Skip to main content
Log in

Recent Trends in the Design, Synthesis, Spectroscopic Behavior, and Applications of Benzazole-Based Molecules with Solid-State Luminescence Enhancement Properties

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Molecules that exhibit solid-state luminescence enhancement, i.e. the rare property to be more strongly emissive in the solid state than in solution, find an increasing number of applications in the fields of optoelectronic and nanophotonic devices, sensors, security papers, imaging, and theranostics. Benzazole (BZ) heterocycles are of particular value in this context. The simple enlargement of their π-electron system using a –C=C–Ar or –N=C–Ar moiety is enough for intrinsic solid-state luminescence enhancement (SLE) properties to appear. Their association with a variety of polyaromatic motifs leads to SLE-active molecules that frequently display attractive electroluminescent properties and are sensitive to mechanical stimuli. The excited-state intramolecular proton transfer (ESIPT) process that takes place in some hydroxy derivatives reinforces the SLE effect and enables the development of new sensors based on a protection/deprotection strategy. BZ may also be incorporated into frameworks that are prototypical aggregation-induced enhancement (AIE) luminogens, such as the popular tetraphenylethene (TPE), leading to materials with excellent optical and electroluminescent performance. This review encompasses the various ways to use BZ units in SLE systems. It underlines the significant progresses recently made in the understanding of the photophysical mechanisms involved. A brief overview of the synthesis shows that BZ units are robust building blocks, easily incorporated into a variety of structures. Generally speaking, we try to show how these small heterocycles may offer advantages for the design of increasingly efficient luminescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Ref. 58 with permission from the Royal Society of Chemistry

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Adapted from Ref. [88] with permission from the Royal Society of Chemistry

Fig. 20
Fig. 21
Fig. 22
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15

Similar content being viewed by others

Abbreviations

ACQ:

Aggregation-caused fluorescence quenching

AIE:

Aggregation-induced emission

AIE-gen:

AIE-luminogen

BI:

Benzimidazole

BO:

Benzoxazole

BT:

Benzothiazole

BZ:

Benzazole

CI:

Conical intersection

DMF:

Dimethylformamide

D-π-A:

Electron donor-π-bridge-electron acceptor

ESIPT:

Excited-state intramolecular charge transfer

HBO:

Hydroxybenzoxazole

HBT:

Hydroxybenzothiazole

HOMO:

Highest occupied molecular orbital

ICT:

Intramolecular charge transfer

LUMO:

Lowest unoccupied molecular orbital

MFC:

Mechanofluorochromism

NIR:

Near infrared

OLED:

Organic light-emitting diode

PL:

Photoluminescence

PLQY:

Photoluminescence quantum yield

PBI:

Phenylbenzimidazole

PBO:

Phenylbenzoxazole

PBT:

Phenylbenzothiazole

RIR:

Restriction of intramolecular rotations

RIM:

Restriction of intramolecular motions

RACI:

Restricted access to a conical intersection

SLE:

Solid-state luminescence enhancement

TICT:

Twisted internal charge transfer

THF:

Tetrahydrofuran

TD-DFT:

Time-dependent density functional theory

TPE:

Tetraphylethene/tetraphenylethylene

References

  1. Kamal U, Javed NM, Arun K (2020) Biological potential of benzoxazole derivatives: an updated review. Asian J Pharm Clin Res 13:28–41. https://doi.org/10.22159/ajpcr.2020.v13i8.37958

    Article  CAS  Google Scholar 

  2. Demmer CS, Bunch L (2015) Benzoxazoles and oxazolopyridines in medicinal chemistry studies. Eur J Med Chem 97:778–785. https://doi.org/10.1016/j.ejmech.2014.11.064

    Article  CAS  Google Scholar 

  3. Keri RS, Patil MR, Patil SA, Budagumpi S (2015) A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem 89:207–251. https://doi.org/10.1016/j.ejmech.2014.10.059

    Article  CAS  Google Scholar 

  4. Keri RS, Hiremathad A, Budagumpi S, Nagaraja BM (2015) Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem Biol Drug Des 86:799–845. https://doi.org/10.1111/cbdd.12462

    Article  CAS  Google Scholar 

  5. Krasovitskii BM, Bolotin BM (1988) Organic luminescent materials. Wiley-VCH Verlag GmbH, Weinheim (ISBN-13: 978-3527267286)

    Google Scholar 

  6. Chen SH, Jiang K, Xiao Y, Cao XY, Arulkumar M, Wang ZY (2020) Recent endeavors on design, synthesis, fluorescence mechanisms and applications of benzazole-based molecular probes toward miscellaneous species. Dyes Pigment 175:108157. https://doi.org/10.1016/j.dyepig.2019.108157

    Article  CAS  Google Scholar 

  7. Carayon C, Fery-Forgues S (2017) 2-Phenylbenzoxazole derivatives: a family of robust emitters of solid-state fluorescence. Photochem Photobiol Sci 16:1020–1035. https://doi.org/10.1039/c7pp00112f

    Article  CAS  Google Scholar 

  8. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, United We Soar! Chem Rev 115:11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

    Article  CAS  Google Scholar 

  9. Zhao Z, Zhang H, Lam JWY, Tang BZ (2020) Aggregation-induced emission: new vistas at the aggregate level. Angew Chem Int Ed 59:9888–9907. https://doi.org/10.1002/anie.201916729

    Article  CAS  Google Scholar 

  10. Shi J, Aguilar Suarez LE, Yoon SJ, Varghese S, Serpa C, Park SY, Lüer D, Roca-Sanjuán D, Milián-Medina B, Gierschner J (2017) Solid state luminescence enhancement in π-conjugated materials: unraveling the mechanism beyond the framework of AIE/AIEE. J Phys Chem C 121:23166–23183. https://doi.org/10.1021/acs.jpcc.7b08060

    Article  CAS  Google Scholar 

  11. Anthony SP (2012) Organic solid-state fluorescence: strategies for generating switchable and tunable fluorescent materials. ChemPlusChem 77:518–531. https://doi.org/10.1002/cplu.201200073

    Article  CAS  Google Scholar 

  12. Bera MK, Pal P, Malik S (2020) Solid-state emissive organic chromophores: design, strategy and building blocks. J Mater Chem C 8:788–802. https://doi.org/10.1039/c9tc04239c

    Article  CAS  Google Scholar 

  13. Dimitriev OP, Piryatinski YP, Yuri L, Slominskii YL (2018) Excimer emission in J-aggregates. J Phys Chem Lett 9:2138–2143. https://doi.org/10.1021/acs.jpclett.8b00481

    Article  CAS  Google Scholar 

  14. Wilbraham L, Louis M, Alberga D, Brosseau A, Guillot R, Ito F, Labat F, Métivier R, Allain C, Ciofini I (2018) Revealing the origins of mechanically induced fluorescence changes in organic molecular crystals. Adv Mater 30:1800817. https://doi.org/10.1002/adma.201800817

    Article  CAS  Google Scholar 

  15. Gierschner J, Shi J, Milián-Medina B, Roca-Sanjuán D, Varghese S, Park SY (2021) Luminescence in crystalline organic materials: from molecules to molecular solids. Adv Opt Mater. https://doi.org/10.1002/adom.202002251

    Article  Google Scholar 

  16. Gierschner J, Lüer L, Milián-Medina B, Oelkrug D, Egelhaaf HJ (2013) Highly Emissive H-aggregates or aggregation-induced emission quenching? The photophysics of all-trans para-distyrylbenzene. J Phys Chem Lett 4:2686–2697. https://doi.org/10.1021/jz400985t

    Article  CAS  Google Scholar 

  17. De Silva TPD, Sahasrabudhe G, Yang B, Wang CH, Chhotaray PK, Nesterov EE, Warner IM (2019) Influence of anion variations on morphological, spectral, and physical properties of the propidium luminophore. J Phys Chem A 123:111–119. https://doi.org/10.1021/acs.jpca.8b06948

    Article  CAS  Google Scholar 

  18. Andreiuk BA, Reisch A, Bernhardt E, Klymchenko AS (2019) Fighting aggregation caused quenching and leakage of dyes in fluorescent polymer nanoparticles: universal role of counterion. Chem Asian J 14:836–846. https://doi.org/10.1002/asia.201801592

    Article  CAS  Google Scholar 

  19. Soulié M, Carayon C, Saffon N, Blanc S, Fery-Forgues S (2016) A comparative study of nine berberine salts in the solid state: optimization of the photoluminescence and self-association properties through the choice of the anion. Phys Chem Chem Phys 18:29999–30008. https://doi.org/10.1039/c6cp05848e

    Article  CAS  Google Scholar 

  20. Lu B, Fang X, Yan D (2020) Luminescent polymorphic co-crystals: a promising way to the diversity of molecular assembly, fluorescence polarization, and optical waveguide. ACS Appl Mater Interfaces 12:31940–31951. https://doi.org/10.1021/acsami.0c06794

    Article  CAS  Google Scholar 

  21. Bhowal R, Biswas S, Saseendran DPA, Koner AL, Chopra D (2019) Tuning the solid-state emission by co-crystallization through σ- and π-hole directed intermolecular interactions. CrystEngCommun 21:1940–1947. https://doi.org/10.1039/c8ce02118j

    Article  CAS  Google Scholar 

  22. Jimbo T, Tsuji M, Taniguchi R, Sada K, Kokado K (2018) Control of aggregation-induced emission from a tetraphenylethene derivative through the components in the co-crystal. Cryst Growth Des 18:3863–3869. https://doi.org/10.1021/acs.cgd.8b00141

    Article  CAS  Google Scholar 

  23. Kumar S, Singh M, Gaur P, Jou JH, Ghosh S (2017) Role of voluminous substituents in controlling the optical properties of disc/planar-like small organic molecules: toward molecular emission in solid state. ACS Omega 2:5348–5356. https://doi.org/10.1021/acsomega.7b00832

    Article  CAS  Google Scholar 

  24. Crespo-Otero R, Li Q, Blancafort L (2019) Exploring potential energy surfaces for aggregation-induced emission-from solution to crystal. Chem Asian J 14:700–714. https://doi.org/10.1002/asia.201801649

    Article  CAS  Google Scholar 

  25. Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horiz 6:428–433. https://doi.org/10.1039/c8mh01331d

    Article  CAS  Google Scholar 

  26. Rivera M, Stojanović L, Crespo-Otero R (2021) Role of conical intersections on the efficiency of fluorescent organic molecular crystals. J Phys Chem A 125:1012−1024. https://doi.org/10.1021/acs.jpca.0c11072

  27. Presti D, Wilbraham L, Targa C, Labat F, Pedone A, Menziani MC, Ciofini I, Adamo C (2017) Understanding aggregation-induced emission in molecular crystals: insights from theory. J Phys Chem C 121:5747–5752. https://doi.org/10.1021/acs.jpcc.7b00488

    Article  CAS  Google Scholar 

  28. Wang C, Li Z (2017) Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater Chem Front 1:2174–2194. https://doi.org/10.1039/c7qM00201g

    Article  CAS  Google Scholar 

  29. Majumdar P, Tharammal F, Gierschner J, Varghese S (2020) Tuning Solid-State Luminescence in conjugated organic materials: control of excitonic and excimeric contributions through π stacking and halogen bond driven self-assembly. ChemPhysChem 21:616–624. https://doi.org/10.1002/cphc.201901223

    Article  CAS  Google Scholar 

  30. Varughese S (2014) Non-covalent routes to tune the optical properties of molecular materials. J Mater Chem C 2:3499–3516. https://doi.org/10.1039/c3tc32414a

    Article  CAS  Google Scholar 

  31. Lu B, Liu S, Yan D (2019) Recent advances in photofunctional polymorphs of molecular materials. Chin Chem Lett 30:1908–1922. https://doi.org/10.1016/j.cclet.2019.09.012

    Article  CAS  Google Scholar 

  32. Tan R, Wang S, Lan H, Xiao S (2017) Polymorphism-dependent and mechanochromic luminescent molecules. Curr Org Chem 21:236–248. https://doi.org/10.2174/1385272820666160905104014

    Article  CAS  Google Scholar 

  33. Carayon C, André-Barrès C, Leygue N, Saffon-Merceron N, Boggio-Pasqua M, Fery-Forgues S (2021) The role of the synthetic chromophore of GFP in generating polymorphism-dependent on/off photoluminescence. Dyes Pigment 187:109119. https://doi.org/10.1016/j.dyepig.2020.109119

    Article  CAS  Google Scholar 

  34. Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Adv Mater 28:1073–1095. https://doi.org/10.1002/adma.201502589

    Article  CAS  Google Scholar 

  35. Ma Z, Wang Z, Teng M, Xu Z, Jia X (2016) ChemPhysChem 16:1811–1828. https://doi.org/10.1002/cphc.201500181

    Article  CAS  Google Scholar 

  36. Khan F, Ekbote A, Misra R (2019) Reversible mechanochromism and aggregation induced enhanced emission in phenothiazine substituted tetraphenylethylene. New J Chem 43:16156–16163. https://doi.org/10.1039/c9nj03290h

    Article  CAS  Google Scholar 

  37. Khan F, Ekbote A, Mobin SM, Misra R (2021) Mechanochromism and aggregation-induced emission in phenanthroimidazole derivatives: role of positional change of different donors in a multichromophoric assembly. J Org Chem 86:1560–1574. https://doi.org/10.1021/acs.joc.0c02404

    Article  CAS  Google Scholar 

  38. Barman D, Gogoi R, Narang K, Iyer PK (2020) Recent developments on multi-functional metal-free mechanochromic luminescence and thermally activated delayed fluorescence organic materials. Front Chem 8:483. https://doi.org/10.3389/fchem.2020.00483

    Article  CAS  Google Scholar 

  39. Su J, Fukaminato T, Placial JP, Onodera T, Suzuki R, Oikawa H, Brosseau A, Brisset F, Pansu R, Nakatani K, Métivier R (2016) Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles. Angew Chem Int Ed Engl 55:3662–3666. https://doi.org/10.1002/anie.201510600

    Article  CAS  Google Scholar 

  40. Melnychuk N, Klymchenko AS (2018) DNA-functionalized dye-loaded polymeric nanoparticles: ultrabright FRET platform for amplified detection of nucleic acids. J Am Chem Soc 140:10856–10865. https://doi.org/10.1021/jacs.8b05840

    Article  CAS  Google Scholar 

  41. Ghodbane A, D’Altério S, Saffon N, McClenaghan ND, Scarpantonio L, Jolinat P, Fery-Forgues S (2012) Facile access to highly fluorescent nanofibers and microcrystals via reprecipitation of 2-phenyl-benzoxazole derivatives. Langmuir 28:855–863. https://doi.org/10.1021/la2036554

    Article  CAS  Google Scholar 

  42. An BK, Gierschner J, Park SY (2012) π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc Chem Res 45:544–554. https://doi.org/10.1021/ar2001952

    Article  CAS  Google Scholar 

  43. Carayon C, Ghodbane A, Leygue N, Wang J, Saffon-Merceron N, Brown R, Fery-Forgues S (2019) Mechanofluorochromic properties of an AIEE-active 2-phenylbenzoxazole derivative: more than meets the eye? ChemPhotoChem 3:545–553. https://doi.org/10.1002/cptc.201800261

    Article  CAS  Google Scholar 

  44. Yadav UN, Kumbhar HS, Deshpande SS, Sahoo SK, Shankarling GS (2015) Photophysical and thermal properties of novel solid state fluorescent benzoxazole based styryl dyes from a DFT study. RSC Adv 5:42971–42977. https://doi.org/10.1039/c4ra12908c

    Article  CAS  Google Scholar 

  45. Bremond E, Leygue N, Jaouhari T, Saffon-Merceron N, Erriguible A, Fery-Forgues S (2021) Effect of substitution on the solid-state fluorescence properties of styrylbenzoxazole derivatives with terminal dicyanomethylene group. J Photochem Photobiol A 404:112857. https://doi.org/10.1016/j.jphotochem.2020.112857

    Article  CAS  Google Scholar 

  46. Suhina T, Amirjalayer S, Mennucci B, Woutersen S, Hilbers M, Bonn D, Brouwer AM (2016) Excited-state decay pathways of molecular rotors: twisted intermediate or conical intersection? J Phys Chem Lett 7:4285–4290. https://doi.org/10.1021/acs.jpclett.6b02277

    Article  CAS  Google Scholar 

  47. Willets KA, Callis PR, Moerner WE (2004) Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J Phys Chem B 108:10465–10473. https://doi.org/10.1021/jp049684d

    Article  CAS  Google Scholar 

  48. Levine BG, Martínez TJ (2007) Isomerization through conical intersections. Annu Rev Phys Chem 58:613–634. https://doi.org/10.1146/annurev.physchem.57.032905.104612

    Article  CAS  Google Scholar 

  49. Xue P, Yao B, Sun J, Zhang Z, Li K, Liu B, Lu R (2015) Crystallization-induced emission of styrylbenzoxazole derivate with response to proton. Dyes Pigment 112:255–261. https://doi.org/10.1016/j.dyepig.2014.07.026

    Article  CAS  Google Scholar 

  50. Horak E, Vianello R, Hranjec M, Krištafor S, Karminski Zamola G, Steinberg IM (2017) Benzimidazole acrylonitriles as multifunctional push–pull chromophores: spectral characterisation, protonation equilibria and nanoaggregation in aqueous solutions. Spectrochim Acta A 178:225–233. https://doi.org/10.1016/j.saa.2017.02.011

    Article  CAS  Google Scholar 

  51. Horak E, Hranjec M, Vianello R, Steinberg IM (2017) Reversible pH switchable aggregation-induced emission of self-assembled benzimidazole-based acrylonitrile dye in aqueous solution. Dyes Pigment 142:108–115. https://doi.org/10.1016/j.dyepig.2017.03.021

    Article  CAS  Google Scholar 

  52. Jana P, Yadav M, Kumar T, Kanvah S (2021) Benzimidazole-acrylonitriles as chemosensors for picric acid detection. J Photochem Photobiol A 404:112874. https://doi.org/10.1016/j.jphotochem.2020.112874

    Article  CAS  Google Scholar 

  53. Mishra A, Thangamani A, Chatterjee S, Chipem FAS, Krishnamoorthy G (2013) Photoisomerization of trans-2-[4′-(dimethylamino)styryl]benzothiazole. Photochem Photobiol 89:247–252. https://doi.org/10.1111/j.1751-1097.2012.01227.x

    Article  CAS  Google Scholar 

  54. Wang L, Zheng Z, Yu Z, Zheng J, Fang M, Wu J, Tian Y, Zhou H (2013) Schiff base particles with aggregation-induced enhanced emission: random aggregation preventing π–π stacking. J Mater Chem C 1:6952–6959. https://doi.org/10.1039/c3tc31626b

    Article  CAS  Google Scholar 

  55. Wang L, Shen Y, Yang M, Zhang X, Xu W, Zhu Q, Wu J, Tian Y, Zhou H (2014) Novel highly emissive H-aggregates with aggregate fluorescence change in a phenylbenzoxazole-based system. Chem Commun 50:8723–8726. https://doi.org/10.1039/c4cc02564d

    Article  CAS  Google Scholar 

  56. Horak E, Robić M, Šimanović A, Mandić V, Vianello R, Hranjec M, Steinberg IM (2019) Tuneable solid-state emitters based on benzimidazole derivatives: Aggregation induced red emission and mechanochromism of d-π-A fluorophores. Dyes Pigment 162:688–696. https://doi.org/10.1016/j.dyepig.2018.10.069

    Article  CAS  Google Scholar 

  57. Ma X, Xie J, Tanga N, Wu J (2016) AIE-caused luminescence of a thermally-responsive supramolecular organogel. New J Chem 40:6584–658710. https://doi.org/10.1039/c6nj01211f

    Article  CAS  Google Scholar 

  58. Yao H, Wang J, Song SS, Fan YQ, Guan XW, Zhou Q, Wei TB, Lin Q, Zhang YM (2018) A novel supramolecular AIE gel acts as a multi-analyte sensor array. New J Chem 42:18059–18065. https://doi.org/10.1039/c8nj04160a

    Article  CAS  Google Scholar 

  59. Li J, Qian Y, Xie L, Yi Y, Li W, Huang W (2015) From dark TICT state to emissive quasi-TICT state: the AIE mechanism of N-(3-(benzo[d]oxazol-2-yl)phenyl)-4-tert-butylbenzamide. J Phys Chem C 119:2133–2141. https://doi.org/10.1021/jp5089433

    Article  CAS  Google Scholar 

  60. Qian Y, Cai M, Zhou X, Gao Z, Wang X, Zhao Y, Yan X, Wei W, Xie L, Huang W (2012) More than restriction of twisted intramolecular charge transfer: three-dimensional expanded #-shaped cross-molecular packing for emission enhancement in aggregates. J Phys Chem C 116:12187–12195. https://doi.org/10.1021/jp212257f

    Article  CAS  Google Scholar 

  61. Zhao J, Ji S, Chen Y, Guo H, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817. https://doi.org/10.1039/c2cp23144a

    Article  CAS  Google Scholar 

  62. Padalkar VS, Seki S (2016) Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 45:169–202. https://doi.org/10.1039/C5CS00543D

    Article  CAS  Google Scholar 

  63. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47:8842–8880. https://doi.org/10.1039/c8cs00185e

    Article  CAS  Google Scholar 

  64. Syetov Y (2013) Luminescence spectrum of 2-(2′-hydroxyphenyl)benzoxazole in the solid state. Ukr J Phys Opt 14:1–5. https://doi.org/10.3116/16091833/14/1/1/2013

    Article  CAS  Google Scholar 

  65. Li G, Zhu D, Liu Q, Xue L, Jiang H (2013) Rapid detection of hydrogen peroxide based on aggregation induced ratiometric fluorescence change. Org Lett 15:924–927. https://doi.org/10.1021/ol4000845

    Article  CAS  Google Scholar 

  66. Hu R, Li S, Zeng Y, Chen J, Wang S, Li Y, Yang G (2011) Understanding the aggregation induced emission enhancement for a compound with excited state intramolecular proton transfer character. Phys Chem Chem Phys 13:2044–2051. https://doi.org/10.1039/c0cp01181a

    Article  CAS  Google Scholar 

  67. Gao M, Wang L, Chen J, Li S, Lu G, Wang L, Wang Y, Ren L, Qin A, Tang BZ (2016) Aggregation-induced emission active probe for light-up detection of anionic surfactants and wash-free bacterial imaging. Chem Eur J 22:5107–5112. https://doi.org/10.1002/chem.201505202

    Article  CAS  Google Scholar 

  68. Feng X, Tong B, Shi J, Zhao C, Cai Z, Dong Y (2021) Recent progress of aggregation-induced emission luminogens (AIEgens) for bacterial detection and theranostics. Mater Chem Front 5:1164–1184. https://doi.org/10.1039/d0qm00753f

    Article  CAS  Google Scholar 

  69. Kim TH, Choi MS, Sohn BH, Park SY, Lyood WS, Lee TS (2008) Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chem Commun. https://doi.org/10.1039/b800813b

    Article  Google Scholar 

  70. Chen H, Feng Y, Deng GJ, Liu ZX, He YM, Fan QH (2015) Fluorescent dendritic organogels based on 2-(2′-hydroxyphenyl)benzoxazole: emission enhancement and multiple stimuli-responsive properties. Chem Eur J 21:11018–11028. https://doi.org/10.1002/chem.201500849

    Article  CAS  Google Scholar 

  71. Qian Y, Li S, Wang Q, Sheng X, Wu S, Wang S, Lia J, Yang G (2012) A nonpolymeric highly emissive ESIPT organogelator with neither dendritic structures nor long alkyl/alkoxy chains. Soft Matter 8:757–764. https://doi.org/10.1039/c1sm06358h

    Article  CAS  Google Scholar 

  72. Benelhadj K, Muzuzu W, Massue J, Retailleau P, Charaf-Eddin A, Laurent AD, Jacquemin D, Ulrich G, Ziessel R (2014) White emitters by tuning the excited-state intramolecular proton-transfer fluorescence emission in 2-(2′-hydroxybenzofuran)benzoxazole dyes. Chem Eur J 20:12843–12857. https://doi.org/10.1002/chem.201402717

    Article  CAS  Google Scholar 

  73. Kachwal V, Krishna ISV, Fageria L, Chaudhary J, Roy RK, Chowdhury R, Laskar IR (2018) Exploring the hidden potential of a benzothiazolebased Schiff-base exhibiting AIE and ESIPT and its activity in pH sensing, intracellular imaging and ultrasensitive & selective detection of aluminium (Al3+). Analyst 143:3741–3748. https://doi.org/10.1039/c8an00349a

    Article  CAS  Google Scholar 

  74. Padalkar VS, Sakamaki D, Tohnai N, Akutagawa T, Sakai K, Seki S (2015) Highly emissive excited-state intramolecular proton transfer (ESIPT) inspired 2-(2′-hydroxy)benzothiazole-fluorene motifs: spectroscopic and photophysical properties investigation. RSC Adv 5:80283–80296. https://doi.org/10.1039/c5ra17980g

    Article  CAS  Google Scholar 

  75. Padalkar VS, Kuwada K, Sakamaki D, Tohnai N, Akutagawa T, Sakai K, Sakurai T, Seki S (2017) AIE active carbazole-benzothiazole based ESIPT Motifs: positional isomers directing the optical and electronic properties. ChemSelect 2:1959–1966. https://doi.org/10.1002/slct.201602044

    Article  CAS  Google Scholar 

  76. Xue P, Yao B, Wang P, Sun J, Zhang Z, Lu R (2014) Response of strongly fluorescent carbazole-based benzoxazole derivatives to external force and acidic vapors. RSC Adv 4:58732–58739. https://doi.org/10.1039/c4ra10330k

    Article  CAS  Google Scholar 

  77. Xue P, Yao B, Sun J, Zhang Z, Lu R (2014) Emission enhancement of a coplanar π-conjugated gelator without any auxiliary substituents. Chem Commun 50:10284–10286. https://doi.org/10.1039/c4cc04869e

    Article  CAS  Google Scholar 

  78. Wu Z, Sun J, Zhang Z, Gong P, Xue P, Lu R (2016) Organogelation of cyanovinylcarbazole with terminal benzimidazole: AIE and response for gaseous acid. RSC Adv 6:97293–97301. https://doi.org/10.1039/c6ra20910f

    Article  CAS  Google Scholar 

  79. Xue P, Yao B, Sun J, Xu Q, Chen P, Zhang Z, Lu R (2014) Phenothiazine-based benzoxazole derivates exhibiting mechanochromic luminescence: the effect of a bromine atom. J Mater Chem C 2:3942–3950. https://doi.org/10.1039/c4tc00061g

    Article  CAS  Google Scholar 

  80. Xue P, Chen P, Jia J, Xu Q, Sun J, Yao B, Zhang Z, Lu R (2014) A triphenylamine-based benzoxazole derivative as a high-contrast piezofluorochromic material induced by protonation. Chem Commun 50:2569–2571. https://doi.org/10.1039/c3cc49208g

    Article  CAS  Google Scholar 

  81. Padalkar VS, Sakamaki D, Kuwada K, Tohnai N, Akutagawa T, Sakai K, Seki S (2016) AIE active triphenylamine–benzothiazole based motifs: ESIPT or ICT emission. RSC Adv 6:26941–26949. https://doi.org/10.1039/c6ra02417c

    Article  CAS  Google Scholar 

  82. Padalkar VS, Sakamaki D, Kuwada K, Horio A, Okamoto H, Tohnai N, Akutagawa T, Sakai K, Seki S (2016) π–π Interactions: influence on molecular packing and solid-state emission of ESIPT and non-ESIPT motifs. Asian J Org Chem 5:938–945. https://doi.org/10.1002/ajoc.201600159

    Article  CAS  Google Scholar 

  83. Cao Y, Yang M, Wang Y, Zhou HP, Zheng J, Zhang X, Wu J, Tian Y, Wu Z (2014) Aggregation-induced and crystallization-enhanced emissions with time-dependence of a new Schiff-base family based on benzimidazole. J Mater Chem C 2:3686–3694. https://doi.org/10.1039/c3tc32551b

    Article  CAS  Google Scholar 

  84. Massue J, Frath D, Retailleau P, Ulrich G, Ziessel R (2013) Synthesis of luminescent ethynyl-extended regioisomers of borate complexes based on 2-(2′-Hydroxyphenyl)benzoxazole. Chem Eur J 19:5375–5386. https://doi.org/10.1002/chem.201203625

    Article  CAS  Google Scholar 

  85. Meesala Y, Kavala V, Chang HC, Kuo TS, Yao CF, Lee WZ (2015) Synthesis, structures and electrochemical and photophysical properties of anilido-benzoxazole boron difluoride (ABB) complexes. Dalton Trans 44:1120–1129. https://doi.org/10.1039/c4dt03052d

    Article  CAS  Google Scholar 

  86. Zhang Z, Wu Z, Sun J, Xue P, Lu R (2016) Multi-color solid-state emission of β-iminoenolate boron complexes tuned by methoxyl groups: aggregation-induced emission and mechanofluorochromism. RSC Adv 6:43755–43766. https://doi.org/10.1039/c6ra03722d

    Article  CAS  Google Scholar 

  87. Zhao J, Peng J, Chen P, Wang H, Xue P, Lu R (2018) Mechanofluorochromism of difluoroboron β-ketoiminate boron complexes functionalized with benzoxazole and benzothiazole. Dyes Pigment 149:276–283. https://doi.org/10.1016/j.dyepig.2017.10.007

    Article  CAS  Google Scholar 

  88. Wang X, Liu Q, Yan H, Liu Z, Yao M, Zhang Q, Gong S, He W (2015) Piezochromic luminescence behaviors of two new benzothiazole–enamido boron difluoride complexes: intra- and inter-molecular effects induced by hydrostatic compression. Chem Commun 51:7497–7500. https://doi.org/10.1039/c5cc01902h

    Article  CAS  Google Scholar 

  89. Ghodbane A, Fellows WB, Bright J, Ghosh D, Saffon N, Tolbert LM, Fery-Forgues S, Solntsev KM (2016) Effects of the benzoxazole group on green fluorescent protein chromophore crystal structure and solid state photophysics. J Mater Chem C 14:2793–2801. https://doi.org/10.1039/c5tc03776j

    Article  Google Scholar 

  90. Carayon C, Ghodbane A, Gibot L, Dumur R, Wang J, Saffon N, Rols MP, Solntsev KM, Fery-Forgues S (2016) Conjugates of benzoxazole and GFP chromophore with aggregation-induced enhanced emission: influence of the chain length on the formation of particles and on the dye uptake by living cells. Small 12:6602–6612. https://doi.org/10.1002/smll.201602799

    Article  CAS  Google Scholar 

  91. Carayon C, André-Barrès C, Leygue N, Saffon-Merceron N, Boggio-Pasqua M, Fery-Forgues S (2021) The role of the synthetic chromophore of GFP in generating polymorphism-dependent on/off photoluminescence. Dyes Pigment (On Press). https://doi.org/10.1016/j.dyepig.2020.109119

    Article  Google Scholar 

  92. Zhang T, Zhang R, Zhao Y, Ni Z (2018) A new series of N-substituted tetraphenylethene-based benzimidazoles: aggregation-induced emission, fast-reversible mechanochromism and blue electroluminescence. Dyes Pigment 148:276–285. https://doi.org/10.1016/j.dyepig.2017.09.018

    Article  CAS  Google Scholar 

  93. Zhang T, Zhang R, Zhang Z, Ni Z (2016) A series of tetraphenylethene-based benzimidazoles: syntheses, structures, aggregation-induced emission and reversible mechanochromism. RSC Adv 6:79871–79878. https://doi.org/10.1039/c6ra16514a

    Article  CAS  Google Scholar 

  94. Shi J, Chang N, Li C, Mei J, Deng C, Luo X, Liu Z, Bo Z, Dong YQ, Tang BZ (2012) Locking the phenyl rings of tetraphenylethene step by step: understanding the mechanism of aggregation-induced emission. Chem Commun 48:10675–10677. https://doi.org/10.1039/C2CC35641D

    Article  CAS  Google Scholar 

  95. Tan G, Zhu L, Liao X, Lan Y, You J (2017) Rhodium/Copper cocatalyzed highly trans-selective 1,2-diheteroarylation of alkynes with azoles via C−H addition/oxidative cross-coupling: a combined experimental and theoretical study. J Am Chem Soc 139:15724–15737. https://doi.org/10.1021/jacs.7b07242

    Article  CAS  Google Scholar 

  96. Lu Z, Liu Y, Lu S, Li Y, Liu X, Qin Y, Zheng L (2018) A highly selective TPE-based AIE fluorescent probe is developed for the detection of Ag+. RSC Adv 8:19701–19706. https://doi.org/10.1039/c8ra03591a

    Article  CAS  Google Scholar 

  97. Zhao N, Yang Z, Lam JWY, Sung HHY, Xie N, Chen S, Su H, Gao M, Williams ID, Wong KS, Tang BZ (2012) Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chem Commun 48:8637–8639. https://doi.org/10.1039/c2cc33780k

    Article  CAS  Google Scholar 

  98. Zhang J, Bai Y, Wei Q, Cao L, Wang T, Ge Z (2020) Efficient bipolar AIE emitters for high-performance nondoped OLEDs. J Mater Chem C 8:11771–11777. https://doi.org/10.1039/d0tc02566f

    Article  CAS  Google Scholar 

  99. Ma C, Xu B, Xie G, He J, Zhou X, Peng B, Jiang L, Xu B, Tian W, Chi Z, Liu S, Zhang Y, Xu J (2014) An AIE-active luminophore with tunable and remarkable fluorescence switching based on the piezo and protonation–deprotonation control. Chem Commun 50:7374–7377. https://doi.org/10.1039/c4cc01012d

    Article  CAS  Google Scholar 

  100. Cui Y, Yin YM, Cao HT, Zhang M, Shan GG, Sun HZ, Wu Y, Su ZM, Xie WF (2015) Efficient piezochromic luminescence from tetraphenylethene functionalized pyridine-azole derivatives exhibiting aggregation-induced emission. Dyes Pigment 119:62e69. https://doi.org/10.1016/j.dyepig.2015.03.024

  101. Jadhav T, Dhokale B, Mobin SM, Misra R (2015) Mechanochromism and aggregation induced emission in benzothiazole substituted tetraphenylethylenes: a structure function correlation. RSC Adv 5:29878–29884. https://doi.org/10.1039/c5ra04881h

    Article  Google Scholar 

  102. Chen Q, Jia C, Zhang Y, Du W, Wang Y, Huang Y, Yang Q, Zhang Q (2017) A novel fluorophore based on the coupling of AIE and ESIPT mechanisms and its application in biothiol imaging. J Mater Chem B 5:7736–7742. https://doi.org/10.1039/c7tb02076g

    Article  CAS  Google Scholar 

  103. Liu Y, Nie J, Niu J, Wang W, Lin W (2018) An AIE + ESIPT ratiometric fluorescent probe for monitoring sulfur dioxide with distinct ratiometric fluorescence signals in mammalian cells, mouse embryonic fibroblast and zebrafish. J Mater Chem B 6:1973–1983. https://doi.org/10.1039/c8tb00075a

    Article  CAS  Google Scholar 

  104. Peng J, Ye K, Liu C, Sun J, Lu R (2019) The photomechanic effects of the molecular crystals based on 5-chloro-2-(naphthalenylvinyl)benzoxazols fueled by topo-photochemical reactions. J Mater Chem C 7:5433–5544. https://doi.org/10.1039/c9tc01084j

    Article  CAS  Google Scholar 

  105. Sun J, Zheng M, Jia J, Wang W, Cui Y, Gao J (2019) New Coumarin-benzoxazole derivatives: synthesis, photophysical and NLO properties. Dyes Pigment 164:287–295. https://doi.org/10.1016/j.dyepig.2019.01.010

    Article  CAS  Google Scholar 

  106. Dahal D, McDonald L, Bi XM, Abeywickrama C, Gombedza F, Konopka M, Paruchuri S, Pang Y (2017) An NIR-emitting lysosome-targeting probe with large Stokes shift via coupling cyanine and excited-state intramolecular proton transfer. Chem Commun 53:3697–3700. https://doi.org/10.1039/c7cc00700k

    Article  CAS  Google Scholar 

  107. Gautam P, Maragani R, Mobina SM, Misra R (2014) Reversible mechanochromism in dipyridylamine-substituted unsymmetrical benzothiadiazoles. RSC Adv 4:52526–52529. https://doi.org/10.1039/C4RA09921D

    Article  CAS  Google Scholar 

  108. Jadhav T, Dhokale B, Patil Y, Mobin SM, Misra R (2016) Multi-stimuli responsive Donor−Acceptor tetraphenylethylene substituted benzothiadiazoles. J Phys Chem C 120:24030–24040. https://doi.org/10.1021/acs.jpcc.6b09015

    Article  CAS  Google Scholar 

  109. Mao S, Han X, Li C, Huang G, Shen K, Shi X, Wu H (2018) Synthesis, crystal structure, fluorescence and electrochemical properties of two Ag(I) complexes based on 2-(4′-pyridyl)-benzoxazole/SPPh3 ligands. J Coord Chem 71:3330–3341. https://doi.org/10.1080/00958972.2018.1514116

    Article  CAS  Google Scholar 

  110. Chai W, Hong M, Song L, Jia G, Shi H, Guo J, Shu K, Guo B, Zhang Y, You W, Chen X (2015) Three reversible polymorphic Copper(I) complexes triggered by ligand conformation: insights into polymorphic crystal habit and luminescent properties. Inorg Chem 54:4200–4207. https://doi.org/10.1021/ic502709b

    Article  CAS  Google Scholar 

  111. Wang J, Poirot A, Delavaux-Nicot B, Wolff M, Mallet-Ladeira S, Calupitan JP, Allain C, Benoist E, Fery-Forgues S (2019) Optimization of aggregation-induced phosphorescence enhancement in mononuclear tricarbonyl Rhenium(I) complexes: the influence of steric hindrance and isomerism. Dalton Trans 48:15906–15916. https://doi.org/10.1039/c9dt02786f

    Article  CAS  Google Scholar 

  112. Calupitan JP, Poirot A, Wang J, Delavaux-Nicot B, Wolff M, Jaworska M, Métivier R, Benoist E, Allain C, Fery-Forgues S (2021) Mechanical modulation of the solid-state luminescence of tricarbonyl rhenium(I) complexes through the interplay between two triplet excited states. Chem Eur J 27:4191–4196. https://doi.org/10.1002/chem.202005245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is part of a project that has received funding from Agence Nationale pour la Recherche (ANR), SUPERFON project # ANR-17-CE07-0029-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Fery-Forgues.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fery-Forgues, S., Vanucci-Bacqué, C. Recent Trends in the Design, Synthesis, Spectroscopic Behavior, and Applications of Benzazole-Based Molecules with Solid-State Luminescence Enhancement Properties. Top Curr Chem (Z) 379, 32 (2021). https://doi.org/10.1007/s41061-021-00344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00344-8

Keywords

Navigation