
International Journal of Data Science and Analytics
https://doi.org/10.1007/s41060-024-00554-5

REGULAR PAPER

Clustering source code from automated assessment of programming
assignments

José Carlos Paiva1,2 · José Paulo Leal1,2 · Álvaro Figueira1,2

Received: 3 January 2024 / Accepted: 15 April 2024
© The Author(s) 2024

Abstract
Clustering of source code is a technique that can help improve feedback in automated program assessment. Grouping code
submissions that contain similar mistakes can, for instance, facilitate the identification of students’ difficulties to provide
targeted feedback. Moreover, solutions with similar functionality but possibly different coding styles or progress levels can
allow personalized feedback to students stuck at some point based on a more developed source code or even detect potential
cases of plagiarism. However, existing clustering approaches for source code are mostly inadequate for automated feedback
generation or assessment systems in programming education. They either give too much emphasis to syntactical program
features, rely on expensive computations over pairs of programs, or require previously collected data. This paper introduces
an online approach and implemented tool—AsanasCluster—to cluster source code submissions to programming assignments.
The proposed approach relies on program attributes extracted from semantic graph representations of source code, including
control and data flow features. The obtained feature vector values are fed into an incremental k-means model. Such a model
aims to determine the closest cluster of solutions, as they enter the system, timely, considering clustering is an intermediate
step for feedback generation in automated assessment. We have conducted a twofold evaluation of the tool to assess (1)
its runtime performance and (2) its precision in separating different algorithmic strategies. To this end, we have applied
our clustering approach on a public dataset of real submissions from undergraduate students to programming assignments,
measuring the runtimes for the distinct tasks involved: building a model, identifying the closest cluster to a new observation,
and recalculating partitions. As for the precision, we partition two groups of programs collected from GitHub. One group
contains implementations of two searching algorithms, while the other has implementations of several sorting algorithms.
AsanasCluster matches and, in some cases, improves the state-of-the-art clustering tools in terms of runtime performance and
precision in identifying different algorithmic strategies. It does so without requiring the execution of the code. Moreover, it
is able to start the clustering process from a dataset with only two submissions and continuously partition the observations as
they enter the system.

Keywords Programming learning · Automated assessment · Programming assignments · Clustering · Semantic graph

B José Carlos Paiva
jose.c.paiva@inesctec.pt

José Paulo Leal
zp@dcc.fc.up.pt

Álvaro Figueira
arfiguei@fc.up.pt

1 CRACS, INESC TEC, Rua do Campo Alegre, 4169-007
Porto, Portugal

2 DCC, FCUP, Rua do Campo Alegre, 4169-007 Porto,
Portugal

1 Introduction

Learning to program requires extensive and varied prac-
tice, obtained through solving a wide range of programming
assignments supported with accurate, timely, and formative
feedback [2, 10, 30]. Such feedback cannot be guaranteed
manually on learners’ demand, as instructors can neither
verify the code attempts for all learners in a class nor are
always available outside classes. Thus, scalable and auto-
matic techniques to assess programming assignments have
long been investigated to address this need and are still a
target of increasing research interest [35].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-024-00554-5&domain=pdf


International Journal of Data Science and Analytics

The clustering of source code has been initially introduced
into the automated assessment of programming assignments
for plagiarism detection purposes [31]. By grouping sub-
missions that exhibit high similarity, the space of possible
cases of plagiarism reduces considerably, enabling a more
thorough pairwise inspection on them [34, 50]. Multiple
strategies to measure similarity have been proposed, includ-
ing structural [9, 20, 33, 39], semantical [4, 5, 7], and
behavioral [21, 28, 49] approaches. Eventually, clustering
has emerged as a promising technique to support the gener-
ation of feedback on the correctness of solutions and how to
progress after mistakes. Having solutions with similar func-
tionality, code complexity, structure, or behavior together
can, for instance, facilitate the delivery of targeted feedback
on commonmistakes from learners by grouping submissions
that contain similar errors or misconceptions [11, 18] and
enable the generation of personalized feedback to improve a
program based on a solution adopting a similar strategy but
correct [6, 22].

Nevertheless, clustering source code is a complex task.
On the one hand, approaches often require computing an
edit distance between each pair of solutions (e.g., abstract
syntax tree edit distance), which is expensive. On the other
hand, the quality of the clusters is highly-dependent not only
on the selected representation of source code but also on the
model used and the available data. Therefore, most of the
proposed approaches perform poorly in providing feedback
in programming courses. These either: (1) overly focus on
syntax and/or require exact matching of program features,
generating a large number of clusters as a consequence [14,
17]; (2) rely on expensive pairwise computations [19, 32];
(3) require a large amount of previously generated data [37,
44]; or (4) are specialized in a specific type of assignment
(e.g., dynamic programming) and not generalizable [22].

Thisworkproposes an approach and tool—AsanasCluster—
to cluster correct source code submissions to programming
assignments based on their algorithmic strategies. To this
end, we extract the control flow graph (CFG), which encodes
the executionorder of individual statements of a program, and
data flow graph (DFG), which describes how data variables
get updated between instructions, from the submitted source
code. The combined information of these representations
captures the key aspects of the algorithmic strategy adopted
in the original program [12], ignoring its syntax. As even
computing the pairwise graph edit distance of these simpli-
fied representations would be expensive, we rather compile a
vector of features from them, which is used as the input to the
clustering model. This model is an incremental mini-batch
k-means variant [43] of the popular Lloyd’s classic k-means
algorithm [26]. Such a model moves clusters’ centers as new
correct submissions enter the system, reducing training time
considerably when compared to re-training the model on the
complete dataset.

The ultimate goal of this clustering process is to, given
an incorrect solution, determine the closest cluster consider-
ing all correct submissions up to date. From this cluster, we
select a correct solution,which theoretically follows the same
algorithmic strategy, to compare against the wrong program
and generate personalized feedback for the student. Conse-
quently, the runtime of the clustering process must allow for
near real-time feedback, and considering feedback genera-
tion is a subsequent task. Moreover, it is important that the
model solution adopts the same strategy as the incorrect one
if it is a valid approach, to support students’ development in
their own line of thought. Hence, we evaluate AsanasCluster
on a public dataset—PROGpedia [36]—both regarding the
runtimes and the effectiveness in identifying different algo-
rithmic solution strategies.

The remainder of this paper is organized as follows. Sec-
tion2 presents some of the most important works involving
the clustering of source code for the automated assessment of
programming assignments. Section3 reviews the necessary
concepts for the correct understanding of this work. Section4
describes the proposed approach. Section5 demonstrates the
effectiveness of this approach using a public dataset of real
submissions to programming assignments. Finally, Sect. 6
discusses and summarizes the contributions of this work.

2 Related work

Earlier approaches for clustering source code in program-
ming education are based on textual similarity. These
approaches often involve the extraction of tokens or selection
of keywords from the source code, followedbypairwise com-
parison using some well-known distance metric or common
text mining techniques [24, 31, 34]. While such approaches
can inherit much from text clustering, they are generally very
sensitive to changes in code structure or formatting.

A popular program representation used in clustering
approaches is abstract syntax trees (ASTs), as they cap-
ture just enough information to understand the structure of
the code. Such clustering approaches compute similarity
using distances in feature space [15, 16], string edit dis-
tance [42], tree edit distance [19], or normalization [41, 47].
For instance, Codewebs [32] customizes and employs a set
of semantics-preserving AST transformations to normalize
and cluster student submissions.

Luxton-Reilly et al. [29] claim that different solutions
have distinct structural variations, which can be encoded
using control flow graphs (CFGs). This means that clustering
source codes by their control flow structures divide them into
categories. OverCode [14] and CLARA [17] combine these
structures with dynamic information on variable values to
cluster solutions. However, these techniques generate a large

123



International Journal of Data Science and Analytics

number of clusters as they focus excessively on the syntactic
details of the source code.

SemCluster [37] uses a vector representation of programs
based on semantic program features, which can be used with
standard clustering algorithms such as k-means. The fea-
tures include control flow features and data flow features.
The former describes how the problem space is partitioned
into sub-spaces (i.e., the control flow paths), while the lat-
ter captures the frequency of occurrence of distinct pairs of
successive values of individual variables in test executions.

Using deep learning to learn program embeddings from
token sequences, ASTs, CFGs, program states, or other
program representations is the recent trend in program clus-
tering [27, 38, 40, 44, 45]. Nevertheless, training suchmodels
still requires considerable effort and a meticulous selection
of inputs. Finally, other clustering approaches specialize in
specific programming problems such as dynamic program-
ming [22] and interactive programs [8].

3 Definitions

In this section, we present the concepts of control flow
graph (CFG), evaluation order graph (EOG), data flow graph
(DFG), and k-means clustering that form the basis of the
proposed approach.

3.1 Control flow graph

A control flow graph (CFG) is a directed graph G =
(N , E, n0, n f ), where N represents the set of nodes, E is
the set of directed edges (i.e., pairs of elements of N ), and
n0, n f correspond to the entry and exit nodes, respectively.
The set of nodes N = {n1, n2, ...} ∪ {n0, n f } corresponds to
basic blocks, i.e., maximal-length sequences of branch-free
instructions of a program. The set of edges E represents con-
trol dependencies between the nodes. The two extra nodes
n0, n f , which represent the node through which the control
enters the graph (entry node n0) and the node through which
the control exits the graph (exit node n f ), are added such that
each node of the graph has at most two successors.

The CFG captures the control flow behavior of a program,
considering the possible paths and decisions taken during
program execution. It provides a structured representation of
the control flowof the program, supporting program analysis,
optimization, and the understanding of its behavior.

3.2 Evaluation order graph

The evaluation order graph (EOG) [46] is a directed graph
G = (N , E), where N represents the set of nodes and E is the
set of directed edges, designed to capture the order in which
code is executed, similarly to a CFG, but on a finer level

of granularity, i.e., including the order in which expressions
and sub-expressions are evaluated. The nodes of the EOG
are the same nodes as those of the abstract syntax tree of the
program,whereas an edge (ni , n j )means that n j is evaluated
after ni .

The differences between the EOG and the CFG, which
connects basic blocks of statements, are only a few, partic-
ularly: methods without explicit return statements have an
edge in the EOG to a virtual return node; the EOG consid-
ers opening blocks (e.g., {) as separate nodes; the EOG uses
separate nodes for the if keyword and the condition; and the
EOG considers a method header as a node.

3.3 Data flow graph

A data flow graph (DFG) is a directed graph G = (N , E),
where N is the set of nodes and E is the set of directed edges.
Each node within the set N = {n1, n2, ...} denotes a distinct
computational unit or instruction, whereas the directed edges
(ni , n j ) for ni , n j ∈ N within the set E represent the data
dependencies, i.e., the output data of ni is consumed by n j .
Such visualization enables a clear view of the data processing
pipeline (i.e., the flow of data along the edges establishes the
sequence in which operations should be executed), support-
ing the analysis and optimization of the program through the
identification of parallel execution possibilities.

3.4 K-means clustering

K -means clustering method is a popular unsupervised
machine learning technique for partitioning a set of obser-
vations (or data points) into k different clusters. Firstly, the k
initial centroids are randomly selected, where k is a user-
defined parameter. Each data point d is then assigned to
the closest mean (or centroid), and the collection of points
assigned to a centroid forms a cluster. Afterward, the centroid
of each cluster is updated based on all points in the cluster.
This iterative procedure is repeated until no changes occur
in the clusters.

The method can be formally defined as follows. Con-
sider D = {d1, ..., dn} is the set of observations to be
clustered, where each di ∈ R

m is represented by a m-
dimensional feature vector. Then, k-means partitions the data
points in D into K clusters with centroidsC∗ = {C1, ...,Ck}
such that

∑K
i=1

∑
d∈Ci

dist(d, µi ) is minimal, where µi =
1
Ci

∑
d∈Ci

d is the centroid of cluster Ci and “dist” is the
distance function used. There are many distance metrics
that can be used, such as the squared Euclidean distance,
i.e., dist(d, µ) = ||d − µ||2, and the cosine distance, i.e.,
dist(d, µ) = (d · µ)/(||d||.||µ||). The best one depends on
the dataset composition.

123



International Journal of Data Science and Analytics

Even though this problem is known to be NP-hard, such
gradient descent methods generally converge to a local opti-
mum if seeded with an initial set of k observations drawn
uniformly and randomly from D [3]. Bottou et al. [3] used
this property to propose an online stochastic gradient descent
variant that computes a gradient descent step on one obser-
vation at a time, which makes it converge faster on large
datasets but degrading the quality of clusters (due to stochas-
tic noise). Sculley [43] proposes an optimization for k-means
clustering by processing mini-batches rather than individual
data points, which tend to have lower stochastic noise and
are not affected in terms of cost when datasets grow large
with redundant observations.

4 Clustering source code with AsanasCluster

This section introduces the design and the implementation
of a tool, named AsanasCluster, to cluster correct source
code solutions submitted to programming assignments in
real time. This approach addresses a few gaps in existing
techniques. First, it groups programs by their algorithmic
strategy from a high-level perspective, which generates fewer
clusters than most existing clustering approaches. Second, it
extracts and relies on a vector of features from the seman-
tic graph representations of the program, avoiding expensive
pairwise computations such as the graph edit distance across
the complete dataset. Lastly, it follows an incremental clus-
tering model, meaning that solutions are assigned to clusters
as they enter the system rather than all at once. Such a model
not only reduces the time to discover the closest cluster to
a new observation considerably but also enables this task to
run with up-to-date information on submitted solutions.

The workflow of AsanasCluster is illustrated in Fig. 1.
Given a set of existing solutions P to a programming assign-
ment, for each new program p, received as input, it generates
both an EOG and a DFG using an adaptation of an existing
Kotlin library [13], designed to extract the code property
graph (which includes the representations needed) out of
source code. This step guarantees support for programs writ-
ten in either Python, Java, C, or C++. The obtained EOG is
transformed into a CFG through a process involving edge
contraction, i.e., for every edge whose source has an out-
degree of one and destination has an in-degree of one is
contracted. These two final representations, DFG and CFG,
are analyzed to compute the control flow and data flow fea-
tures that compose the feature vector of a program, (described
in Subsection 4.1). Finally, the resulting feature vector is fed
into the k-means clustering algorithm implemented (refer to
Subsection 4.1 for details).

4.1 Feature engineering

One key characteristic of the proposed approach lies in the
representation of the program used. The clustering process
aims to separate source code solutions by their algorithmic
strategy, i.e., a sequence of instructions executed in a well-
defined order to solve a problem or calculate a function.
The flow of execution of a program, i.e., the order in which
the instructions execute, is, thus, an essential aspect of the
algorithmic strategy. Combining this with knowledge of the
data dependencies among these instructions, the algorithmic
strategy is largely covered [12]. The former information is
captured by the CFG (or the EOG), whereas the latter is
encoded in the DFG, as explained in Subsections 3.1 and
3.3.

To obtain these representations, we firstly adapted aKotlin
library [13], initially developed to extract the code property
graph (CPG) [48] out of source code written in either Python,
Java, C, or C++. The CPG is a data structure combining
the AST, DFG, and EOG, designed to mine large codebases
for programming patterns that represent security vulnerabili-
ties. As this representation includes the required information,
our adaptation consists of adding a feature to the library for
exporting the CPG in comma-separated value (CSV) format.
The exported artifact is composed of two CSV files: one
containing the description of the nodes, including ID, type
of construct, token, and location, and the other describing
the edges, including source, location, origin (AST, EOG, or
DFG), among other information of its specific origin (e.g.,
variable identifier for edges of the DFG). While both the
EOG and the CFG encode the control flow of a program, the
latter is a significantly smaller graph. Hence, before further
computations, the obtained EOG is transformed into a CFG
through a process involving edge contraction, i.e., every edge
whose source has an out-degree of one and destination has
an in-degree of one is contracted.

Clustering by the CFG and the DFG would require mea-
suring two pairwise graph edit distances over the full dataset.
These are complex operations whose computational cost
grows exponentially on the graphs and dataset size. There-
fore, our approach is rather feature-based.We derive a feature
vector composed of numeric values calculated from the
characteristics of both graphs, CFG and DFG. This vec-
tor contains 11 features, namely: connected_components,
the number of connected components in the control flow
graph (i.e., being an intra-procedural representation, the
multiple procedures have no connection in the graph);
loop_statements, the number of loop statements (e.g.,
for, foreach, while, and do... while) in the pro-
gram; conditional_statements, the number of conditional

123



International Journal of Data Science and Analytics

Fig. 1 Scheme of how AsanasCluster works on a high level

statements (e.g., if) in the program; cycles, the number
of different cycles in the control flow graph; paths, the
number of different paths in the control flow graph; cyclo-
matic_complexity, a software metric that measures the
complexity of a program by analyzing its control flow (i.e.,
it provides a quantitative measure of the number of possible
execution paths in the program);variable_count, the number
of variables used in the program, excluding variables which
are never read; total_reads, the total number of read oper-
ations on variables; total_writes, the total number of write
operations on variables; max_reads, the maximum number
of read operations on single variable; and max_writes, the
maximum number of write operations on single variable.
Table 1 summarizes the features of the model.

As the order of execution of instructions has themost rele-
vance in the algorithmic strategy of the solution, we decided
to split the weight of the data flow features. Among these, the
variable_count weighs more, as the others are dependent on
it by definition. The summed weight of all these features is
the same as that of a single control flow feature. Moreover,
we have scaled the data so that it has zero mean and unit
variance. For that, running means and variances are main-
tained for each feature. Even though, for being incremental,
the exact means and variances are not known in advance, this
does not have a detrimental impact in the long term.

Having a high number of features in the model makes it
more difficult to manage and may even add noise, as some of
these features can be redundant. To prevent this, the correla-
tion of the 11 features of our model has been measured using
Pearson’s correlation coefficient [23] on the 16 programming
exercises of PROGpedia dataset [36]. The correlation coef-
ficient has values from −1 to 1: A value closer to 0 implies
weaker correlation (i.e., 0 is no correlation); a value closer to
1 means stronger positive correlation; and a value closer to
−1 implies stronger negative correlation. Each programming
exercise is analyzed separately and casts a vote on pairs with
a correlation above 0.9. For pairswith half ormore of the total
votes, a member is eliminated. Nevertheless, in this case, no
correlated pair has been identified with these conditions.

Table 1 Features of the model

Feature Type Source Weight

connected_components Integer CFG 1

loop_statements Integer CFG 1

conditional_statements Integer CFG 1

cycles Integer CFG 1

paths Integer CFG 1

cyclomatic_complexity Integer CFG 1

variable_count Integer DFG 0.6

total_reads Integer DFG 0.1

total_writes Integer DFG 0.1

max_reads Integer DFG 0.1

max_writes Integer DFG 0.1

4.2 Clusteringmodel

The values of the final feature vector are given as input to
the k-means clustering algorithm implemented (see Subsec-
tion 3.4). This specific implementation starts by randomly
instantiating k centroids, according to a Gaussian distribu-
tion. The value of k is the main hyper-parameter of the model
and sets the limit on the number of formed clusters. As the
goal is to have as many clusters as the number of algorith-
mic solution strategies, an adequate value would be greater
or equal to the expected count of different strategies. We
have limited the maximum amount of clusters to 16 as the
possibility of an academic-level programming assignment
having more than 16 algorithmic solution strategies can be
neglected. Nevertheless, this value can be defined explicitly,
per assignment.

Given a new submission, more precisely the feature vector
extracted from it, we first identify the closest centroid. This is
done by measuring the distance from the new observation to
each centroid, using a certain distance metric, and selecting
the minimum of these distances. In this case, we tried the
Manhattan distance, Euclidean distance, and cosine distance

123



International Journal of Data Science and Analytics

in two sets of submissions to programming assignments with
well-defined algorithmic solution strategies. The Euclidean
distance revealed a lower average error index (0) than the
Manhattan (0.3) and cosine (0.25) distances and, thus, was
applied. After identifying the centroid (and cluster) to which
the new observation belongs, the centroid’s position “moves”
in the direction of the new element. The amount by which to
move the centroid is a product of their scalar distance and the
learning rate. The learning rate is the inverse of the number
of solutions assigned to a cluster during the process, i.e., as
the number of elements increases, the effect of new elements
is reduced.

The pseudocode of this clustering process is presented in
Algorithm 1. It assumes that the feature vector is provided
as the solution object, ignoring the extraction of the graph
representations and subsequent computation of the feature
vector values. Moreover, when centroids “move,” the closest
centroid is re-identified for previous solutions.

Algorithm 1 Pseudocode of the k-means clustering process
Require: 2 ≤ k ≤ 16 � Number of centroids to initialize.
Ensure: dist(c, S) is a function that computes the distance between
two feature vectors, according to the metric used.

Ensure: C has k centroids randomly initialized according to k-
means++ seeding algorithm.

Ensure: N has k zeroes.
repeat

Let S be the new solution
min,minc ← ∞, 0
for c ∈ C do � Identify the closest centroid

d ← dist(c, S)
if d ≤ min then

min ← d
minc ← c

end if
end for
N [minc] ← N [minc] + 1
if S is correct then � A correct solution moves its centroid

minc ← minc + (1/N [minc]) × S
end if

until no more submissions

4.3 Mooshak integration

AsanasCluster aims to integrate into automated assessment
engines, consuming their submissions’ data both offline (i.e.,
previously submitted solutions) and in real time (i.e., new
submissions entering the system). To this end, AsanasClus-
ter has two modes. One builds a clustering model from all
existing submissions to a specified programming assignment.
The other loads a clustering model saved into the disk and
identifies the closest cluster to the given submission, includ-
ing it in the model if it is an accepted solution.

Mooshak [25] is one of the existing systems providing
automated assessment capabilities and the one selected for

the development and testing of AsanasCluster.Mooshak uses
the file system as the object database, storing and retrieving
data in Tcl-code files organized in directories. Therefore, the
submissions’ metadata is stored alongside the source code
and extracted CSV files of the CPG in the submission folder.

For building a clustering model, AsanasCluster simply
iterates the submissions’ directory and, for each submis-
sion folder, loads the CPG and processes it into the model
(if accepted). When a new submission enters the system,
AsanasCluster acts as the last evaluator of Mooshak, adding
the submission into the model and echoing the classification
of the previous evaluator. If the submission has a rejection
classification, the identification of the closest cluster is also
printed, and model updates get discarded.

5 Evaluation

This section presents the results of the evaluation of the
accuracy and time adequacy of AsanasCluster for automated
assessment of programming assignments. To this end, we
have evaluated the performance of clustering on a public
collection—PROGpedia [36]—of source code submitted to
16programming assignments onMooshak [25] in undergrad-
uate Computer Science courses within multiple years of the
2003–2020 time span. The dataset comprises a total of 9117
submissions. As we intend to use the clustering output as
input to a program repair tool, we separate the submissions
not only by programming exercise but also by programming
language. Only solutions written in C/C++ (C17), Java (Java
8), and Python (version 3) were considered (Note: version
within parentheses means “compatible with” not an exact
match). All tests run on a Dell XPS 15 9570.

5.1 Runtime

Our goal is to use AsanasCluster as an intermediate step
in the automated assessment of programming assignments.
While no time limit for a single evaluation is formally defined
in the literature of automated assessment of programming
assignments, one minute is a reasonable limit for a task that
is meant to be nearly real time [1]. To evaluate the scal-
ability of AsanasCluster, we measure the amount of time
required to (1) build a clustering model with past submis-
sions from scratch, (2) discover a new correct solution, and
(3) determine the cluster of a new submitted solution. As
for (1), we have built models for the set of correct solu-
tions fromPROGpedia [36], separating data by programming
exercise and language. Table 2 summarizes the composition
of the dataset regarding submissions, including the number
of submissions and the average lines of code for each pair
assignment/programming language. For (2), a new correct

123



International Journal of Data Science and Analytics

Table 2 Submissions’ details from PROGpedia dataset

ID # of Submissions Avg. LoC
C C++ JAVA PY C C++ JAVA PY

06 40 – 100 64 30 – 36 22

16 20 – 105 30 32 – 45 17

18 1 – 61 5 73 – 166 57

19 2 – 66 139 88 – 141 98

21 2 – 21 112 137 – 227 89

22 3 – 52 60 55 – 90 28

23 1 – 71 38 141 – 189 63

34 172 26 205 – 50 34 31 –

35 76 24 140 – 60 60 60 –

39 75 25 154 – 96 77 88 –

42 58 26 138 – 67 66 65 –

43 77 32 178 – 52 49 52 –

45 54 21 148 – 49 50 51 –

48 29 24 136 – 49 49 56 –

53 1 43 152 – 110 119 148 –

56 1 22 85 – 76 95 110 –

solution has been developed. Finally, in (3) we select ran-
domly a wrong attempt.

Building a clustering model on a set of submissions (1)
requires four steps. First, search and select the adequate solu-
tions (i.e., accepted solutions written in the programming
language of the model) from the directory containing all
submissions to an assignment. Second, generate the needed
semantic graph representations, i.e., the DFG and the CFG.
Third, compute the feature vector from the representations.
Finally, build the k-means model, processing existing obser-
vations. Table 3 presents the size of the solutions’ sets,
building times, and the number of generated clusters for each
pair (programming assignment, programming language).

The maximum model’s building time is 9min and 30s
for the 152 Java submissions to programming assignment
53, which demands the implementation of a graph searching
algorithm. As expected, the amount of submissions has the
greatest impact on training performance when compared to
the programming language or complexity of the program-
ming assignment. However, the complexity of the solutions
also affects the runtime negatively. For instance, processing
the 205 submissions to programming assignment 34, which
requires sorting a vector of numbers, takes less 9 s than the
152 to assignment 53.

The number of generated clusters has no noticeable
correlation with either the number of submissions or the pro-
gramming language. The median number of clusters for the
models built is 4. The set of solutions written in C for exer-
cise 42 has 9 clusters, which is the highest amount of clusters
identified for the evaluated sets.

Table 3 Runtime and number of clusters for PROGpedia dataset

ID Training time Number of clusters
C C++ JAVA PY C C++ JAVA PY

06 1m37s – 4m24s 3m1s 4 – 5 4

16 0m51s – 4m46s 1m30s 4 – 4 4

18 0m5s – 4m11s 0m26s 1 – 3 1

19 0m11s – 4m10s 8m58s 1 – 2 1

21 0m14s – 1m36s 7m39s 1 – 3 3

22 0m13s – 2m41s 2m59s 3 – 7 5

23 0m6s – 4m34s 2m59s 1 – 3 1

34 8m18s 1m12s 9m21s – 7 4 5 –

35 3m39s 1m9s 7m3s – 4 3 4 –

39 4m23s 1m29s 9m14s – 7 4 8 –

42 2m55s 1m18s 6m49s – 9 4 4 –

43 3m32s 1m30s 8m51s – 6 2 3 –

45 2m45s 1m6s 7m32s – 8 2 5 –

48 1m20s 1m9s 6m32s – 2 3 3 –

53 0m6s 2m31s 9m30s – 1 4 3 –

56 0m5s 1m9s 4m49s – 1 4 4 –

Table 4 depicts the time needed to (2) process a new solu-
tion into the model and (3) identify the best cluster for a new
submitted solution, using the built models. On average, it
takes 5,397s to learn (2) and 4,910s to predict the cluster of
a new observation (3). There is no task running for 7 or more
seconds. (6,981 is the worst case.)

5.2 Error index

This analysis aims tovalidate the effectiveness ofAsanasClus-
ter in separating the different algorithmic strategies imple-
mented in solutions. To this end, we consider a simple metric
(1), which we named Error Index. The Error Index takes val-
ues between 0 and 1, where 0 indicates that all solutions were
correctly grouped. A solution is considered wrongly grouped
if it is in the cluster of a different strategy (i.e., a cluster
belongs to the algorithmic strategy with most solutions in
it). This metric purposely ignores the case where solutions
adopting the same algorithmic strategy spread across differ-
ent clusters. The reason is that we understand those solutions
can still be quite distinct.

Error Index = Nr. of wrongly grouped solutions

Nr. of solutions
(1)

To evaluate this, we conduct two separate tasks. The first
task consists of clustering a set of 100 different implemen-
tations of two graph searching algorithms, 50 depth-first
search, and 50 breadth-first search. These programs were
collected during an Algorithm Design and Analysis class.
In the second task, we cluster a collection of 100 programs

123



International Journal of Data Science and Analytics

Table 4 Runtime for cluster
discovery and processing a new
case, using previously built
modules

ID Predict time Learn time
C C++ JAVA PY C C++ JAVA PY

06 4.837s – 4.419s 4.259s 4.400s – 4.610s 4.677s

16 4.330s –– 4.351s 4.345s 4.557s – 4.830s 4.737s

18 4.508s – 5.238s 4.960s 5.043s – 5.821s 5.493s

19 4.449s – 4.887s 4.277s 5.105s – 5.515s 4.648s

21 4.955s – 5.201s 4.426s 5.933s – 6.271s 5.668s

22 4.392s – 4.714s 4.999s 4.877s – 5.070s 5.322s

23 5.012s – 5.723s 6.611s 5.877s – 6.321s 6.981s

34 4.614s 4.485s 4.926s – 4.981s 4.996s 5.454s –

35 4.403s 4.713s 5.017s – 5.903s 5.351s 5.362s –

39 4.945s 4.682s 5.690s – 5.969s 5.329s 5.575s –

42 4.784s 4.698s 5.088s – 5.407s 5.037s 5.301s –

43 4.518s 4.699s 5.081s – 4.806s 4.868s 5.530s –

45 5.076s 5.261s 6.193s – 5.234s 4.879s 5.769s –

48 4.854s 4.742s 4.972s – 5.566s 4.956s 5.261s –

53 4.903s 5.290s 6.261s – 6.436s 6.232s 6.676s –

56 4.880s 4.724s 5.277s – 5.408s 5.305s 5.702s –

Fig. 2 2-Component PCA visualization of the clustering of implementations of graph searching (left) and sorting algorithms (right)

fromGitHub implementing sorting algorithms, namely heap,
merge, insertion, and quick sort. There are 25 samples of each
sorting algorithm.

Figure 2 illustrates the 2-component principal component
analysis (PCA) visualization of the resulting clusters for both
tasks. (PC1 and PC2 explain 83% and 6% of the variability,
respectively, in the left chart, and 60% and 24% in the right
chart.) The red crosses indicate clusters’ centroids.On the left
chart, there are four clusters. The green cluster contains the
50points corresponding to the depth-first search implementa-
tions. The breadth-first search implementations are assigned
to the gray cluster. On the right, four clustersmatch the differ-
ent sorting algorithms: insertion sort (gray), heap sort (green),

quick sort (blue), and merge sort (yellow). Note that some
points are not visible as they share the same (or very close)
values of the feature vector. In both experiments, there is
one cluster corresponding to each of the different included
algorithmic strategies, and solutions are split evenly by these
clusters. Furthermore, the Error Index of both tasks evalu-
ates to 0, as there is no cluster with solutions of different
algorithmic strategies.

Extending the collection of the second task with one
implementation of the radix sort algorithm also does not
affect the Error Index. As depicted in the 2-component PCA
visualization of Fig. 3 (PC1 and PC2 explain 61% and 23%
of the variability, respectively), a new cluster (blue) is cre-

123



International Journal of Data Science and Analytics

Fig. 3 2-Component PCA visualization of the clustering of implemen-
tations of sorting algorithms, adding a single radix sort implementation

Fig. 4 2-Component PCA visualization of the clustering of implemen-
tations of sorting algorithms, adding a breadth-first search implemen-
tation

ated with this new solution, whereas the existing clusters
are not changed. However, adding a few implementations
of the selection sort algorithm increases the Error Index. As
its implementation is semantically similar to insertion sort,
they are both assigned to the same cluster until there are
enough samples to form a new cluster. For instance, includ-
ing 3 implementations results in an Error Index of 0.03 (3
incorrectly grouped solutions out of 103).

To demonstrate how AsanasCluster handles unrelated
solutions submitted intentionally or accidentally, we have
added a breadth-first search implementation to the cluster-
ing model of the sorting algorithms. The result is depicted in
the 2-component PCA visualization of Fig. 4. (PC1 and PC2
explain 63% and 21% of the variability, respectively.) The
unrelated solution is isolated in a new cluster (gray area),

while other clusters remain unaffected. Therefore, the Error
Index is 0.

5.3 Discussion

There are a few tools presented in the literature that intro-
duce clustering approaches comparable to the one described
in this paper, namely SemCluster [37], OverCode [14], and
CLARA [17]. The evaluation of SemCluster includes a com-
parison with the latter tools (OverCode and CLARA). Even
though calculating the similarity between two implementa-
tionswith small sizes, such as those referred inTable 2, can be
performed in a short period of time, clustering a new solution
requires pairwise comparison between the new solution and
each of the existing. The evaluation of SemCluster demon-
strates this has a tremendous impact in terms of runtime of the
approaches (e.g., CLARA tool can take more than 100min
for programs with less than 100 lines of code).

SemCluster reveals a better runtime performance and pre-
cision in identifying different algorithmic solution strategies
than the existing tools [37]. Nevertheless, none of the pro-
posed approaches is incremental, i.e., they require rebuilding
the clustering model on every new submission. This takes
much more than a minute in any of the analyzed tools, even
for small size programs with less than 50 lines of code.
Assuming that representations of source code are stored
between model training sessions, SemCluster still has a
median runtimeof 18s for the average timeneeded to recalcu-
late models (i.e., when adding an element), possibly reaching
30s.

Due to the unavailability of dataset used in [37], the eval-
uation of the runtime performance described in this paper
applies our tool on identical tasks but using a different,
publicly available, dataset [36]. This dataset contains 16
assignments of various complexities, delivered at multiple
stages of undergraduate CS courses, using several distinct
algorithms with implementations written in C, C++, Java,
and Python. The composition of the dataset is fairly similar
to the dataset used in [37], as shown in Table 2. In these con-
ditions, our tool has median runtimes of 4 (Python) and 5
(C, C++, and Java) seconds to identify the cluster of a new
solution and integrate it into the model. In the worst case, it
can take up to 7 s.

Regarding the precision in identifying the different algo-
rithmic solution strategies, SemCluster has proven its effec-
tiveness in two tasks. Firstly, it successfully separates 100
solutions to an assignment involving sorting algorithms by
4 clusters, according to the adopted algorithm: bubble sort,
quicksort, and none specifically (two clusters). Lastly, it can
perfectly partition 100 programs into 2 clusters depending on
the searching algorithm applied, i.e., depth-first and breadth-
first search. Similarly, the experiment conducted to evaluate

123



International Journal of Data Science and Analytics

AsanasCluster achieved optimal results in the two tasks, as
described in Subsection 5.2.

Therefore, considering its inclusion in the process of auto-
mated assessment of programmingassignments,AsanasClus-
ter can achieve better performance than themost similar tools
presented in the literature. Nevertheless, themain benefits are
(1) not requiring the execution of the code to extract the fea-
ture vector and (2) being able to start the clustering process
from a dataset with only two submissions and recalculate
clusters.

5.4 Threats to validity

Only a direct comparison with SemCluster [37] (i.e., using
the same dataset) would allow us to demonstrate an improve-
ment of the state of the art in terms of runtime and precision
in separating algorithmic strategies. Unfortunately, neither
the dataset nor the tool is publicly available and was not
also made available upon request to the authors. We have,
however, tried to select a similarly complex dataset with a
few even larger solutions on average, considering the lines
of code.

Furthermore, we have evaluated our approach to small-
to-medium size programs typically found in introductory
programming problems. While this is in line with related
work, we aim to validate the extension of our approach to
larger programs, as found inmore advanced courses, in future
work.

6 Conclusion

This paper presents a novel online approach to clustering
source code for supporting the automatic assessment of
programming assignments based on quantitative program
features extracted from the programs’ semantic graph rep-
resentations, namely the CFG and the DFG. This approach
aims to (1) generate a number of clusters close to the number
of different algorithmic solution strategies, (2) avoid expen-
sive pairwise computations, and (3) learn incrementally,
i.e., every solution processed becomes part of the model’s
“knowledge” for subsequent observations.

Even though the evaluation presents some building times
close to 10min (see Table 3), building amodel from scratch is
a step performed only once (when loading the programming
assignment) in online clustering approaches, with no effect
on a submission’s assessment time. In fact, the assessment
of a submission involves recalculating centroids including
the new observation and/or determining the closest cluster,
which takes under 7 s in all trials performed (see Table 4).
Such a delay (below one minute) is acceptable for automated
assessment of programming assignments. Furthermore, the
experiments conducted to measure the precision of cluster-

ing reveal great accuracy in separating different algorithmic
strategies.

Our goal is to integrate AsanasCluster as the first step of
our workflow to repair incorrect student attempts. For a given
programming assignment, we rely on AsanasCluster to clus-
ter the correct student solutions. Given an incorrect student
program, we identify the cluster of solutions most similar
to the submitted program and compare it against one of the
solutions in the selected cluster, generating the most pertain-
ing modifications that get the student to the correct solution.
Furthermore, the tool has the potential to be applied in many
other automated reasoning tasks in programming education
and beyond (e.g., learning analytics, similarity detection, and
fault localization).

Acknowledgements Not applicable.

Author Contributions JCP, JPL, and ÁF contributed to conceptual-
ization; methodology; project administration; validation; and visu-
alization; JCP was involved in data curation, funding acquisition;
investigation; resources; and writing—original draft, and provided soft-
ware; and JPL and ÁF contributed to supervision. All authors have read
and agreed to the published version of the manuscript.

Funding Open access funding provided by FCT|FCCN (b-on). J.C.P.’s
work is funded by the FCT—Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology), Portugal—for
the PhD Grant 2020.04430.BD.

Availability of data and materials The datasets generated and/or
analyzed during the current study are available in the PROGpedia repos-
itory, https://doi.org/10.5281/zenodo.7449056.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ala-Mutka, K.M.: A survey of automated assessment approaches
for programming assignments. Comput. Sci. Educ. 15(2), 83–102
(2005). https://doi.org/10.1080/08993400500150747

123

https://doi.org/10.5281/zenodo.7449056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/08993400500150747


International Journal of Data Science and Analytics

2. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory pro-
gramming. SIGCSE Bull. 39(2), 32–36 (2007). https://doi.org/10.
1145/1272848.1272879

3. Bottou, L., Bengio, Y.: Convergence properties of the k-means
algorithms. In: Proceedings of the 7th International Conference on
Neural Information Processing Systems, pp. 585–592. MIT Press,
Cambridge, MA, USA, NIPS’94 (1994)

4. Chae,D.K.,Ha, J., Kim, S.W., et al.: Software plagiarismdetection:
a graph-based approach. In: Proceedings of the 22nd ACM Inter-
national Conference on Information & Knowledge Management,
pp. 1577–1580. Association for ComputingMachinery, NewYork,
NY, USA, CIKM ’13 (2013). https://doi.org/10.1145/2505515.
2507848

5. Chen, R., Hong, L., Lu, C., et al.: Author identification of software
source code with program dependence graphs. In: Proceedings
of the 2010 IEEE 34th Annual Computer Software and Appli-
cations Conference Workshops, pp. 281–286. IEEE Computer
Society, USA, COMPSACW ’10 (2010). https://doi.org/10.1109/
COMPSACW.2010.56

6. Chow, S., Yacef, K., Koprinska, I., et al.: Automated data-driven
hints for computer programming students. In: Adjunct Publica-
tion of the 25th Conference on User Modeling, Adaptation and
Personalization, pp. 5–10. Association for Computing Machinery,
New York, NY, USA, UMAP ’17 (2017). https://doi.org/10.1145/
3099023.3099065

7. Cosma, G., Joy, M.: An approach to source-code plagiarism detec-
tion and investigation using latent semantic analysis. IEEE Trans.
Comput. 61(3), 379–394 (2012). https://doi.org/10.1109/TC.2011.
223

8. Drummond, A., Lu, Y., Chaudhuri, S., et al.: Learning to grade
student programs in a massive open online course. In: Proceedings
of the 2014 IEEE International Conference on Data Mining, pp.
785–790. IEEEComputer Society,USA, ICDM’14 (2014). https://
doi.org/10.1109/ICDM.2014.142

9. Durić, Z., Gašević, D.: A source code similarity system for plagia-
rism detection. Comput. J. 56(1), 70–86 (2012). https://doi.org/10.
1093/comjnl/bxs018

10. Elmaleh, J., Shankararaman, V.: Improving student learning in
an introductory programming course using flipped classroom and
competency framework. In: 2017 IEEE Global Engineering Edu-
cation Conference (EDUCON), pp. 49–55. IEEE, Athens, Greece
(2017). https://doi.org/10.1109/EDUCON.2017.7942823

11. Emerson,A., Smith,A., Rodriguez, F.J., et al.: Cluster-based analy-
sis of novice coding misconceptions in block-based programming.
In: Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. Association for Computing Machinery,
New York, NY, USA, SIGCSE ’20, pp. 825–831 (2020). https://
doi.org/10.1145/3328778.3366924

12. Feautrier, P.: Dataflow analysis of array and scalar references.
Int. J. Parallel Prog. 20(1), 23–53 (1991). https://doi.org/10.1007/
BF01407931

13. Fraunhofer AISEC: Code Property Graph (2023). https://github.
com/Fraunhofer-AISEC/cpg. Accessed 20 May 2023

14. Glassman, E.L., Scott, J., Singh, R., et al.: Overcode: visualizing
variation in student solutions to programming problems at scale.
ACM Trans. Comput. Hum. Interact. 22(2), 25 (2015). https://doi.
org/10.1145/2699751

15. Gross, S., Zhu, X., Hammer, B., et al.: Cluster based feedback
provision strategies in intelligent tutoring systems. In: Cerri, S.A.,
Clancey, W.J., Papadourakis, G., et al. (eds.) Intelligent Tutoring
Systems, pp. 699–700. Springer, Berlin (2012). https://doi.org/10.
1007/978-3-642-30950-2_127

16. Gross, S., Mokbel, B., Hammer, B., et al.: Towards providing feed-
back to students in absence of formalized domainmodels. In: Lane,
H.C., Yacef, K., Mostow, J., et al. (eds.) Artificial Intelligence in

Education, pp. 644–648. Springer, Berlin (2013). https://doi.org/
10.1007/978-3-642-39112-5_79

17. Gulwani, S., Radiček, I., Zuleger, F.: Automated clustering and
program repair for introductory programming assignments. In:
Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 465–480.
Association for ComputingMachinery, NewYork,NY,USA, PLDI
2018 (2018). https://doi.org/10.1145/3192366.3192387

18. Head, A., Glassman, E., Soares, G., et al.: Writing reusable code
feedback at scale with mixed-initiative program synthesis. In:
Proceedings of the Fourth (2017) ACM Conference on Learn-
ing @ Scale, pp. 89–98. Association for Computing Machinery,
New York, NY, USA, L@S ’17 (2017). https://doi.org/10.1145/
3051457.3051467

19. Huang, J., Piech, C., Nguyen, A., et al.: Syntactic and functional
variability of a million code submissions in a machine learning
MOOC. In: Walker, E., Looi, C. (eds.) Proceedings of the Work-
shops at the 16th International Conference onArtificial Intelligence
in Education AIED 2013, CEURWorkshop Proceedings, vol 1009.
CEUR-WS.org, Memphis, TN, USA, pp. 25–32 (2013). https://
ceur-ws.org/Vol-1009/0105.pdf

20. Inoue, U., Wada, S.: Detecting plagiarisms in elementary program-
ming courses. In: 2012 9th International Conference on Fuzzy
Systems and Knowledge Discovery. IEEE, Chongqing, China, pp.
2308–2312 (2012). https://doi.org/10.1109/FSKD.2012.6234186

21. Jhi, Y.C., Wang, X., Jia, X., et al.: Value-based program char-
acterization and its application to software plagiarism detection.
In: Proceedings of the 33rd International Conference on Software
Engineering. Association for Computing Machinery, New York,
NY, USA, ICSE ’11, pp. 756–765 (2011). https://doi.org/10.1145/
1985793.1985899

22. Kaleeswaran, S., Santhiar, A., Kanade, A., et al.: Semi-supervised
verified feedback generation. In: Proceedings of the 2016 24th
ACMSIGSOFT International Symposium on Foundations of Soft-
ware Engineering. Association for Computing Machinery, New
York, NY, USA, FSE 2016, pp. 739–750 (2016). https://doi.org/
10.1145/2950290.2950363

23. Kirch, W. (ed.): Pearson’s Correlation Coefficient, pp. 1090–1091.
Springer, Dordrecht (2008)

24. Koivisto, T., Hellas, A.: Evaluating CodeClusters for effectively
providing feedback on code submissions. In: 2022 IEEE Frontiers
in Education Conference (FIE). IEEE, pp. 1–9 (2022). https://doi.
org/10.1109/FIE56618.2022.9962751

25. Leal, J.P., Silva, F.:Mooshak: a web-basedmulti-site programming
contest system. Softw. Pract. Exp. 33(6), 567–581 (2003). https://
doi.org/10.1002/spe.522

26. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf.
Theor. 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.
1056489

27. Luo, L., Zeng, Q.: Solminer: mining distinct solutions in programs.
In: Proceedings of the 38th International Conference on Software
Engineering Companion. Association for Computing Machinery,
New York, NY, USA, ICSE ’16, pp. 481–490 (2016). https://doi.
org/10.1145/2889160.2889202

28. Luo, L., Ming, J., Wu, D., et al.: Semantics-based obfuscation-
resilient binary code similarity comparison with applications to
software plagiarism detection. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering. Association for Computing Machinery, New York,
NY, USA, FSE 2014, pp. 389–400 (2014). https://doi.org/10.1145/
2635868.2635900

29. Luxton-Reilly, A., Denny, P., Kirk, D., et al.: On the differences
between correct student solutions. In: Proceedings of the 18thACM
Conference on Innovation and Technology in Computer Science
Education. Association for Computing Machinery, New York, NY,

123

https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/2505515.2507848
https://doi.org/10.1145/2505515.2507848
https://doi.org/10.1109/COMPSACW.2010.56
https://doi.org/10.1109/COMPSACW.2010.56
https://doi.org/10.1145/3099023.3099065
https://doi.org/10.1145/3099023.3099065
https://doi.org/10.1109/TC.2011.223
https://doi.org/10.1109/TC.2011.223
https://doi.org/10.1109/ICDM.2014.142
https://doi.org/10.1109/ICDM.2014.142
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1109/EDUCON.2017.7942823
https://doi.org/10.1145/3328778.3366924
https://doi.org/10.1145/3328778.3366924
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://github.com/Fraunhofer-AISEC/cpg
https://github.com/Fraunhofer-AISEC/cpg
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2699751
https://doi.org/10.1007/978-3-642-30950-2_127
https://doi.org/10.1007/978-3-642-30950-2_127
https://doi.org/10.1007/978-3-642-39112-5_79
https://doi.org/10.1007/978-3-642-39112-5_79
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/3051457.3051467
https://ceur-ws.org/Vol-1009/0105.pdf
https://ceur-ws.org/Vol-1009/0105.pdf
https://doi.org/10.1109/FSKD.2012.6234186
https://doi.org/10.1145/1985793.1985899
https://doi.org/10.1145/1985793.1985899
https://doi.org/10.1145/2950290.2950363
https://doi.org/10.1145/2950290.2950363
https://doi.org/10.1109/FIE56618.2022.9962751
https://doi.org/10.1109/FIE56618.2022.9962751
https://doi.org/10.1002/spe.522
https://doi.org/10.1002/spe.522
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2889160.2889202
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1145/2635868.2635900


International Journal of Data Science and Analytics

USA, ITiCSE ’13, pp. 177–182 (2013). https://doi.org/10.1145/
2462476.2462505

30. Luxton-Reilly, A., Simon Albluwi, I., et al.: Introductory program-
ming: a systematic literature review. In: Proceedings Companion
of the 23rd Annual ACM Conference on Innovation and Technol-
ogy in Computer Science Education. Association for Computing
Machinery, New York, NY, USA, ITiCSE 2018 Companion, pp.
55–106 (2018). https://doi.org/10.1145/3293881.3295779

31. Moussiades, L., Vakali, A.: PDetect: a clustering approach for
detecting plagiarism in source code datasets. Comput. J. 48(6),
651–661 (2005). https://doi.org/10.1093/comjnl/bxh119

32. Nguyen, A., Piech, C., Huang, J., et al.: Codewebs: scalable home-
work search for massive open online programming courses. In:
Proceedings of the 23rd International Conference on World Wide
Web. Association for ComputingMachinery, NewYork, NY, USA,
WWW ’14, pp. 491–502 (2014). https://doi.org/10.1145/2566486.
2568023

33. Ohmann, T., Rahal, I.: Efficient clustering-based source code pla-
giarism detection using PIY. Knowl. Inf. Syst. 43(2), 445–472
(2014). https://doi.org/10.1007/s10115-014-0742-2

34. Ohmann, T., Rahal, I.: Efficient clustering-based source code pla-
giarism detection using PIY. Knowl. Inf. Syst. 43(2), 445–472
(2015). https://doi.org/10.1007/s10115-014-0742-2

35. Paiva, J.C., Leal, J.P., Figueira, A.: Automated assessment in com-
puter science education: a state-of-the-art review. ACM Trans.
Comput. Educ. (2022). https://doi.org/10.1145/3513140

36. Paiva, J.C., Leal, J.P., Figueira, Á.: Progpedia: collection of
source-code submitted to introductory programming assignments.
Data Brief 46, 108887 (2023). https://doi.org/10.1016/j.dib.2023.
108887

37. Perry, DM., Kim, D., Samanta, R., et al.: Semcluster: cluster-
ing of imperative programming assignments based on quantitative
semantic features. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion. Association for Computing Machinery, New York, NY, USA,
PLDI 2019, pp. 860–873 (2019). https://doi.org/10.1145/3314221.
3314629

38. Piech, C., Huang, J., Nguyen, A., et al.: Learning program embed-
dings to propagate feedback on student code. In: Proceedings of
the 32nd International Conference on International Conference on
Machine Learning, vol. 37, pp. 1093–1102. JMLR.org, ICML’15
(2015)

39. Poon, J.Y., Sugiyama, K., Tan, Y.F., et al.: Instructor-centric source
code plagiarism detection and plagiarism corpus. In: Proceedings
of the 17th ACM Annual Conference on Innovation and Technol-
ogy in Computer Science Education. Association for Computing
Machinery, NewYork, NY, USA, ITiCSE ’12, pp. 122–127 (2012).
https://doi.org/10.1145/2325296.2325328

40. Pu, Y., Narasimhan, K., Solar-Lezama, A., et al.: Sk_p: a neu-
ral program corrector for MOOCs. In: Companion Proceedings of
the 2016 ACM SIGPLAN International Conference on Systems,
Programming, Languages and Applications: Software for Human-
ity. Association for Computing Machinery, New York, NY, USA,
SPLASH Companion 2016, pp. 39–40 (2016). https://doi.org/10.
1145/2984043.2989222

41. Rivers, K., Koedinger, K.R.: A canonicalizing model for building
programming tutors. In: Cerri, S.A., Clancey, W.J., Papadourakis,
G., et al. (eds.) Intelligent Tutoring Systems. Springer, Berlin, pp.
591–593 (2012). https://doi.org/10.1007/978-3-642-30950-2_80

42. Rivers, K., Koedinger, K.R.: Automatic generation of program-
ming feedback: a data-driven approach. In: The First Workshop on
AI-supported Education for Computer Science (AIEDCS 2013),
pp. 50–59. Memphis, USA (2013)

43. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the
19th International Conference on World Wide Web. Association

for Computing Machinery, New York, NY, USA, WWW ’10, pp.
1177–1178 (2010). https://doi.org/10.1145/1772690.1772862

44. Wang, K., Singh, R., Su, Z.: Dynamic neural program embedding
for program repair (2018). https://doi.org/10.48550/arXiv.1711.
07163

45. Wang, K., Singh, R., Su, Z.: Search, align, and repair: data-driven
feedback generation for introductory programming exercises. In:
Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. Association for
ComputingMachinery, NewYork, NY, USA, PLDI 2018, pp. 481–
495 (2018). https://doi.org/10.1145/3192366.3192384

46. Weiss,K.,Banse,C.:A language-independent analysis platform for
source code (2022). https://doi.org/10.48550/arXiv.2203.08424

47. Xu, S., Chee, Y.S.: Transformation-based diagnosis of student
programs for programming tutoring systems. IEEE Trans. Softw.
Eng. 29(4), 360–384 (2003). https://doi.org/10.1109/TSE.2003.
1191799

48. Yamaguchi, F., Golde, N., Arp, D., et al.:Modeling and discovering
vulnerabilities with code property graphs. In: 2014 IEEE Sympo-
sium on Security and Privacy, pp. 590–604. IEEE, Berkeley, CA,
USA (2014). https://doi.org/10.1109/SP.2014.44

49. Zhang, F., Wu, D., Liu, P., et al.: Program logic based software pla-
giarism detection. In: 2014 IEEE 25th International Symposium on
Software Reliability Engineering, pp. 66–77. IEEE, Naples, Italy
(2014). https://doi.org/10.1109/ISSRE.2014.18

50. Ďuračík, M., Kršák, E., Hrkút, P.: Scalable source code plagiarism
detection using source code vectors clustering. In: 2018 IEEE 9th
InternationalConference onSoftwareEngineering andService Sci-
ence (ICSESS), pp. 499–502. IEEE, Beijing, China (2018). https://
doi.org/10.1109/ICSESS.2018.8663708

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/2462476.2462505
https://doi.org/10.1145/2462476.2462505
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1093/comjnl/bxh119
https://doi.org/10.1145/2566486.2568023
https://doi.org/10.1145/2566486.2568023
https://doi.org/10.1007/s10115-014-0742-2
https://doi.org/10.1007/s10115-014-0742-2
https://doi.org/10.1145/3513140
https://doi.org/10.1016/j.dib.2023.108887
https://doi.org/10.1016/j.dib.2023.108887
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/2325296.2325328
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1007/978-3-642-30950-2_80
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.48550/arXiv.1711.07163
https://doi.org/10.48550/arXiv.1711.07163
https://doi.org/10.1145/3192366.3192384
https://doi.org/10.48550/arXiv.2203.08424
https://doi.org/10.1109/TSE.2003.1191799
https://doi.org/10.1109/TSE.2003.1191799
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/ISSRE.2014.18
https://doi.org/10.1109/ICSESS.2018.8663708
https://doi.org/10.1109/ICSESS.2018.8663708

	Clustering source code from automated assessment of programming assignments
	Abstract
	1 Introduction
	2 Related work
	3 Definitions
	3.1 Control flow graph
	3.2 Evaluation order graph
	3.3 Data flow graph
	3.4 K-means clustering

	4 Clustering source code with AsanasCluster
	4.1 Feature engineering
	4.2 Clustering model
	4.3 Mooshak integration

	5 Evaluation
	5.1 Runtime
	5.2 Error index
	5.3 Discussion
	5.4 Threats to validity

	6 Conclusion
	Acknowledgements
	References


