Skip to main content

Advertisement

Log in

Emergence of 2-Pyrone and Its Derivatives, from Synthesis to Biological Perspective: An Overview and Current Status

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Pyrone moieties are present in natural products and can be synthesized by a diverse range of synthetic methods, resulting in the formation of various derivatives through chemical modifications. Many pyrone-based derivatives are commercially available and are biocompatible. They are building blocks of various intermediates in organic synthesis. They possess remarkable biological properties including antimicrobial, antiviral, cytotoxic, and antitumor activity. These characteristics have made them valuable for the development of drugs. We have summarized recent developments in the synthesis of 2-pyrone and its derivatives and their potential applications. With regard to synthetic approaches, the focus has been on metal-free and transition metal-catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 13
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44

Similar content being viewed by others

Abbreviations

AcOH:

Acetic acid

Anti-TB:

Antituberculosis

HIV:

Human immunodeficiency virus

AIDS:

Acquired immunodeficiency syndrome

ATPase:

Adenosine triphosphatase

Au:

Gold

BINAP:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

Bn:

Benzyl

Bz:

Benzoyl

Boc:

tert-Butoxycarbonyl

Bu:

Butyl

COD:

1,5-Cyclooctadiene

Cp*:

Pentamethylcyclopentadienyl

Cu:

Copper

Cy:

Cyclohexyl

DCM:

Dichloromethane

DCE:

1,2-Dichloroethane

DHPB:

3,4-Dihydro-2H-benzo[4,5]thiazolo[3,2-a]pyrimidine

DIPEA:

N,N-Diisopropylethylamine

DMF:

N,N-Dimethylformamide

DMSO:

Dimethylsulfoxide

dppe:

1,4-Bis(diphenylphosphino)ethane

equiv:

Equivalent

EDG:

Electron-donating group

E:

Electrophile

EWG:

Electron-withdrawing group

GPI:

Glycosylphosphatidylinositol

GTPase:

Guanosine triphosphatase

Hex:

Hexyl

HFIP:

Hexafluoroisopropanol

IC50 :

Half-maximal inhibitory concentration

IEDDA:

Inverse electron demand Diels–Alder

KPF6 :

Potassium hexafluorophosphate

LHMDS:

Lithium bis(trimethylsilyl)amide

MIC:

Minimum inhibitory concentration

MTB:

Mycobacterium tuberculosis

NBS:

N-Bromosuccinimide

NHC:

N-Heterocyclic carbenes

Ni:

Nickel

NIS:

N-Iodosuccinimide

N:

Nucleophile

PCC:

Pyridinium chlorochromate

Pcy3:

Tricyclohexylphosphine

Pd:

Palladium

Pent:

Pentyl

Ph:

Phenyl

PPh3:

Triphenylphosphine

Ras MAPK:

Ras/Mitogen-activated protein kinase

rt:

Room temperature

TBDMS:

tert-Butyldimethylsilyl chloride

TEA:

Triethylamine

TFAA:

Trifluoroacetic anhydride

THF:

Tetrahydrofuran

TES:

Triethylsilyl (SiEt3)

TMS:

Trimethylsilyl (SiMe3)

Rh:

Rhodium

Ru:

Ruthenium

References

  1. Dickinson JM (1993) Microbial pyran-2-ones and dihydropyran-2-ones. Nat Prod Rep 10(1):71–98

    Article  CAS  PubMed  Google Scholar 

  2. Kamano Y, Nogawa T, Yamashita A, Hayashi M, Inoue M, Drašar P, Pettit GR (2002) Isolation and structure of a 20, 21-epoxybufenolide series from “Ch’an Su.” J Nat Prod 65:1001–1005

    Article  CAS  PubMed  Google Scholar 

  3. McGlacken GP, Fairlamb I (2005) 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. J Nat Prod Rep 22:369–385

    Article  CAS  Google Scholar 

  4. Pratap R, Ram VJ (2017) 2H-Pyran-2-ones and their annelated analogs as multifaceted building blocks for the fabrication of diverse heterocycles. Tetrahedron 73:2529–2590

    Article  CAS  Google Scholar 

  5. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323

    Article  CAS  PubMed  Google Scholar 

  6. Yokoe H, Mitsuhashi C, Matsuoka Y, Yoshimura T, Yoshida M, Shishido K (2011) Enantiocontrolled total syntheses of breviones A, B, and C. J Am Chem Soc 133:8854–8857

    Article  CAS  PubMed  Google Scholar 

  7. Gan P, Smith MW, Braffman NR, Snyder SA (2016) Pyrone diels-alder routes to indolines and hydroindolines: syntheses of gracilamine, mesembrine, and Δ7-mesembrenone. Angew Chem 128:3689–3694

    Article  Google Scholar 

  8. Sun CL, Fürstner A (2013) Formal ring-opening/cross-coupling reactions of 2-pyrones: iron-catalyzed entry into stereodefined dienyl carboxylates. Angew Chem Int Ed 52:13071–13075

    Article  CAS  Google Scholar 

  9. Schaberle TF (2016) Biosynthesis of α-pyrones. Beilstein J Org Chem 12:571–588

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wickel SM, Citron CA, Dickschat JS (2013) 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum. Eur J Org Chem 14:2906–2913

    Article  Google Scholar 

  11. Požgan F, Kranjc K, Kepe V, Polanc S, Kočevar M (2007) Synthesis of 2H-pyran-2-ones and fused pyran-2-ones as useful building blocks. ARKIVOC 2007:97–111

    Article  Google Scholar 

  12. Posner GH, Nelson TD, Kinter CM, Johnson N (1992) Diels-Alder cycloadditions using nucleophilic 3-(p-tolylthio)-2-pyrone. Regiocontrolled and stereocontrolled synthesis of unsaturated, bridged, bicyclic lactones. J Org Chem 57:4083–4088

    Article  CAS  Google Scholar 

  13. Larsson R, Sterner O, Johansson M (2009) Biomimetic synthesis toward the transtaganolides/basiliolides. Org Lett 11:657–660

    Article  CAS  PubMed  Google Scholar 

  14. Vara Prasad J, Para KS, Lunney EA, Ortwine DF, Dunbar JB Jr, Ferguson D, Tummino PJ, Hupe D, Tait BD (1994) Novel series of achiral, low molecular weight, and potent HIV-1 protease inhibitors. J Am Chem Soc 116:6989–6990

    Article  CAS  Google Scholar 

  15. Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913

    Article  CAS  Google Scholar 

  16. Nelson HM, Gordon JR, Virgil SC, Stoltz BM (2013) Total syntheses of (−)-Transtaganolide A, (+)-Transtaganolide B, (+)-Transtaganolide C, and (−)-Transtaganolide D and biosynthetic implications. Angew Chem Int Ed 52:6699–6703

    Article  CAS  Google Scholar 

  17. Sunazuka T, Ōmura S (2005) Total synthesis of α-pyrone meroterpenoids, novel bioactive microbial metabolites. Chem Rev 105:4559–4580

    Article  CAS  PubMed  Google Scholar 

  18. Lee JS (2015) Recent advances in the synthesis of 2-pyrones. Mar Drugs 13:1581–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhata ZS, Rathera MA, Maqboola M, Lahc HU, Yousuf SK, Ahmad Z (2017) α-pyrones: small molecules with versatile structural diversity reflected in multiple pharmacological activities—an update. Biomed Pharmacother 91:265–277

    Article  Google Scholar 

  20. Mata R, Morales I, Perez O, Rivero-Cruz I, Acevedo L, Enriquez-Mendoza I, Bye R, Franzblau S, Timmermann B (2004) Antimycobacterial compounds from Piper sanctum. J Nat Prod 67:8–12

    Article  Google Scholar 

  21. Irschik H, Gerth K, Höfle G, Kohl W, Reichenbach H (1983) The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J Antibiot 36:1651–1658

    Article  CAS  Google Scholar 

  22. Tupin A, Gualtieri M, Brodolin K, Leonetti J-P (2009) Myxopyronin: a punch in the jaws of bacterial RNA polymerase. Future Microbiol 4:145–149

    Article  CAS  PubMed  Google Scholar 

  23. Appendino G, Mercalli E, Fuzzati N, Arnoldi L, Stavri M, Gibbons S, Ballero M, Maxia A (2004) Antimycobacterial coumarins from the Sardinian giant fennel (Ferula communis). J Nat Prod 67:2108–2110

    Article  CAS  PubMed  Google Scholar 

  24. Selala MI, Daelemans F, Schepens P (1989) Fungal tremorgens the mechanism of action of single nitrogen containing toxins—a hypothesis. J Drug Chem Toxicol 12:237–257

    Article  CAS  Google Scholar 

  25. Sabater VM, Nijmeijer S, Fink GJ (2003) Genotoxicity assessment of five tremorgenic mycotoxins (Fumitremorgen B, Paxilline, Penitrem A, Verruculogen, and Verrucosidin) produced by molds isolated from fermented meats. J Food Prot 66:2123–2129

    Article  Google Scholar 

  26. Xiao Z, Li L, Li Y, Zhou W, Cheng J, Liu F, Zheng P, Zhang Y, Che Y (2014) Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice. Cell Death Dis 5:e1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fairlamb IJS, Marrison LR, Peter J (2004) 2-pyrones possessing antimicrobial and cytotoxic activities. Bioorg Med Chem 12:4285–4299

    Article  CAS  PubMed  Google Scholar 

  28. Ardenghi JV, Pretto JB, Souza MM, Junior AC, Soldi C, Pizzolatti MG, Meotti FC, d’Ávila Moura J, Santos ARS (2006) Antinociceptive properties of coumarins, steroid and dihydrostyryl-2-pyrones from Polygala sabulosa (Polygalaceae) in mice. J Pharm Pharmacol 58:107–112

    Article  PubMed  Google Scholar 

  29. Evidente A, Conte L, Altomare C, Segre AL, Logrieco A (1994) Fusapyrone and deoxyfusapyrone, two antifungal α-Pyrones from Fusarium semitectum. Nat Toxins 2:4–13

    Article  CAS  PubMed  Google Scholar 

  30. Altomare C, Perrone G, Fanti F, Polonelli L (2000) Biological characterization of Fusapyrone and Deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63:1131–1135

    Article  CAS  PubMed  Google Scholar 

  31. Leidich SD, Drapp DA, Orlean P (1994) A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem 269:10193–10196

    Article  CAS  PubMed  Google Scholar 

  32. Leidich SD, Kostova Z, Latek RR, Costello LC, Drapp DA, Gray W, Fassler JS, Orlean P (1995) Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-Acetylglucosaminyl Phosphatidylinositol. Cloning of the GPI2 gene. J Biol Chem 270:13029–13035

    Article  CAS  PubMed  Google Scholar 

  33. Jeong T-S, Kim S-U, Choi M-U, Bok S-H (1994) GERI-BP001, a new inhibitor of acyl-CoA: cholesterol acyltransferase produced by Aspergillus fumigatus F37. Tetrahedron Lett 35:3569–3570

    Article  CAS  Google Scholar 

  34. Parker KA, Resnick L (1995) The first total synthesis of a pyripyropene-type ACAT Inhibitor, (±)-GERI-BP001. J Org Chem 60:5726–5728

    Article  CAS  Google Scholar 

  35. Hirano K, Minakata S, Komatsu M (2002) Intense blue luminescence of 3,4,6-triphenyl-α-pyrone in the solid state and its electronic characterization. J Phys Chem A 106:4868–4871

    Article  CAS  Google Scholar 

  36. Cho CG, Park JS, Jung IH, Lee H (2001) One-step preparation of bromo-2-pyrones via bromo-decarboxylation of 2-pyrone-carboxylic acids. Tetrahedron Lett 42:1065–1067

    Article  CAS  Google Scholar 

  37. Cole CJF, Fuentes L, Snyder, Scott A (2020) Asymmetric pyrone Diels-Alder reactions enabled by dienamine catalysis. Chem Sci 11:2175–2180

    Article  CAS  Google Scholar 

  38. Cho C-G, Kim Y-W, Lim Y-K, Park J-S, Lee H, Koo S (2002) Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone: a new ambident diene. J Org Chem 67:290–293

    Article  CAS  PubMed  Google Scholar 

  39. Min S-H, Kim Y-W, Choi S, Park KB, Cho C-G (2002) Expedient syntheses of unsymmetrical 4-bromo-2-carboxyl-biaryls via Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone with vinylarenes, followed by one pot, three step aromatization reactions. Bull Korean Chem Soc 23:1021–1022

    Article  CAS  Google Scholar 

  40. Cho C-G, Kim Y-W, Kim W-K (2001) Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone with cycloalkenyl silyl ethers for the synthesis of bicarbocycles. Tetrahedron Lett 42:8193–8195

    Article  CAS  Google Scholar 

  41. Shin J-T, Shin S, Cho C-G (2004) IMDA cycloadditions of 3-alkynyl tethered 2-pyrones for the synthesis of medium-sized macrocycles. Tetrahedron Lett 45:5857–5860

    Article  CAS  Google Scholar 

  42. Shin J-T, Hong S-C, Shin S, Cho C-G (2006) Highly diastereoselective type-I IMDA reaction forming medium-sized macrolactones. Org Lett 8:3339–3341

    Article  CAS  PubMed  Google Scholar 

  43. Chung S-I, Seo J, Cho C-G (2006) Tandem Diels-Alder cycloadditions of 2-pyrone-5-acrylates for the efficient synthesis of novel tetracyclolactones. J Org Chem 71:6701–6704

    Article  CAS  PubMed  Google Scholar 

  44. Delaney PM, Moore JE, Harrity JPA (2006) An alkynylboronic ester cycloaddition route to functionalized aromatic boronic esters. Chem Commun 31:3323–3325

  45. Reus C, Liu N-W, Bolte M, Lerner H-W, Wagner M (2012) Synthesis of bromo-, boryl-, and stannyl-functionalized 1,2-bis(trimethylsilyl)benzenes via Diels-Alder or C-H activation reactions. J Org Chem 77:3518–3523

    Article  CAS  PubMed  Google Scholar 

  46. Gambarotti C, Lauria M, Righetti GIC, Leonardi G, Sebastiano R, Citterio A, Truscello A (2020) Synthesis of functionalized aromatic carboxylic acids from biosourced 3-Hydroxy-2-pyrones through a base-promoted domino reaction. ACS Sustain Chem Eng 8:11152–11161

    Article  CAS  Google Scholar 

  47. Lee JJ, Kraus GA (2013) Divergent Diels-Alder methodology from methyl coumalate toward functionalized aromatics. Tetrahedron Lett 54:2366–2368

    Article  CAS  Google Scholar 

  48. Lee JJ, Kraus GA (2014) One-pot formal synthesis of biorenewable terephthalic acid from methyl coumalate and methyl pyruvate. Green Chem 16:2111–2116

    Article  CAS  Google Scholar 

  49. Huang G, Kouklovsky C, de la Torre A (2021) Inverse-electron-demand diels-alder reactions of 2-pyrones: bridged lactones and beyond. Chem Eur J 27:4760–4788

    Article  CAS  PubMed  Google Scholar 

  50. Trost BM, Schneider S (1989) Pyrones as substrates for palladium-catalyzed [4 + 3] cycloadditions. Angew Chem Int Ed 28:213–215

    Article  Google Scholar 

  51. Trost BM, Wang Y-L (2018) A deprotonation approach to the unprecedented amino-trimethylenemethane chemistry: regio-, diastereo-, and enantioselective synthesis of complex amino cycles. Angew Chem Int Ed 57:11025–11029

    Article  CAS  Google Scholar 

  52. Tokuyama H, Isaka M, Nakamura E (1992) Thermal reactions of substituted cyclopropenone acetals. Regioand stereochemistry of vinylcarbene formation and low-temperature [3 + 2] cycloaddition. J Am Chem Soc 114:5523–5530

    Article  CAS  Google Scholar 

  53. Liang X, Ye W, Thor W, Sun L, Wang B, He S, Cheng Y-K, Lee C-S (2020) Construction of cyclopenta[b]pyran-2-ones via chemoselective (3 + 2) cycloaddition between 2-pyrones and vinyl cyclopropanes. Org Chem Front 7:840–845

    Article  CAS  Google Scholar 

  54. Ryu K-M, Gupta AK, Han JW, Oh CH, Cho C-G (2004) Regiocontrolled Suzuki-Miyaura couplings of 3,5-dibromo-2-pyrone. Synlett 2004:2197–2199

    Google Scholar 

  55. Lee J-H, Kim W-S, Lee YY, Cho C-G (2002) Stille couplings of 3-(trimethylstannyl)-5-bromo-2-pyrone for the syntheses of 3-aryl-5-bromo-2-pyrones and their ambident dienyl characters. Tetrahedron Lett 43:5779–5782

    Article  CAS  Google Scholar 

  56. Kim W-S, Kim H-J, Cho C-G (2002) Regioselective Stille coupling reactions of 3,5-dibromo-2-pyrone with various aryl and vinyl stannanes. Tetrahedron Lett 43:9015–9017

    Article  CAS  Google Scholar 

  57. Lee J-H, Cho C-G (2003) Regioselective palladium-catalyzed aminations of 3,5-dibromo-2-pyrone with various aryl and alkyl amines. Tetrahedron Lett 44:65–67

    Article  CAS  Google Scholar 

  58. Lee J-H, Park J-S, Cho C-G (2002) Regioselective synthesis of 3-alkynyl-5-bromo-2-pyrones via Pd-catalyzed couplings on 3,5-dibromo-2-pyrone. Org Lett 4:1171–1173

    Article  CAS  PubMed  Google Scholar 

  59. Yang X, Knochel P (2006) Preparation and reactions of functionalized organocopper reagents. Synthesis 2006:2618–2623

    Article  Google Scholar 

  60. Chang JH, Kang H-U, Jung I-H, Cho C-G (2010) Total synthesis of (±)-galanthamine via a C3-selective Stille coupling and IMDA cycloaddition cascade of 3,5-dibromo-2-pyrone. Org Lett 12:2016–2018

    Article  CAS  PubMed  Google Scholar 

  61. Palani V, Perea MA, Gardnerand KE, Sarpong R (2021) A pyrone remodeling strategy to access diverse heterocycles: application to the synthesis of fascaplysin natural products. Chem Sci 12:1528–1534

    Article  CAS  Google Scholar 

  62. Tam NT, Cho C-G (2007) Total synthesis of (±)-joubertinamine from 3-(3,4-dimethoxyphenyl)-5-bromo-2-pyrone. Org Lett 9:3391–3392

    Article  CAS  PubMed  Google Scholar 

  63. Tam NT, Cho C-G (2008) Total synthesis of (±)-crinine via the regioselective Stille coupling and Diels-Alder reaction of 3,5-dibromo-2-pyrone. Org Lett 10:601–603

    Article  CAS  PubMed  Google Scholar 

  64. Nguyen TT, Chang J, Jung E-J, Cho C-G (2008) Total syntheses of (±)-crinine, (±)-crinamine, and (±)-6a-epi-crinamine via the regioselective synthesis and Diels-Alder reaction of 3-aryl-5-bromo-2-pyrone. J Org Chem 73:6258–6264

    Article  CAS  PubMed  Google Scholar 

  65. Shin H-S, Jung Y-G, Cho H-K, Park Y-G, Cho C-G (2014) Total synthesis of (±)-lycorine from the endo-cycloadduct of 3,5-dibromo-2-pyrone and (E)-β-borylstyrene. Org Lett 16:5718–5720

    Article  CAS  PubMed  Google Scholar 

  66. Shin I-J, Choi E-S, Cho C-G (2007) Total synthesis of (±)-trans-dihydronarciclasine through a highly endo-selective Diels-Alder cycloaddition of 3,5-dibromo-2-pyrone. Angew Chem Int Ed 46:2303–2305

    Article  CAS  Google Scholar 

  67. Cho H-K, Lim H-Y, Cho C-G (2013) (E)-β-Borylstyrene in the Diels-Alder reaction with 3,5-dibromo-2-pyrone for the syntheses of (±)-1-epi-pancratistatin and (±)-pancratistatin. Org Lett 15:5806–5809

    Article  CAS  PubMed  Google Scholar 

  68. Cho H-K, Nguyen TT, Cho C-G (2010) Total synthesis of (±)-aspidospermidine starting from 3-ethyl-5-bromo-2-pyrone. Bull Korean Chem Soc 31:3382–3384

    Article  CAS  Google Scholar 

  69. Marrison LR, Dickinson JM, Ahmed R, Fairlamb IJS (2002) An efficient synthesis of 4-alkenyl/alkynyl-6-methyl-2-pyrones via Pd-catalyzed coupling on 4-bromo-6-methyl-2-pyrone. Tetrahedron Lett 43:8853–8857

    Article  CAS  Google Scholar 

  70. Marrison LR, Dickinson JM, Fairlamb IJS (2002) Bioactive 4-substituted-6-methyl-2-pyrones with promising cytotoxicity against A2780 and K562 cell lines. Bioorg Med Chem Lett 12:3509–3513

    Article  CAS  PubMed  Google Scholar 

  71. Larock RC, Doty MJ, Han X (1999) Synthesis of isocoumarins and α-pyrones via Palladium-catalyzed annulation of internal alkynes. J Org Chem 64:8770–8779

    Article  CAS  PubMed  Google Scholar 

  72. Yao T, Larock RC (2003) Synthesis of isocoumarins and α-pyrones via electrophilic cyclization. J Org Chem 68:5936–5942

    Article  CAS  PubMed  Google Scholar 

  73. Mannina L, Rossi R (2000) Palladium-catalyzed synthesis of stereodefined 3-[(1, 1-unsymmetricallydisubstituted)methylidene]isobenzofuran-1(3H)-one and stereodefined 5-[(1,1-unsymmetricallydisubstituted)methylidene] furan-2(5H)-one. Tetrahedron Lett 41:5281–5286

    Article  Google Scholar 

  74. Wang Y, Burton DJ (2006) A facile, general synthesis of 3,4-difluoro-6-substituted-2-pyrones. J Org Chem 71:3859–3862

    Article  CAS  PubMed  Google Scholar 

  75. Gorja DR, Batchu VR, Ettam A, Pal M (2009) Pd/C-mediated synthesis of α-pyrone fused with a five-membered nitrogen heteroaryl ring: a new route to pyrano[4,3-c]pyrazol-4(1H)-ones. Beilstein J Org Chem 5:1–5

    Article  Google Scholar 

  76. Anastasia L, Xu C, Negishi E-I (2002) Catalytic and selective conversion of (Z)-2-en-4-ynoic acids to either 2H-pyran-2-ones in the presence of ZnBr2 or (Z)-5-alkylidenefuran-2(5H)-ones in the presence of Ag2CO3. Tetrahedron Lett 43:5673–5676

    Article  CAS  Google Scholar 

  77. Cherry K, Parrain JL, Thibonnet J, Duchene A, Abarbri M (2005) Synthesis of isocoumarins and alpha-pyrones via tandem Stille reaction/heterocyclization. J Org Chem 70:6669–6675

    Article  CAS  PubMed  Google Scholar 

  78. Liebeskind LS, Wang J (1993) A synthesis of substituted 2-pyrones by carbonylative cross-coupling-thermolysis of 4-halocyclobutenones with alkenyl-, aryl-, and heteroarylstannanes. Tetrahedron 49:5461–5470

    Article  CAS  Google Scholar 

  79. Yu Y, Huang L, Wu W, Jiang H (2014) Palladium-catalyzed oxidative annulation of acrylic acid and amide with alkynes: a practical route to synthesize α-pyrones and pyridones. Org Lett 16:2146–2149

    Article  CAS  PubMed  Google Scholar 

  80. Zhao P, Chen D, Song G, Han K, Li X (2012) Palladium-catalyzed cascade cyclization−oxidative olefination of tert-butyl 2-alkynylbenozates. J Org Chem 77:1579–1584

    Article  CAS  PubMed  Google Scholar 

  81. Faizi DJ, Issaian A, Davis AJ, Blum SA (2016) Catalyst-free synthesis of borylated lactones from Esters via Electrophilic Oxyboratio. J Am Chem Soc 138:2126–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cai Z-J, Yang C, Wang S-Y, Ji S-J (2015) Palladium-catalyzed highly regioselective 6-exo-dig cyclization and alkenylation of ortho-ethynylanilides: the synthesis of polyene-substituted benzo [d][1, 3]. Chem Commun 51:14267–14270

    Article  CAS  Google Scholar 

  83. Tian P-P, Cai S-H, Liang Q-J, Zhou X-Y, Xu Y-H, Loh T-P (2015) Palladium-catalyzed difunctionalization of internal alkynes via highly regioselective 6-endo cyclization and alkenylation of enynoates: synthesis of multisubstituted pyrones. Org Lett 17:1636–1639

    Article  CAS  PubMed  Google Scholar 

  84. Zheng M, Huang L, Tong Q, Wu W, Jiang H (2016) Oxypalladation initiating the oxidative heck reaction with alkenyl alcohols: synthesis of isocoumarin-alkanones. Eur J Org Chem 2016:663–667

    Article  CAS  Google Scholar 

  85. Huang W-Y, Nishikawa T, Nakazaki A (2017) Palladium-catalyzed cascade wacker/allylation sequence with allylic alcohols leading to allylated dihydropyrones. ACS Omega 2:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang M, Liu Z-L, Zhang X, Tian P-P, Xu Y-H, Loh T-P (2015) Synthesis of highly substituted racemic and enantioenriched allenylsilanes via copper-catalyzed hydrosilylation of (Z)-2-alken-4-ynoates with silylboronate. J Am Chem Soc 137:14830–14833

    Article  CAS  PubMed  Google Scholar 

  87. Pathare RS, Sharma S, Gopal K, Sawant DM, Pardasani RT (2017) Palladium-catalyzed convenient one-pot synthesis of multi-substituted 2-pyrones via transesterification and alkenylation of enynoates. Tetrahedron Lett 58:1387–1389

    Article  CAS  Google Scholar 

  88. Banerjee D, Junge K, Beller M (2014) Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols. Angew Chem Int Ed 53:13049–13053

    Article  CAS  Google Scholar 

  89. Krautwald S, Schafroth MA, Sarlah D, Carreira EM (2014) Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis. J Am Chem Soc 136:3020–3023

    Article  CAS  PubMed  Google Scholar 

  90. Hamilton JY, Sarlah D, Carreira EM (2014) Iridium-catalyzed enantioselective allyl–alkene coupling. J Am Chem Soc 136:3006–3009

    Article  CAS  PubMed  Google Scholar 

  91. Huang J, Li L, Chen H, Xiao T, He Y, Zhou L (2017) Synthesis of 3-aryl-2-pyrones by palladium-catalyzed cross-coupling of aryl iodides with cyclic vinyldiazo ester. J Org Chem 82:9204–9209

    Article  CAS  PubMed  Google Scholar 

  92. Praveen C, Ayyanar A, Perumal PT (2011) Gold(III) chloride catalyzed regioselective synthesis of pyrano[3,4-b]indol-1(9H)-ones and evaluation of anticancer potential towards human cervix adenocarcinoma. Bioorg Med Chem Lett 21:4170–4173

    Article  CAS  PubMed  Google Scholar 

  93. Dombray T, Blanc A, Weibel JM, Pale P (2010) Gold(I)-catalyzed cycloisomerization of β-alkynylpropiolactones to substituted α-pyrones. Org Lett 12:5362–5365

    Article  CAS  PubMed  Google Scholar 

  94. Lee JS, Shin J, Shin HJ, Lee H-S, Lee Y-J, Lee H-S, Won H (2014) Total synthesis and configurational validation of (+)-violapyrone C. Eur J Org Chem 2014(21):4472–4476

    Article  CAS  Google Scholar 

  95. Luo T, Dai M, Zheng SL, Schreiber SL (2011) Syntheses of α-pyrones using gold-catalyzed coupling reactions. Org Lett 13:2834–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fürstner A (2018) Gold catalysis for heterocyclic chemistry: a representative case study on pyrone natural products. Angew Chem Int Ed 57:4215–4233

    Article  Google Scholar 

  97. Mochida S, Hirano K, Satoh T, Miura M (2009) Synthesis of functionalized α-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes. J Org Chem 74:6295–6298

    Article  CAS  PubMed  Google Scholar 

  98. Li Y-T, Zhu Y, Tu G-L, Zhang J-Y, Zhao Y-S (2018) Rhodium(III)-Catalyzed oxidative annulation of acrylic acid with alkynes: an easy approach to the synthesis of α-pyrones. Chem Asian J 13:3281–3284

    Article  CAS  PubMed  Google Scholar 

  99. Ackermann L, Pospech J, Graczyk K, Rauch K (2012) Versatile synthesis of isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C−H/O−H bond cleavages. Org Lett 14:930–933

    Article  CAS  PubMed  Google Scholar 

  100. Manikandan R, Jeganmohan M (2014) Ruthenium-catalyzed dimerization of propiolates: a simple route to α-pyrones. Org Lett 16:652–655

    Article  CAS  PubMed  Google Scholar 

  101. Fukuyama T, Higashibeppu Y, Yamaura R, Ryu I (2007) Ru-catalyzed intermolecular [3 + 2+ 1] cycloaddition of α, β-unsaturated ketones with silylacetylenes and carbon monoxide leading to α-pyrones. Org Lett 9:587–589

    Article  CAS  PubMed  Google Scholar 

  102. Prakash R, Shekarrao K, Gogoi S (2015) Ruthenium(II)-catalyzed Alkene C−H Bond functionalization on cinnamic acids: a facile synthesis of versatile α-pyrones. Org Lett 17:5264–5267

    Article  CAS  PubMed  Google Scholar 

  103. Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189

    Article  CAS  PubMed  Google Scholar 

  104. Ahmad T, Qiu S-Q, Xu Y-H, Loh T-P (2018) Palladium-catalyzed one-pot highly regioselective 6-endo cyclization and alkylation of enynoates: synthesis of 2-alkanone pyrones. J Org Chem 83:13414–13426

    Article  CAS  PubMed  Google Scholar 

  105. Qiu S-Q, Ahmad T, Xu Y-H, Loh T-P (2019) Palladium-catalyzed cascade intramolecular cyclization and allylation of enynoates with allylic alcohols. J Org Chem 84:6729–6736

    Article  CAS  PubMed  Google Scholar 

  106. Wang H, Zhou Z-X, Kurmoo M, Liu Y-J, Zeng M-H (2019) Carboxylate-assisted Pd(II)-catalyzed ortho-C–H and remote C-H activation: economical synthesis of pyrano[4,3-b]Indol-1(5H)-ones. Org Lett 21:2847–2850

    Article  CAS  PubMed  Google Scholar 

  107. Jismy B, Cherry K, Maaliki C, Inack Ngi S, Abarbri M (2020) A direct and an efficient regioselective synthesis of 1,2-benzothiazine 1,1-dioxides, β-carbolinones, indolo[2,3-c]pyran-1-ones, indolo[3,2-c]pyran-1-ones, thieno[2,3-c]pyran-7-ones and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-ones via tandem Stille/heterocyclization reaction. Molecules 25:5137

    Article  CAS  PubMed Central  Google Scholar 

  108. Delaye P-O, Petrignet J, Thiery E, Thibonnet J (2017) Gold–silver catalyzed straightforward one pot synthesis of pyrano[3,4-b]pyrrol-7(1H)-ones. Org Biomol Chem 15:7290–7295

    Article  CAS  PubMed  Google Scholar 

  109. Tan J-F, Bormann CT, Severin K, Cramer N (2021) Alkynyl triazenes enable divergent syntheses of 2-pyrones. Chem Sci 12:9140–9145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gayyur, Choudhary S, Saxena A, Ghosh N (2020) Gold-catalyzed homo- and cross-annulation of alkynyl carboxylic acids: a facile access to substituted 4-hydroxy 2H-pyrones and total synthesis of pseudopyronine A. Org Biomol Chem 18:8716–8723

    Article  CAS  PubMed  Google Scholar 

  111. Liu R, Li X, Li X, Wang J, Yang Y (2019) Gold(I)-catalyzed intermolecular rearrangement reaction of glycosyl alkynoic β-ketoesters for the synthesis of 4-O-glycosylated 2-pyrones. J Org Chem 84:14141–14150

    Article  CAS  PubMed  Google Scholar 

  112. Li X, Li C, Liu R, Wang J, Wang Z, Chen Y, Yang Y (2019) Gold(I)-catalyzed glycosylation with glycosyl ynenoates as donors. Org Lett 21:9693–9698

    Article  CAS  PubMed  Google Scholar 

  113. Yata T, Kita Y, Nishimoto Y, Yasuda M (2019) Regioselective synthesis of 5-metalated 2-pyrones by intramolecular oxymetalation of carbonyl-ene-yne compounds using indium trihalide. J Org Chem 84:14330–14341

    Article  CAS  PubMed  Google Scholar 

  114. Yang Q-L, Xing Y-K, Wang X-Y, Ma H-X, Weng X-J, Yang X, Guo H-M, Mei T-S (2019) J Am Chem Soc 141:18970–18976

    Article  CAS  PubMed  Google Scholar 

  115. Yeh P-P, Daniels DSB, Cordes DB, Slawin AMZ, Smith AD (2014) Isothiourea-mediated one-pot synthesis of trifluoromethyl substituted 2-pyrones. Org Lett 16:964–967

    Article  CAS  PubMed  Google Scholar 

  116. Xu L-C, Zhou P, Li J-Z, Hao W-J, Tu S-J, Jiang B (2018) Thiazolium salt-catalyzed [3 + 2 + 1] cyclization for the synthesis of trisubstituted 2-pyrones using arylglyoxals as a carbonyl source. Org Chem Front 5:753–759

    Article  CAS  Google Scholar 

  117. Zhu X-F, Schaffner A-P, Li RC, Kwon O (2005) Phosphine-catalyzed synthesis of 6-substituted 2-pyrones: manifestation of E/Z-isomerism in the zwitterionic intermediate. Org Lett 7:2977–2980

    Article  CAS  PubMed  Google Scholar 

  118. Kim SJ, Lee HS, Kim JN (2007) Synthesis of 3,5,6-trisubstituted α-pyrones from Baylis-Hillman adducts. Tetrahedron Lett 48:1069–1072

    Article  CAS  Google Scholar 

  119. Bellina F, Biagetti M, Carpita A, Rossi R (2001) Selective synthesis of natural and unnatural 5,6-disubstituted-2(2H)-pyranones via iodolactonization of 5-substituted (Z)-2-en-4-ynoic acids. Tetrahedron 57:2857–2870

    Article  CAS  Google Scholar 

  120. Reddy CR, Patil AD (2021) Iodo- and chalcogenoannulation of morita−baylis−hillman alcohols of propiolaldehydes: entry to functionalized 2-pyrones. Org Lett 23:4749–4753

    Article  CAS  PubMed  Google Scholar 

  121. Liang Y, Xie Y-X, Li J-H (2007) Cy2NH·HX-promoted cyclizations of o-(alk-1-ynyl)benzoates and (Z)-alk-2-en-4-ynoate with copper halides to synthesize isocoumarins and α-pyrone. Synthesis 2007:400–406

    Article  Google Scholar 

  122. Mingo P, Zhang S, Liebeskind LS (1999) One-step synthesis of substituted alpha-pyrones from cyclobutenediones and lithiated o-silyl cyanohydrins. J Org Chem 64:2145–2148

    Article  CAS  PubMed  Google Scholar 

  123. Zhu Y, Gong Y (2015) Construction of 2-pyrone skeleton via domino sequence between 2-acyl-1-chlorocyclopropanecarboxylate and amines. J Org Chem 80:490–498

    Article  CAS  PubMed  Google Scholar 

  124. Ma S, Yu S, Yin S (2003) Studies on K2CO3-catalyzed 1,4-addition of 1,2-allenic ketones with diethyl malonate: controlled selective synthesis of β, γ-unsaturated enones and α-pyrones. J Org Chem 68:8996–9002

    Article  CAS  PubMed  Google Scholar 

  125. Ma S, Yin S, Li L, Tao F (2002) K2CO3-catalyzed Michael addition-lactonization reaction of 1,2-allenyl ketones with electron-withdrawing group substituted acetates. An efficient synthesis of alpha-pyrone derivatives. Org Lett 4:505–507

    Article  CAS  PubMed  Google Scholar 

  126. Hachiya I, Shibuya H, Shimizu M (2003) Novel 2-pyrone synthesis via the nucleophilic addition of active methine compounds to 2-alkynone. Tetrahedron Lett 44:2061–2063

    Article  CAS  Google Scholar 

  127. Komiyama T, Takaguchi Y, Gubaidullin AT, Mamedov VA, Litvinov IA, Tsuboi S (2005) Novel synthesis of 4-halo-3-hydroxy-2-pyrone: one pot rearrangement–cyclization reaction by magnesium halide. Tetrahedron 61:2541–2547

    Article  CAS  Google Scholar 

  128. Shen Y, Wang C, Chen W, Cui S (2018) Cascade reaction involving Diels-Alder cascade: modular synthesis of amino α-pyrones, indolines and anilines. Org Chem Front 5:3574–3578

    Article  CAS  Google Scholar 

  129. Lang M, Jia Q, Wang J (2018) N-Heterocyclic carbene-catalyzed annulation of ylides with ynals: direct access to α-pyrones. Asian J Org Chem 13:2427–2430

    CAS  Google Scholar 

  130. Zheng P, Li C, Mou C, Pan D, Wu S, Xue W, Jin Z, Chi YR (2019) Efficient access to 2-pyrones via carbene-catalyzed oxidative [3+3] reactions between enals and nitrogen ylides. Asian J Org Chem 8:1067–1070

    Article  CAS  Google Scholar 

  131. Yan W, Wang R, Zhang T, Deng H, Chen J, Wu W, Weng Z (2018) Synthesis of 4-trifluoromethyl 2-pyrones and pyridones through the Brønsted base-catalyzed Pechmann-type reaction with cyclic 1,3-diones. Org Biomol Chem 16:9440–9445

    Article  CAS  PubMed  Google Scholar 

  132. Marangoni M, Bencke CE, Bonacorso HG, Martins MAP, Zanatta N (2018) Efficient synthesis of 6-aryl-4-trifluoromethyl/ethoxycarbonyl-2H-pyran-2-ones through self-condensation of penta-2,4-dienenitriles. Tetrahedron Lett 59:121–124

    Article  CAS  Google Scholar 

  133. Parameshwar M, Rajesh M, Balasubramanian S, Reddy MS (2019) Base mediated tandem vinylogous addition and cyclization of γ-phosphonyl/sulfonyl crotonates and ynones: synthesis of functionalized 2-pyrones. ACS Omega 4:18846–18854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gotsko MD, Saliy IV, Sobenina LN, Ushakov IA, Trofimov BA (2019) From acylethynylpyrroles to pyrrole-pyrone ensembles in a one step. Tetrahedron Lett 60:151126

    Article  CAS  Google Scholar 

  135. Leonardi G, Li J, Righetti GIC, Truscello AM, Gambarotti C, Terraneo G, Citterio A, Sebastiano R (2020) Pyrone synthesis from renewable sources: easy preparation of 3-acetoxy-2-oxo-2H-pyran-6-carboxylic salts and their derivatives as 3-hydroxy-2H-pyran-2-one from C6 aldaric acids. Eur J Org Chem 2020:241–251

    Article  CAS  Google Scholar 

  136. Sebhaoui J, El Bakri Y, Lai CH, Karthikeyan S, Anouar EH, Mague JT, Essassi EM (2020) Unexpected synthesis of novel 2-pyrone derivatives: crystal structures, hirshfeld surface analysis and computational studies. J Biomol Struct Dyn 38:1–19

    Google Scholar 

  137. Shaoa J, Ana C, Wang SR (2021) Facile synthesis of polysubstituted 2-pyrones via TfOH-mediated ring expansion of 2-acylcyclopropane-1-carboxylates. Synthesis 53:1526–7839

    Google Scholar 

  138. Obi G, Chukwujekwu JC, van Heerden FR (2020) Synthesis and antimicrobial activity of new prenylated 2-pyrone derivatives. Synth Commun 50:726–734

    Article  CAS  Google Scholar 

  139. Burkhardt I, Dickschat JS (2018) Synthesis and absolute configuration of natural 2-pyrones. Eur J Org Chem 2018:3144–3157

    Article  CAS  Google Scholar 

  140. Ohmukai H, Sugiyama Y, Hirota A, Kirihata M, Tanimori S (2020) Total synthesis of (S)-(+)-ent-phomapyrones B and surugapyrone B. J Heterocyclic Chem 57:1090–1100

    Article  CAS  Google Scholar 

  141. Douchi T, Akitake M, Sonoda M, Sugiyama Y, Tanimori S (2020) Enantio and diastereoselective total synthesis of all four stereoisomers of germicidin N. Synth Commun 50:1504–1511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The listed authors are highly obliged to their institutes and universities for the literature services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Rasheed.

Ethics declarations

Conflict of Interest

The representative authors have no conflict of interest to disclose in any capacity, either financial or non-financial.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, T., Rasheed, T., Hussain, M. et al. Emergence of 2-Pyrone and Its Derivatives, from Synthesis to Biological Perspective: An Overview and Current Status. Top Curr Chem (Z) 379, 38 (2021). https://doi.org/10.1007/s41061-021-00350-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00350-w

Keywords

Navigation