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Abstract
This paper describes a review of the state-of-the-art research carried on the fresh and hardened properties of Alkali Activated 
Binders and Concretes. Though, many research have been carried out in the recent times on alkali activated binders, few key 
parameters still remain unattended, that restricts the commercial application of AAMs to the general construction activi-
ties. Fresh properties, mechanical strength and durability performance of Alkali activated concrete with various Alumino 
silicates as base materials is mentioned. An essential parameter of Alkali activated concrete is the concentration of alkaline 
solution on which various properties like mechanical strength, setting time and durability depends. Influence of wide range of 
concentrations from 6 to 16 M on these properties are studied and reported in this paper. This paper mainly concentrates on 
properties of readily available base materials such as Fly ash and Slag and the means to improve their performance through 
the use of various industrial and agro-based byproducts as additives. Problems pertaining to practical applicability of AAMs 
to general construction activities are also highlighted.
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Abbreviation
AAB  Alkali Activating Binders
AAC   Alkali Activated Concrete
AAFC  Alkali Activated Fly ash Concrete
AASC  Alkali Activated Slag Concrete
AAFSC  Alkali Activated Fly ash and Slag Concrete
CS  Compressive Strength
GGBFS  Ground Granulated Blast Furnace Slag
OPC  Ordinary Portland Cement

Introduction

Rapid advancement in infrastructure has resulted into ever 
increasing demand for Portland cement across the world. 
For every ton of cement production, a ton of carbon-di-oxide 
is released into the atmosphere, which ultimately accounts 
for 7% of global carbon-di-oxide emissions globally [1–3]. 
Depletion of natural resources, is yet another environmental 

issue faced by the present generation researchers, has pro-
voked the concrete technologists to look for an alternative 
to very popular Portland cement. Uncontrolled disposal of 
industrial by-products and agricultural wastes in the landfills 
has become yet another serious concern to the environment 
[4–6]. These issues together has led to the development 
of Alkali Activated materials in the recent years. This has 
proved to be a promising new generation material for con-
crete and similar applications since it consumes huge por-
tions of industrial and agro wastes containing considerable 
proportions of alumino silicates. Most Popular among them 
is fly ash. The production of fly ash has been increased grad-
ually in the past few decades globally. In the year 2018–2019 
estimated around 217.04 million tons in India. 77.59% of the 
fly ash available globally is generated in India. Because of its 
availability fly ash finds its use in the cement industry, mine 
filling, bricks, and many other related applications [7–9].

AAC is an alternative technique to lower the consumption 
of cement in the concrete making. AAC is kind of concrete 
which is manufactured by aluminosilicates and alkaline 
solution. the binder so produced has setting and harden-
ing properties similar to that of Portland Cement [10–12]. 
The reaction mechanism of alkali-activated concrete var-
ies compared to that of Ordinary Portland Cement concrete 
compositions. The Reaction mechanism mainly depends on 
the composition of the aluminosilicates used. Therefore, 
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reaction mechanism of AAC can be classified (on the basis 
of their composition) into high calcium contents and low 
calcium alkali activation. In high calcium binders, the prin-
cipal product formed as a binder is Calcium-Aluminum–Sili-
cate–Hydrate gel. It forms a dense matrix exhibiting excel-
lent engineering properties. The main products formed in 
a low calcium system are sodium-aluminosilicate- hydrate 
gels with pseudo-zeolite structures [11, 13–15].

Most popular aluminosilicates available are ground gran-
ulated blast furnace slag, fly ash, metakaolin, palm oil fuel 
ash, and rice husk ash etc. However, only categorizing the 
available literature on alkali activated binders, it is found 
that most of the studies are based on fly ash and GGBFS 
or a combination principally containing fly ash and GGBS. 
Alkali activators plays an essential role in dissolution of 
atoms to form geopolymer precursors. Potassium Hydroxide, 
Sodium Hydroxide, Potassium Silicate, and Sodium Silicate 
are alkaline solutions that have been used popularly [16–19]. 
Commonly used alkaline liquids are Sodium Hydroxide and 
Sodium Silicate. Alkali activated aluminosilicates materi-
als have a considerably lower carbon footprint in compari-
son with Ordinary Portland cement, exhibiting enhanced 
strength and chemical resistance properties [20–22]. The 
representation of the synthesis of alkali-activated material 
(Fig. 1).

The study of short-term and long-term properties of AAC 
is still unexplored. The advantages of alkali-activated con-
crete are utilizing agricultural waste materials and industrial 
by-products to manufacture concrete and since it consumes 
a lot of by products, it proves environmentally friendly. The 
properties influencing the fresh properties are studies from 
the available literature. The fresh properties of the binder 
system are reported in terms of mini-slump flow of paste and 
setting time. The oxides composition of various industrial 
and agro binders are discussed since they largely influence 

the mechanical properties of AAC. The paper also reports 
the details of various alkaline solutions used by research-
ers and their influence on fresh and hardened properties of 
AAC.

Historical background of AAC 

The technology of slag cement predates by more than a cen-
tury, with a patent awarded to Kuhl [23] in 1908 and later in 
1930. wherein slag was activated with alkaline liquid com-
prising of potassium hydroxide. In 1937, Chassevent [24] 
conducted experimental research on the reactivity of slag by 
using an alkaline solution consisting of potassium hydroxide 
and sodium hydroxide. Purdon [25] proposed mixing slag 
and dry solid sodium hydroxide and then adding water to 
prepare a mortar mixture in 1940.

Gluskhovsky [26] successfully attempted preparing 
binder compositions based on accessible calcium-alumino-
silicate sources using alkaline liquid in 1959. Later in 1979, 
the term “geopolymer” was coined by Davidovits [27]. 
In 1985, Davidovits and Sawyer [28] studied early high-
strength mineral polymer composition using strong alkalis 
such as water, potassium hydroxide, sodium hydroxide, 
potassium poly-silicate, and sodium poly-silicate solutions. 
Sodium silicate and small amounts of hydrated lime were 
used as an alkali solution to develop alkali-activated slag 
concrete by Douglas et al. [29] in 1991. Wang and Scrivener 
[30] researched the microstructure development of alkaline 
activation of slag pastes in 1995. The mechanism of activa-
tion of fly ash with alkali-activated solutions was described 
by Palomo et al. [31] in 1999. Later, in 2006 Fernandez-
Jimenez et al. [32] studied engineering properties such as 

Fig. 1  Representation of synthesis of alkali-activated materials [81]
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mechanical properties, modulus of elasticity, bond strength, 
and shrinkage of alkali-activated concrete.

Behavior steel corrosion in carbonated alkali-activated 
slag concrete was studied by Aperador et al. [33] in 2009. In 
2012, Chi [34] conducted experimental research on the dura-
bility of AASC and the effect of dosage. Recently, Machine 
learning has been used by various authors to study the prop-
erties of AAC. Gomaa et al. [35] used machine learning to 
predict fresh and mechanical properties of AAC in 2020.

Materials

Aluminosilicate materials

Industrial by-products such as Ground Granulated Blast 
Furnace Slag, fly ash, and agricultural waste such as palm 
oil fuel ash, rice husk ash, and sugarcane bagasse ash are 
familiar sources of aluminosilicate materials used for alkali-
activated binders [36]. The main compositions of these 
materials are alumina, magnesium, calcium, iron, and silica, 
which promote the reactivity mechanism in the AAB system. 
The Cementitious alkali-activated system components are 
shown in Fig. 2.

Fly ash

Fly ash is a by-product of the pulverized coal from thermal 
power plants. Fly ash is classified into two types, i.e., Class 
C and Class F [37]. Class C is a high calcium fly ash that 
contains more than 20% lime, and Class F is a low calcium 
fly ash with less than 7% lime. Class F fly ash is the best 
aluminosilicate source to be used as a base material because 
of its spherical structure, highly reactive phase, lower price, 
and abundance [38]. Class C fly ash is used less frequently 

for manufacturing alkali-activated concrete due to its rapid 
setting [39] and not as readily available as Class F [40, 41].

Ground granulated blast furnace slag

GGBFS is a by-product of iron and steel manufacturing 
from the blast furnace, and then it is passed through water. 
The produced granular product is dried, and then it is 
ground into a powder. GGBFS is high in Calcium-Silicate-
Hydrates and highly cementitious, a strength-enhancing 
compound that improves the mechanical properties of the 
concrete. GGBFS is commonly mixed with fly ash (Class 
F) to improve the reaction mechanism of the AAC [13]. 
GGBFS alone can be used in AAC, but the major draw-
back is that high calcium content in GGBFS accelerates 
the reaction of alkaline binders leads to early setting time 
[38, 42].

Oxide composition of fly ash and GGBFS

Since Fly ash and GGBFS is industrial by products, their 
compositions vary from depending on the process they 
have undergone. The performance of Alkali activated 
binders depend on the oxide compositions of the base 
materials. The oxide composition of fly ash and GGBFS 
using X-Ray Fluorescence is shown in Table 1. Fly ash 
and GGBFS possess a large amount of alumina, calcium, 
and silica. The chemical constituents of Class F fly ash 
reported in the literature referred for this study, here 
mainly comprises silicon-di-oxide  (SiO2) and aluminum 
oxide  (Al2O3), Class C fly ash primarily includes Silicon-
di-oxide  (SiO2), aluminum oxide  (Al2O3), and calcium 
oxide (CaO). GGBFS comprises silica oxide  (SiO2) and 
calcium oxide (CaO) as a significant constituent. The 

Fig. 2  Cementitious alkali-acti-
vated system components [44]
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oxide composition of fly ash and GGBFS used by various 
authors are shown in Table 1.

Alkaline activator solution

Potassium silicate  (K2SiO3), potassium hydroxide (KOH), 
sodium silicate  (Na2SiO3), and sodium hydroxide (NaOH) 
are used as alkaline solutions. In most of the studies either 
NaOH or  Na2SiO3 solutions or a combination of both are 
used primarily used as activators. Few studies have reported 
the use of KOH and  K2SiO3 in the similar lines [16]. The 
alkaline liquids dissolve the silica and aluminum atoms 
present in the aluminosilicate to form silicon-oxygen-alu-
minum (Si–O–Al) bonds as the polymerization process [43]. 
Though Potassium hydroxide is more alkaline than sodium 
hydroxide, the dissolution rate of silica and alumina in 
sodium hydroxide solution is found to be higher [36]. The 
polymerization process is rapid if sodium or potassium sili-
cates are used with alkaline hydroxide as compared to use 
of only hydroxides of sodium or potassium. Sodium hydrox-
ide is obtained from Brine electrolysis, and they are avail-
able in three forms, i.e., flakes, beads, and solids. Flakes are 
manufactured by feeding molten sodium hydroxide through 
cooled flaking rolls. Beads are obtained by passing molten 
solution into the prilling tower. Solids are produced by cool-
ing molten caustic soda. The particle sizes of flakes, beads, 

and solids are different, whereas the chemical composition 
is the same. Sodium silicate is obtained from carbonate salts 
and silica by calcination and adding the required amount of 
water [44]. concentration of NaOH used for preparing AAC 
depends on the performance level expected. Higher concen-
tration which accelerates the reaction of raw materials. The 
sodium carbonate  (Na2CO3) is also an alkaline solution, that 
can be used for GGBFS based AAB [45]. Influence of vari-
ation of molarity of NaOH and ratio of NaOH to  Na2SiO3 
as reported by the various researchers is shown in Table 2.

Fresh properties of AAB

Mini‑slump flow of paste

The mini-slump cone test is used to measure the fluidity of 
fresh paste [46]. Nedeljkovic et al. [38] conducted a series 
of experiments for the flow test using a mini-slump cone 
with varying percentages of slag and with various alkaline 
liquid to binder ratio. With decrease in fly ash content, the 
spread diameter gradually decreased as the proportion of 
slag increased from 0 to 100%… The smooth glassy surface 
and spherical shape of fly ash particles promoted the sliding 
of the particles which increased the fluidity of paste Alka-
line solution to binder ratio has been used from 0.3 to 0.7 in 

Table 1  Oxide Composition of fly ash and GGBF

SiO2 Al2O3 Fe2O3 CaO MgO SO3 SO4 K2O S Na2O MnO TiO2 P2O5 LOI Authors

FA 53.09 24.8 8.01 2.44 1.94 0.23 – 3.78 – 0.73 – – – 3.59 Fernandez-Jimenez et al. [32]
(Class F) 50.5 26.57 13.77 2.13 1.54 0.41 – 0.77 – 0.45 – – 1 0.6 Sarker et al. [67]

46 33 10.5 2.6 - – – - – - – – – – Lee and Lee [82]
50 28.25 13.5 1.79 0.89 0.38 – 0.46 – 0.32 – 1.54 0.98 0.64 Nath and Sarker [52]
50.7 28.8 8.8 2.38 1.39 – – 2.4 – 0.84 – – – 3.79 Okoye et al. [61]
70.3 23.1 1.4 0.2 0.6 0.2 – 0.9 – 0.4 – 2.6 0.2 2 A. Wardhono et al. [66]
56.8 23.8 7.2 4.8 1.5 – – 1.6 0.3 0.8 – 1.2 0.51 1.2 Nedeljkovi´c et al. [38]
53.24 26.42 1.65 3.65 9.55 0.56 – 2.57 – 0.76 – 0.86 – – Fang et al. [54]
64.97 26.64 5.69 0.33 0.85 – 0.33 0.25 – 0.49 – – – 0.45 Adak and Mandal [70]
53.59 28.46 8.71 4.23 1.84 0.96 – 1.63 – 0.58 – - – – Mehta et al. [14]
60.42 31.06 3.34 0.93 0.46 0.1 – 0.95 – – 0.03 2.02 0.41 – Dineshkumar and Umarani [53]

FA 38.7 20 15.3 16.6 1.5 2.6 – 2.7 – 1.2 – 0.4 0.1 0.1 Chindaprasirt et al.[49]
(Class C) 37.7 20 5.6 23.4 4.3 2.4 – 0.6 – 1.7 – – – – Thomas and Peethamparan [60]

50.16 15.57 9.61 17.6 0.9 1.63 – 1.86 – – – 1.93 – – J. Stolz et al. [83]
GGBFS 21 17 0.62 56.1 - 0.77 – - – – – - – – Lee and Lee [82]

32.46 14.3 0.61 43.1 3.94 4.58 – 0.33 – 0.24 - 0.55 0.02 0.09 Nath and Sarker [52]
36.9 14.2 0.3 36 5.1 6.1 – 0.1 – – 0.4 0.6 0.4 0.3 A. Wardhono et al. [66]
35.5 13.5 0.64 39.8 8 – – 0.53 1 0.4 – 1 – –1.3 Nedeljkovi´c et al. [38]
36.77 13.56 0.41 37.6 7.45 1.82 – 0.55 – 0.25 – 0.79 - - Fang et al. [54]
33.86 20.4 0.8 33.67 7.89 0.9 – - – 0.12 – – – 0.36 Thunuguntla and Rao [56]
35.8 13.21 1.97 35.68 9.76 0.21 – 0.57 – 0.48 – – – – Mehta et al. [14]
34.42 16.62 0.64 38.27 5.99 1.57 – 0.31 – – 1.04 0.84 – – Dineshkumar and Umarani [53]
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the previous research. Most of the studies used solution to 
binder ration ranging from 0.4 to 0.5. It is found that when 
the solution to binder ration increased from 0.4 to 0.5, the 
spread diameter increased significantly. The spread diameter 
of alkaline paste reduced with the increase in the percent-
age of GGBFS as shown in Fig. 3. Dai et al. [47] studied 
slump flow of the pastes for 100% fly ash, 100% GGBFS, 

and 50% slag + 50% fly ash with varying alkaline liquid to 
binder ratio i.e. 0.27, 0.32, 0.37, and 0.42. Pangdaeng et al. 
[48] researched the flow test on Class C fly ash geopolymer 
with OPC as a partial replacement. The initial percentage of 
spread diameter of the pastes increased with an increase in 
alkaline to binder ratio for all three types of FA-GGBS based 
paste. the highest value of spread diameter was obtained 
by 50% GGBFS + 50% fly ash for 0.42 alkaline liquid to 
binder ratio. The flow of paste was halted around 30 min 
for 100% GGBFS pastes, while there was a constant flow of 
paste for 100% fly ash pastes because of the low reactivity of 
fly ash shown in Fig. 4. An addition of superplasticizers or 
extra water can be used to improve workability which may 
improve the applicability of alkali activated paste to various 
infrastructure projects [49]

Similar result was found in another study [50]. Kamath 
et al. [51] studied on fresh properties of alkali activated ter-
nary paste with fly ash, GGBFS, and metakaolin binders. 
The slump flow value increased from 135 to 170 mm as the 
metakaolin percentage in the binder decreased from 20 to 
5% due to the high surface area of metakaolin and its irregu-
lar form. Metakaolin is highly reactive in nature and reduces 
the flow significantly due to fast reactivity.

Setting time

Setting time is the essential property of fresh paste that 
defines the applicability especially in bulk concreting. The 
setting time varies with the influence of ratio of alkaline acti-
vator to binder, ratio of sodium silicate to sodium hydroxide, 
fly ash to slag ratio, and molarity of sodium hydroxide solu-
tion. Nath and Sarker [52] studied setting time on different 
fly ash to slag ratios with constant sodium silicate to sodium 
hydroxide ratio of 2.5, alkaline activator to binder ratio 0.4, 

Table 2  Molarity of NaOH and ratios of NaOH to  Na2SiO3

Authors Molarity of NaOH Ratio of NaOH to 
 Na2SiO3

Somna et al. [58] 4.5, 7.0, 9.5, 12.0, 
14.0 and 16.5

-

Sarker [59] 14 1:2.5
Sarker et al. [67] 14 1:1.5
Lee and Lee [82] 4, 6 and 8 1:0.5, 1:1 and 1:1.5
Nath and Sarker [52] 14 1:1.5, 1:2 and 1:2.5
Okoye et al. [61] 14 1:2.5
Adak et al. [84] 12 1:1.8
Wardhono et al. [66] 10 and 15 1:2
Mohankumar and Man-

ickavasagam [85]
8, 10, 12 and 14 1:2.5

Duan et al. [86] 10 1:1.5
Thunuguntla and Rao 

[56]
1 and 8 1:1.5

Fang et al. [54] 10 and 12 1:1.5, 1:2 and 1:2.5
Stolz et al. [83] 8 –
Sakulich et al. [87] 8 1:2
Adak and Mandal [70] 8 1:1.8
Mehta et al. [14] 5–20 1:2 to 1:2.75
Sevinc and Durgun [88] 10, 12, 14 1:0.75 and 1:1.5
Das et al. [89] 12 1:2

Fig. 3  Mini-slump spread diameter of alkali-activated pastes with dif-
ferent percentages of slag [38] Fig. 4  Percentage of spread diameter with time [47]
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and 14 M of NaOH. Fly ash was replaced with slag at 0%, 
10%, 20%, and 30%. Fly ash with 100% content was used 
as the binder that reduces the initial setting time was more 
than 24 h which is because of slow polymerization. Addition 
of 10% slag was mixed with the fly ash than initial and final 
setting time was 290 min and 550 min. Further on increasing 
slag by 20% and 30% the setting decreased significantly as 
shown in Fig. 5). Slag was added into the alkali activated 
binders’ mixture that reduce setting time with increase in 
slag content. Similar results were reported in other studies 
[26, 31, 35, 37, 53].

Fang et al. [54] investigated setting time on the alka-
line liquid to binder ratio of 0.35 and 0.4 with varying slag 
replacement of 15%, 20%, and 25% respectively, ratio of 
sodium silicate to sodium hydroxide was 2, and molarity of 
sodium hydroxide was 10 M. The alkaline activator to binder 
ratio was increased from 0.35 to 0.4 than initial setting time 
was increased from 189 to 285 min for 15% slag replacement 
and 102 to 129 min for 25% slag replacement. The final 
setting time increased from 239 to 320 min for 15% slag 
replacement and 112 to 140 min for 25% slag replacement 
as illustrated in Fig. 6. As the alkaline activator to binder 
ratio reduces that shorter the set time due to the decrease 
in liquid content which resulting into accelerated reaction 
of binders. Similar findings were reported in other studies 
[26, 32]. with increase in  Na2SiO3 to NaOH ratio, polym-
erization rate increases significantly, resulting into reduction 
of setting times [37]. [31, 32, 35]. t increase in molarity 
of NaOH resulted into reduction in setting time because of 
the increase in the hydroxide ion concentration [31, 35, 37] 
(Fig. 7). The effect of NaOH molarity on setting time is 
demonstrated in Fig. 8. Karim et al. [55] studied setting time 
without grinding and grinding of palm oil fuel ash and rice 
husk ash-based binders with different percentages of slag.

On reviewing recent literature, it is found that the binders 
which contain higher proportions of calcium results in lower 
setting times compared to low calcium binders. The setting 
also varies with the characteristics of liquid sodium silicate. 
Heating and curing conditions of alkali activated pastes also 
plays vital role in the reduction of stetting time.

Mechanical properties of AAC 

Compressive strength

Compressive strength (CS) is the mechanical property 
of concrete which enable the users to apply it to various 

Fig. 5  Effect of different percentages of slag on setting time [52]

Fig. 6  Effect of Alkaline liquid to Binder ratio on setting time [54]

Fig. 7  Effect of Sodium Silicate to Sodium Hydroxide ratio on setting 
time [54]
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non- structural and structural application. The CS of AAC 
depends on parameters such as ratio of sodium silicate to 
sodium hydroxide, molarity of NaOH, alkaline activator to 
binder ratio, and curing regimes. Fernandez-Jimenez et al. 
[32] investigated on engineering properties of AAFC. The 
CS of AAFC increased rapidly in the first 24 h and slightly 
increased after 24 h. The CS of AASC increased from 17 
to 66 MPa as the molarity of NaOH increased from 1 to 
8 M [56]. As the molarity of sodium hydroxide increases 
polymerization process increases,while inducing sufficient 
alkalinity to the mix and enabling the dissolution of alumina 
and silica in the fly ash and GGBFS. [57] CS on different 
molarity of NaOH from 6 M, to 16 M with varying propor-
tions of GGBFS in conjunction with fly ash has been studies. 
As the molarity of sodium hydroxide was increased from 6 
to 16 M, the  28th-day compressive strength also increased 
from 18 to 32 MPa for 0% GGBFS and 45 MPa to 77 MPa 
for 50% GGBFS. (Fig. 9). Similar results were reported in 
other studies [27, 31, 35, 53, 58]. The early dissolution of 
aluminosilicate compounds with increasing molarity of 
NaOH above 16 M resulted in a decrease of CS. [58].

Nedeljkovic et al. [38] studied CS of AAC with two dif-
ferent ratios of the alkaline solution to the binder, i.e., 0.4 
and 0.5. The alkaline liquid to binder ratio was increased that 
reduce CS slightly. Because of the decrease in consistency 
of mixes, the alkaline activation process of AAC decreases 
because of alkaline liquid to binder ratio decreases. Nath and 
Sarker [52] investigated on early strength properties of con-
crete with various alkaline liquid to binder ratios. The alka-
line liquid to binder ratio was increased from 0.35 to 0.45, 
and the CS decreased gradually. The 28 strengths of concrete 
sample containing 10% GGBFS decreased by 24% for 0.40 
ratio and 32% for 0.45 ratio compared to that of 0.35 ratio as 
illustrated in Fig. 10. Similar findings were reported in other 

studies [31, 41]. Mehta et al. [14] conducted an experimental 
study on the mechanical properties of AAFSC. Fly ash was 
replaced with 0%, 5%, 10%, 15% and 20% of GGBFS as a 
binder. The early-age high strength values of AAC is due to 
polymerization reaction caused by aluminosilicate with the 
alkaline liquid, leading to the formation of N-A-S–H bonds. 
Similar observations were reported in other studies [53, 59].

Fang et al. [54] investigated on mechanical properties of 
AAFSC by varying the ratio of  Na2SiO3 to NaOH. The CS of 
AAFSC specimens with a low Na2SiO3 to NaOH ratio was 
higher for higher curing age of the specimen increased than 
AAFSC specimens with a higher sodium silicate to sodium 
hydroxide ratio..Thomas and Peethamparan [60] studied on 

Fig. 8  Effect of Molarity of NaOH on setting time [82] Fig. 9  Effect of different molarity of NaOH and percentage of 
GGBFS on compressive strength of concrete [57]

Fig. 10  Effect of Alkaline Liquid to Binder ratios on compressive 
strength of concrete [52]
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engineering properties of AAC. The half of AAC samples 
were cured at 22 ± 1 °C for 28 ± 0.5 days (ambient tempera-
ture) with > 95% Relative Humidity, and the other half AAC 
specimens were cured at 50 ± 0.1 °C for 48 ± 0.25 h (ele-
vated temperature). The ambient temperature cured AAFC 
exhibits deficient compressive strength compared to higher 
temperature specimens. The compressive strength did not 
vary much when cured at ambient temperature and elevated 
temperature for alkali-activated slag concrete. [52]. Higher 
temperature causes excessive moisture loss and subsequent 
cracks in the specimen that may also result in strength loss 
[61]. Huseien et al. [62] studied on compressive strength of 
AAC with GGBFS and ceramic tile powder waste. The com-
pressive strength decreased with an increase in the ceramic 
tile powder waste in the binders. The compressive strength 
value of the 56th day was similar in 0% and 10% ceramic tile 
powder waste replacing GGBFS. The compressive strength 
decreased from 70 to 30 MPa as the percentage of ceramic 
tile powder was increased from 0 to 80%. Mounika et al. 
[63] conducted experimental research on AAC using fly ash, 
GGBFS, and rice husk ash. The compressive strength of 
AAC using 90% fly ash and 10% rice husk ash increased 
from 7 to 34 MPa as the age of concrete from 3 to 28 days. 
The compressive strength of AAC using 90% GGBS and 
10% rice husk ash increased from 26 to 59 MPa as the age 
of concrete from 3 to 28 days.

Split Tensile strength

Split Tensile strength is an important property of concrete 
because structural loads make it susceptible to tensile crack-
ing. It is essential for a structural concrete to have sufficient 
Split tensile strength for defining its applicability in situ-
ations such as anchorage of reinforcing steel in concrete, 
initiation and propagation of cracks, and shear. The aver-
age splitting tensile strength  (fst) can be obtained by using 
ACI 318, 2008 [64] (Eq. (1)). Sofi et al. [65] also obtained 
the relationship between the CS and split tensile strength of 
AAC (Eq. (2)).

Wardhono et al. [66] compared the long-term proper-
ties of AASC and geopolymer concrete. The split tensile 
strength of AASC was found to be 3.3 MPa at 28 days and 
was constant till 540 days, whereas fly ash geopolymer con-
crete was 2.1 MPa at 28 days and increased to 4.1 MPa at 
540 days shown in Fig. 11. The split tensile strength was 
greater when cured at ambient temperature than higher heat 
curing temperature [36, 67]. Fang et al. [54] studied on split 
tensile strength of AAFSC. The split tensile strength value 

(1)f st = 0.56

√

fc�

(2)fst = 0.48

√

fc
�

increased from 1.35 MPa to 3 MPa, when the percentage of 
slag was increased from 10 to 30%. Thunuguntla and Rao 
[56] investigated on mechanical and durability properties 
of AASC. The split tensile strength for concrete containing 
1 M NaOH was 2.49 MPa, and the it increased to 5.55 MPa 
with increase in the molarity of NaOH to 8 M.. The split 
tensile strength increases as the fly ash content increase from 
350 kg/m3 to 400 kg/m3 [68].

Flexural strength

The flexural strength yet another major mechanical property 
of concrete, representing the ability of the beam to resist fail-
ure due to bending. The flexural strength of OPC concrete,  ft 
is obtained using the ACI 318–08 [64] (Eq. (3)). Diaz-Loya 
et al. [69] also proposed the relationship between flexure 
strength and the compressive strength of AAC (Eq. (4)).

AAFC developed higher flexure strength at an early age 
and gradually increased the strength over time [32]. Adak 
and Mandal [70] studied on mechanical properties of fly 
ash-based geopolymer concrete. The flexural strength of 
geopolymer concrete was prepared with the modified pro-
cess, i.e., fly ash was mixed with the alkaline liquid and 
then heat-activated (60 °C) for 45 min before casting. Later, 
the geopolymer concrete specimen was placed at room tem-
perature, giving higher strength than the geopolymer con-
crete that was heat-activated (60 °C at 48 h.) after casting. 

(3)ft = 0.62

√

fc�

(4)ft = 0.69

√

fc
�

Fig. 11  Split Tensile Strength of AAS and FAGP vs. Age of concrete 
[66]
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Wardhono et al. [66] compared the engineering properties 
of AASC and geopolymer concrete. The flexural strength 
of geopolymer concrete increased gradually from 4.7 MPa 
at 28 days to 7.2 at 540 days were as the strength decreased 
for AASC from 6 MPa at 28 days to 5.2 at 540 days. The 
flexural strengths of AAFSC in this study are slightly higher 
than PCC mixtures [60]. Parveen et al. [68] researched the 
flexural strength of the geopolymer concrete with varying 
quantities of binder material and the molarity of sodium 
hydroxide. The molarity of sodium hydroxide was increased 
from 8 to 16 M, and the tensile strength also increased from 
3.43 to 4.23 for content of 400 kg/m3 fly ash. Fly ash content 
increased from 350 to 400 kg/m; tensile strength increased 
from 3 to 6%, as shown in Fig. 12. A similar result was also 
found in another study [56].

Durability properties of AAC 

Durability of concrete provides the information about the 
long-term performance which is one of essential parameter 
to comment on applicability to long term performance of 
structural concrete. The preliminary factors able to measure 
the long term properties of AAC concrete and AAC mortar 
indicate an excellent quality of concrete with thermal resist-
ance, heat of hydration, water absorption and permeability, 
porosity, corrosion resistance, alkali-silica reaction and sul-
phates, chloride attack.

Water absorption and water permeability

Water absorption and water permeability is such a param-
eter which shows the transport way of water but also pro-
vide water resistance capacity of alkali activated binders 

and concretes. Researchers studied the influence of liquid 
alkali activator and use of silica fume (SF) on durability and 
microstructural properties of AASC pastes [49, 71–75]. The 
linear regression of porosity versus compressive is shown 
in Fig. 13a and b, which shows direct relationship between 
both the properties. Also, relationship of electrical resistivity 
versus compressive is shown in Fig. 13c and d. With the use 
of recycled aggregates [57] higher concentrations activators 
is required to have similar durability characteristics. In sev-
eral alkali activated concretes, similar outcomes have been 
observed [44, 55, 57].

Acid attacks

The acid attacks is the main characteristics properties of 
durability studies which highlight the performance of con-
crete in sever environment. Kirubajiny et al. (2017) have 
reported the durability aspects of (FGPC) culvert was casted 
that exposed to coastal environment for 6 years. The effect 
of carbonation was observed in fly-ash-based-geo-polymer 
concrete (FGPC) for 6 years. FGPC culvert was carbonated 
in the top slab 135 mm and leg 90 mm while OPC cul-
vert shown maximum value of 10 mm and 20 mm respec-
tively. Chloride resistance in the FGPC was high (2.5 times) 
when compared to OPC in the coastal environment. Micro-
structural test results confirmed that the dissolutions of car-
bonation in FGPC when exposed to the actual conditions, 
whereas leaching was detected in the normal concrete. Also, 
SEM/EDX images showed that the chloride was precipitated 
as a layer on the FGPC. Simultaneously, from images was 
observed that the higher sulfate penetration and no develop-
ment of C-A-S–H in the FGPC. Even though geo-polymer-
concrete the amount of porosity was better than conventional 
concrete, the area of the pore was fined pores stuck between 
1.25 and 25 nm diameter, while the near all the pores in 
ordinary concrete in the range of 25 nm to 50,000 nm. Some 
other investigation based on a similar finding [76–78].

Albitar et al. (2017) studied the long-term performance 
of geo-polymer and traditional concrete. In this study, the 
geo-polymer concrete was produced using either fly-ash 
or blended slag and fly-ash. Concrete cube was constantly 
kept up to 9 months in 4 chemical solutions: 5% NaCl, 5% 
Na2SO4, 5% MgSO4 and 3% H2SO4. OPC concrete was 
found to have lower sorptivity and water absorption rate in 
comparison with slag (GLSS) and fly-ash based geo-poly-
mer concrete. Normal concrete (OPC) suffered higher dete-
rioration than geo-polymer concrete due to sodium sulfate 
environment with reduction of volume by 15% compared 
to 13% and 12% of slag and fly-ash based geopolymer con-
crete respectively. H2SO4 (Sulfuric acid) has an additional 
disadvantageous impact on normal concrete (OPC) with a 
decrease in strength (compressive) of 26% compared to 10% 
and 7% reduction of fly-ash and slag (GLSS) geo-polymer Fig. 12  Effect of Molarity of NaOH on Flexural strength[68]
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concrete respectively. Geo-polymer concrete showed the bet-
ter long term durability when exposed to chemical attack 
compared to OPC based concrete [79].

Mahdi et al. (2019) studied the compressive strength and 
long-term performance of recycled aggregate concrete with 
various proportion of SS and SH. Change in the SS/SH pro-
portion from 2 to 3 increased the compressive strength of up 
to 6%. Micrograph images of the interfacial state between 
aggregate and geo-polymer paste with no re-cycled aggre-
gate concrete specimen showed denser and compacted 
matrix comparing to re-cycled aggregate geo-polymer con-
crete. Geo-polymer gel with re-cycled aggregate was found 
to have higher porosity at the interstate paste and re-cycled 
aggregate. Moreover, additional geo-polymerization com-
pounds including C–A–S–H, N–A–S–H or C–S–H and 
mono/tri sulfate with the needle was found in the matrix 
structure [80]. From the Fig. 14 the relationship between 
electrical resistivity and RPCT with compressive has been 
studied.

Fig. 13  a and b Relationship between Porosity and Compressive strength c and d Relationship between Electrical Resitivity and Compressive 
strength

Fig. 14  Electrical resistivity and chloride penetrability versus Com-
pressive strength
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Conclusion

Based on the available literature on materials used for manu-
facturing AAC, fresh properties of AAB, and the mechanical 
properties of AAC, the following general conclusions are 
drawn:

• Major industrial by-products used to manufacture AAC 
are fly ash (Class F) and GGBFS due to their high alu-
minosilicate and calcium content. Since they are readily 
available, slight modification and careful selection of 
activator concentration can enhance the applicability of 
AAMs for general purpose concreting.

• The molarity of NaOH and the ratio of  Na2SiO3 to NaOH 
impacts the setting time and flow properties of paste of 
AAB due to changes in the viscosity as the dissolution 
of aluminosilicates in the alkaline solution proceeds.

• Influence of activator concentration, influence of addi-
tives on flysh/slag based AAMs and their collective influ-
ence on mechanical and durability aspects of concrete 
signifies AAM as potential binder for general construc-
tion purpose.

• Setting time and consistency has to be further researched 
by conducting detailed study on reaction mechanism with 
various additives can increase the applicability of AAMs.

• The challenges involved in AAM is the long-term per-
formance is remaining an unexplored area with many 
industrial and agro based binders. This will promote use 
of local materials and move another step towards devel-
opment of eco-friendly concrete. The thermodynamic, 
chemical stability and rheology study of AAM another 
aspect which is not addressed still.

• High Performance AAM binders are not researched 
which will provide construction industry to apply for new 
generation structures and will prove to be a low carbon 
alternative to conventional concrete.
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