
frequencies obtained by experimental results were updated 
using the ALO algorithm.

Cantilever beam

Accelerometers were installed first at the free end, and the 
impact was given at the free end of the cantilever beam, as 
shown in Fig. 2a. Later, the sensor was placed at 400 mm 
from the fixed support, and the impact load was applied 
again at the free end. To minimize errors, the conventional 
and MPU6050 accelerometer sensors were placed near each 
other, as shown in Fig. 2c. After performing the frequency 
calculation for the healthy state, damage was created in the 
beam 400 mm away from the support. Different damage con-
ditions were designed, one with removing mass (Fig. 2b) 
and one with the added mass of 50 g square metal (Fig. 2d). 
In the latter case, a mass fragment with 50 mm × 50 mm × 
2 mm proportions was chipped off to create a second dam-
age case.

Fixed beam

The experimental configuration of the same aluminum beam, 
but now with both ends fixed, was adopted as a second case. 
Again, applying heavy weights at each end to maintain the 
boundary conditions of the fixed beam provided the extrem-
ities with rigid support. Figure 3a depicts the modal test 
structure with an accelerometer attached. The test structure 
comprised 16 zones and 15 hammering nodes. The length 
of each element was maintained at 5 cm, and the acceler-
ometer was attached to the node 7. Repetitive modal testing 
was performed on the structure to collect experimental fre-
quencies and mode shapes, as described in section 4, at all 
15 nodes and record acceleration response at node 7. After 
conducting frequency calculations for the healthy state, an 
approach similar to that of the cantilever beam was applied; 
two distinct forms of structural change were produced, one 
by adding mass and the other by subtracting mass from the 
total mass. Mass was added at 500 mm from one end of the 
beam, and it was then chipped off at 350 mm from one end, 
as shown in Fig. 3b. This mass fragment measured 50 mm 
× 50 mm × 2 mm.

Results

Cantilever beam

Figure 4a presents the raw data obtained from conventional 
accelerometers, representing acceleration over time, and 
Fig. 4b illustrates similar acceleration data collected from 
the MPU6050 sensor. Post-processing techniques were 
applied to both raw data sets to analyze the data further. 
Figure 5 shows the resulting graphs displaying the frequen-
cies extracted from the conventional accelerometer and the 
MPU6050 sensor. MPU6050, when paired with the NODE 
MCU, had a sampling frequency of 180 Hz, resulting in 
a recorded frequency range of 90 Hz (Nyquist frequency). 
MATLAB was employed to generate analytical frequen-
cies to validate the accuracy, which exhibited less diver-
gence from the obtained frequencies. Table 2 compares the 
updated frequencies from the analytical model, analytical 
frequencies, and conventional and MPU6050 accelerometer 
measurements. This analysis provided valuable insights into 

Fig. 3  Experimental setup of 
the fixed beam using MPU6050 
and the conventional accelerom-
eter: (a) healthy beam; (b) beam 
with a subtracted mass shown 
inside circle
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the consistency and reliability of the recorded frequencies 
across different measurement techniques. Slight deviations 
from the model’s updated frequencies were observed when 
using conventional accelerometers for measuring the healthy 
(undamaged) beam.

Specifically, the measured frequencies were f
1
 = 5.68 

Hz and f
2
 = 36.02 Hz, indicating an error of 5.08% and 

3.43%, respectively. Instead, employing the MPU6050 yields 
resulted in lower variations from the analytical frequencies. 
For the healthy beam, MPU6050 recorded the frequencies 
of f

1
 = 5.24 Hz and f

2
 = 35.54 Hz, resulting in the errors of 

11.85% and 4.70%, respectively. These findings suggest that 
MPU6050 exhibited comparable accuracy compared with 
conventional accelerometers in capturing the natural fre-
quencies of the beam. Mass addition to the cantilever beam 
significantly impacted the frequencies measured by con-
ventional accelerometers and the MPU6050 sensor. When 
mass was added, frequencies detected by the conventional 
accelerometers decreased to 4.89 Hz and 33.72 Hz, deviating 

by 13.92% and 6.4%, respectively, from the readings of the 
healthy beam.

The MPU6050 sensor registered frequencies of 4.19 Hz 
and 31.87 Hz, with percentage shift of 20.04% and 10.31%, 
respectively, compared with the frequencies of the original 
beam. This frequency reduction was attributed to the influ-
ence of mass addition on the structural stiffness of the beam. 
In contrast, when the mass was chipped off from the beam, 
the conventional accelerometer and the MPU6050 sensor 
reported higher measured frequencies. This was expected 
because the removal of mass decreased the structural stiff-
ness of the beam. The conventional accelerometers recorded 
frequencies of 6.41 Hz and 38.47 Hz, exhibiting percentage 
shifts of 12.72% and 6.79%, respectively, compared with the 
frequencies of the healthy beam.

Similarly, the MPU6050 sensor captured frequen-
cies of 6.05 Hz and 37.67 Hz, with percentages differ-
ence of 15.48% and 5.99%, respectively, compared with 
healthy beam frequencies. Figure 6 shows the first two 

Fig. 4  Time domain data of (a) conventional accelerometers; and (b) MPU6050 for cantilever beam
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mode shapes of the cantilever beam subjected to differ-
ent conditions, illustrating the influence of the addition 
or removal of mass on its behavior. Figure 6 depicts a 
notable alteration in the mode shape of the cantilever 
beam. The beam with removed mass showcased a sig-
nificantly larger amplitude than the healthy beam, while 

the beam with added mass exhibited a lower amplitude. 
This intriguing change in mode shape helped precisely 
locate the damage. Figure 7 graphically represents the 
curvature phenomenon. By analyzing the difference in 
curvature within the mode shape, the location of the dam-
age could be easily discerned. The highest peak in the 

Fig. 5  Fourier spectral ampli-
tude plot of the acceleration 
responses captured by (a) con-
ventional accelerometers; (b) 
MPU6050 for cantilever beam
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graph unmistakably indicated the precise location of the 
damage, which occurred consistently at 0.4 m for both 
modes, indicating that the damage had occurred precisely 
at 0.4 m from the support. These results provide valu-
able insights into the structural integrity of the cantilever 
beam.

Fixed beam

Accelerometer sensors were deployed at various nodes to 
collect acceleration-time domain data. Figure 8a presents the 
raw acceleration-time data obtained from the conventional 
accelerometer with the OROS data acquisition program at 

Table 2  Comparison of first two frequencies ( f
1
 and f

2
 ) for cantilever beam (Hz)

Healthy beam Mass addition Mass subtraction

Updated 
frequency 
(Hz)

Analytical 
frequency 
(Hz)

Conventional 
accelerometers 
(Hz)

MPU 6050 (Hz) Conventional 
accelerometers 
(Hz)

MPU6050 (Hz) Conventional 
accelerometers 
(Hz)

MPU 6050 (Hz)

f
1

5.95 6.34 5.68 5.24 4.89 4.19 6.41 6.05
f
2

37.28 39.88 36.02 35.54 33.72 31.87 38.47 37.67

Fig. 6  Cantilever beam (a) 1 st mode shape; (b) 2 nd mode shape

Fig. 7  Curvature change (can-
tilever beam) obtained from (a) 
conventional accelerometers; 
(b) MPU6050 sensor
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node 7. In contrast, Fig. 8b displays the acceleration data 
collected at node 7 using the MPU6050 sensor. Following 
data collection, both raw data sets were subjected to post-
processing techniques.

Table 3 presents the frequency results obtained from 
post-processing the sensor readings. Using the conventional 

accelerometer analyzer, when mass was added and removed, 
shifts of 13.78% and 4.07% and 6.13% and 3.44% in f

1
 

and f
2
 , respectively, were observed. Due to the frequency 

exceeding 90 Hz, only a single frequency was detectable 
by MPU6050. For MPU6050, when mass was added and 
removed, shifts of 14.53% and 4.07%, respectively, were 

Fig. 8  Acceleration-time domain data of (a) conventional accelerometers (by OROS data acquisition system); and (b) MPU6050 for fixed beam

Table 3  Comparison of frequencies for fixed beam

Healthy beam Mass addition Mass subtraction

Conventional acceler-
ometers (Hz)

MPU 6050 (Hz) Conventional acceler-
ometers (Hz)

MPU6050 (Hz) Conventional acceler-
ometers (Hz)

MPU 6050 (Hz)

f
1

35.17 33.65 30.32 28.76 36.60 35.02
f
2

99.95 NA 93.81 NA 103.39 N.A
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observed. Figures 9a and 9b represent the first two mode 
shapes obtained from the fixed beam using conventional 
accelerometers, while Fig. 9 (c) depicts the first mode shape 
obtained from MPU6050. Scenario exhibited a 13.78% shift 
in f

1
 and a 6.13% shift in f

2
 , whereas the mass-subtracted 

case showed a 4.07% shift in f
1
 and a 3.44% shift in f

2
 . Due 

to the higher frequency exceeding 90 Hz, only a single fre-
quency was detectable by the MPU6050. For the MPU6050, 
the mass-added scenario had a 14.53% shift, and the mass-
subtracted scenario had a 4.07% shift.

Figures 10a and 10b showcase the results of employing 
the change in curvature of the mode shape method to iden-
tify the location of the damage. Interestingly, in the case of 
added mass, the highest peak is observed at 500 mm from 
the support, while in the case of subtracted mass, it is found 
at 350 mm from the fixed end. This demonstrates the effi-
cacy of the MPU6050 IoT sensor in accurately detecting 

and pinpointing structural damage, as depicted in Fig. 10c. 
These findings highlight the sensor’s capability to contribute 
to SHM by precisely identifying the damage location based 
on changes in curvature within the mode shape.

Several studies have investigated the precision of acceler-
ometers compatible with vibration-based SHM either based 
on Arduino boards or similar electronic boards in various 
settings. In a study conducted by Rossi et al. [46], a Rasp-
berry Pi and a MEMS accelerometer were used to detect 
the vibrations of a fan blade for the wind turbine. The mean 
absolute percentage error (MAPE) that was reported was 
consistently <5% which was indicative of good accuracy. 
Comparing the findings of a low-cost accelerometer (LARA) 
with those of high-precision commercial sensors, Komariza-
dehasl et al. [47] observed maximum discrepancies of 3.3% 
in eigenfrequencies for low-cost wireless Arduino-based 
accelerometers with a sampling frequency of 333 Hz for 

Fig. 9  Fixed beam: conventional accelerometers (a) 1 st and (b) 2 nd mode shapes; (c) MPU6050 1 st mode shape
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a case study bridge in Barcelona. Ali et al. [48] discovered 
that the frequency of outcomes obtained from experiments 
and finite element analyses (FEM) varied by approximately 
10% for reinforced concrete pedestrian bridge. An IoT sys-
tem was verified using Pro-Trinket, an NRF module, a WiFi 
module, and Raspberry Pi. The system achieved error rates 
of 1% and 9% for detection of damage location and damage 
width detection, respectively [49]. Peng et al. [36] in their 
developed IoT system for footbridge SHM obtained relative 
error in mean value and maximum relative error in standard 
deviation ranging from 0.006% and 1.5%. In this study, an 
error of <6 % was obtained with respect to the conventional 
accelerometer, which is in agreement with the reported find-
ings. However, the difference between IoT-based and con-
ventional accelerometers varied from 1.3%−14.3% over the 
various frequencies captured.

Discussion

This study used an IoT-based accelerometer, specifically the 
MPU6050, for detecting structural damage in a cantilever 
beam and a fixed-fixed beam. A prototype damage detection 
system based on the IoT paradigm was developed, incor-
porating a "NODE MCU" electronic board with sensors to 
capture vibration data (acceleration-time history of healthy 

and damaged beams). The performance of the IoT-based sys-
tem was compared against industry-standard accelerometers 
and a good agreement was obtained for the frequency range 
captured. However, the proposed solution can be used for 
prototype systems with desirable accuracy.

Implementing IoT-based SHM can effectively mitigate 
economic losses and casualties from natural disasters. The 
findings of this study suggest that IoT-based sensors can be 
a viable option for detecting and locating structural damage, 
with potential advantages in terms of cost, ease of use, and 
accessibility. This technology enables timely identification 
of necessary repairs, thereby improving the resilience of 
such infrastructures and contributing to the development of 
smart and sustainable cities.

In this study, the sampling frequency of the MPU6050 
accelerometer was set to 180 Hz, that is, it can only capture 
the first and second frequencies of the system considered in 
this study. This limitation can be particularly relevant for 
structures or systems that primarily exhibit low-frequency 
motion or vibration. For instance, buildings or bridges often 
experience low-frequency oscillations caused by wind or 
traffic. Analyzing and capturing the first and second frequen-
cies in these scenarios can provide valuable insights into the 
structural response and help assess whether corrective meas-
ures are required. The first mode represents the fundamental 
frequency, while the second mode corresponds to the first 

Fig. 10  Curvature change graph (fixed beam) for reading of conventional accelerometers (a) 1 st and (b) 2 nd mode shapes; (c) MPU6050 1 st mode 
shape
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harmonic frequency, which is typically significant in these 
structures. However, it is important to note that for structures 
with higher-frequency motion or vibration characteristics, 
capturing only the first and second frequencies may not be 
adequate. In such cases, employing a sensor with a higher 
sampling frequency becomes essential to accurately capture 
the higher modes and frequencies in the system. This can 
ensure a comprehensive analysis of the structural behavior 
and enable timely action based on the findings. Furthermore, 
edge/extreme edge processing solution was not used in this 
study to save energy as sensor data were measured only dur-
ing laboratory testing but not over a long time.

Conclusions

This study delved into the innovative infrastructure SHM 
solutions based on IoT technologies for structural damage 
detection and maintenance. The novelty of this study is in 
real-time prediction and localization of damage using a low-
cost IoT-based sensor node in two case study civil engineer-
ing structures. The IoT system demonstrated the ability to 
detect changes in natural frequency and mode shapes and 
pinpoint the exact location of damage, providing invaluable 
insights into the system’s structural integrity. This approach 
has far-reaching potential in various industries because it 
ensures safety while significantly reducing SHM costs. 
Moreover, the outcomes of this research are poised to pro-
vide cost-effective solutions for SHM, which is critical for 
maintaining infrastructure safety even on limited budgets. 
Therefore, this study provides significant contributions for 
the development of next-generation IoT-based sensors for 
real-time SHM. It is a step forward in implementing a cir-
cular economy in the construction sector through building 
maintenance.

Despite the remarkable benefits of IoT and sensor tech-
nologies, some drawbacks exist in their applications. For 
instance, measurement accuracy, sampling frequency, high 
noise levels, battery life, and data transmission challenges 
have limited their commercial applications. In this study, 
accelerometer data were downloaded from the cloud and 
processed using MATLAB; however, the high cost of real-
time analysis limits its application. Future technological 
advancements could allow for the direct measurement of 
modal and real-time analyses, making IoT more accessible 
and cost-effective for use in buildings. This would require 
further evaluation and consideration of specific use cases 
and requirements to ensure successful implementation. 
Lastly, validation tests on real structures need to be carried 
out to further strengthen the validity of the system in real-
world scenarios as this study is limited to the laboratory 
scale.
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