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Abstract
The aim of this study is to enhance the extraction of informative features from complex data through the application of
topological data analysis (TDA) using novel topological overlapping measures. Topological data analysis has emerged as a
promising methodology for extracting meaningful insights from complex datasets. Existing approaches in TDA often involve
extrapolating data points using distance correlation measures, which subsequently constrain downstream predictive tasks.
Our objective is to improve the construction of the Vietoris–Rips simplicial complex by introducing topological overlapping
measures. These measures take into account the interplay of direct connection strengths and shared neighbours, leading to the
identification of persistent topological features. We propose the utilisation of topological overlapping measures to optimise
the construction of the Vietoris–Rips simplicial complex, offering a more refined representation of complex data structures.
The application of topological overlapping measures results in the identification of plentiful persistent topological features.
This enhancement contributes to an improvement of up to 20% in cancer phenotype prediction across different cancer types.
Our study demonstrates the effectiveness of utilising topological overlapping measures in optimising the construction of the
Vietoris–Rips simplicial complex. The identified persistent topological features significantly enhance the predictive accuracy
of cancer phenotypes. This novel approach has the potential to advance the field of topological data analysis and improve
our understanding of complex data structures, particularly in the context of cancer research and predictive modelling. Further
exploration and application of these measures may yield valuable insights in various domains dealing with intricate datasets.
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1 Introduction

1.1 Topological data analysis

Data analytical techniques are being far outstripped by the
exponential growth and availability of raw data in the mod-
ern era. Consequently, efforts made to discover answers
are primarily reliant on modern technology, with compu-
tational techniques such as machine learning (ML) and
deep learning (DL) being prevalent analytical methods. In
mathematics, the study of shape presents itself in the form
of topology, to understand and describe three-dimensional
shapes and deformations [1]. With advances in the field,
low-dimensional topological features can represent complex
and high-dimensional datasets through topological data anal-
ysis (TDA) [2]. Notably, correlation measures can serve
as valuable input data for TDA, extending the analytical
toolkit to capture complex and nonlinear relationships in
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high-dimensional datasets and providing a more comprehen-
sive understanding of the underlying structures and patterns
[2].

1.2 Point sets in topological spaces

Pairwise correlation measures, such as Pearson’s correlation
coefficient denoted by ’r,’ are fundamental tools in statisti-
cal analysis, quantifying the statistical relationship between
pairs of variables in a dataset and providing insights into
the degree and direction of their linear association [3]. It is
essential to recognise that Pearson’s correlation assumes lin-
earity andmaynot capture nonlinear associations [4]. In cases
involving nonlinearity, alternative measures like Spearman
rank correlation or Kendall tau rank correlation, assessing
monotonic relationships, can be employed [5]. In contrast, in
TDA, the representation of data hinges onmodelling proxim-
ity relationships using distancemeasures, often theEuclidean
metric, though alternative metrics can be task-specific [6].
These alternative metrics may account for non-Euclidean
aspects, such as temporal dynamics or intrinsic geometries,
emphasising the intricacies and application-dependent nature
of choosing an appropriate distance metric to optimally rep-
resent the underlying geometric and topological features in
TDA [7]. To address these challenges, distance correlation
measures, also known as dissimilarity correlation measures,
emerge as non-Euclidean-based metrics. They quantify the
relationship between variables by considering the pairwise
distances between data points rather than their actual values.
These measures assess the similarity or dissimilarity of vari-
ableswhile providing insights into nonlinear associations and
dependencies in the data [8]. Distance correlation has proven
to be a useful for TDA, offering a more versatile approach
compared to traditional correlation measures [7, 9, 10].

In the context of tasks based ongene expression data, topo-
logical overlap measures (TOMs) emerge as highly useful
non-Euclidean-based metrics, specifically designed to miti-
gate the sensitivity of networks to connections formed due
to random noise [11]. Similarly, to address challenges asso-
ciated with noise in network connections, TOM provides an
effective tool for uncovering meaningful relationships in co-
expression networks, prominently used by weighted gene
co-expression analysis (WGCNA) [12]. The core idea of
TOM is a cumulative measure of direct and shared con-
nections (i.e. mediated by neighbours) [13]. TOM takes
into account two important features including connection
strengths and the correlation direction (i.e. sign). Vertices
exhibiting negative correlations are not connected, and as the
correlation decreases, their connection strength approaches
zero. Conversely, for vertices with positive correlations, as
the correlation strengthens, so does their connection strength.
This phenomenon is discussed in detail by Zhang et al. [14].
TOM removes antireinforcing connections while preserving

both direct and reinforcing (shared neighbour) connections,
with careful considerations to mitigate arbitrary factors dur-
ing the transformation of correlation strengths, as discussed
by Yip et al. [15]. For TDA, careful deliberation is neces-
sary to select the most suitable representation of the data.
Consequently, this study aims to improve phenotype pre-
diction by taking into consideration the distance measures
between point sets prior to TDA computation. The objec-
tive is to assess whether these measures can more effectively
capture more definitive topological signatures from the data.

2 Background theory

The concepts of TDA are explained including the construc-
tion of the simplicial complex, persistence homology (PH),
and vector-based transformation of the PH.

2.1 Persistent homology

The basis of TDA relies on the identification of homology
groups in a simplicial complex. Simplices on their own are
mathematical objects consisting of a collection of vertices,
edges, triangles, tetrahedra, octahedra, and other polyhedra.
A simplicial complex can be defined as the collection of sim-
plices by the intersection of simplex faces [16].

The k-dimensional simplex unit is built by k + 1 vertices.
Such that, for each dimensional space, exists every face of
a k-dimensional simplex. For example, a zero simplex is a
single vertex, a one simplex is a connected edge with two
vertices, a two simplex is a triangle with three vertices, and
so on (see Fig. 1). A high-dimensional simplicial complex
contains numerous k-dimensional simplices and is termed
the Vietoris–Rips simplicial complex (VR Complex) [6].
The VR complex VR(X, r) associated with a metric space
(X, d) is constructed by considering all possible simplices
formed by subsets of points in X with pairwise distances
less than or equal to a chosen radius parameter r. Each sim-
plex in the complex represents a geometric configuration of
points, and the complex captures the topological features of
the underlying space in various dimensions [17]. The high
dimensionality of the simplicial complex arises from the
consideration of simplices of different orders. Specifically,
a k-dimensional simplex corresponds to a set of (k+1) ver-
tices within the given distance threshold. The VR complex

Fig. 1 Construction of simplex units

123



International Journal of Data Science and Analytics

Fig. 2 Filtration process resulting in the construction of the simplicial complex. Followed by summarising the topological signature across multiple
dimensional spaces

Fig. 3 The first three Betti numbers shown by possible shapes found in
a simplicial complex. A Betti-0 topological feature shown as a vertex
(can also be illustrated by two connected vertices), a Betti-1 topological
feature shown as a circle and a Betti-2 topological feature shown as a
sphere

provides a combinatorial representation of the topological
structure of the metric space, enabling the study of its shape
and connectivity [18].

The central idea of TDA is PH, and it is determined by a
process known as filtration. This process involves the con-
nection of data points over a changing distance parameter,
termed the filtration value. As the filtration value increases,
so does the overlap between point connections giving rise to
k-dimensional simplices subsequently constructing the sim-
plicial complex (see Fig. 2).

During filtration, various topological features emerge
through a sequence of filtration steps (termed ’birth’), and
as the filtration value increases, some topological features
disappear (termed ’death’), within the context of the grow-
ing simplicial complex. Topological features are classified
into different homology groups termed Betti numbers. The
kth Betti number represents the rank of the connectivity of
verticeswithin the simplicial complex of the kth-dimensional
cycle or ’hole,’ forming a part of the simplicial complex (see
Fig. 3). Notably, it is important to acknowledge the combina-
torial complexity associatedwith computing high-orderBetti
numbers, like Betti-2, Betti-3, Betti-4, and so forth [19, 20].

The first three Betti numbers include:

• Betti-0: Number of connected data points
• Betti-1: Number of one-dimensional cycles/circles
• Betti-2: Number of two-dimensional holes/cavities

Duringfiltration, the timeline of the formationof sequences
of topological features is recorded, giving information about

the birth and death of each topological feature [21]. As such,
a topological feature is defined by the value of the filtra-
tion value where each feature arises (i.e. birth coordinate)
and disappears (i.e. death coordinate). Topological features
that persist for prolonged filtration iterations (i.e. also termed
persistent Betti numbers) are deemed to be more informative
compared to those that occur for short filtration iterations
(which are likely to represent noise) [22–25]. The Betti num-
bers condense the actual data and reduce them to a purely
topological representation valuable for understanding the
underlying structure of the data. The Betti numbers are typ-
ically collated to a persistence diagram (PD) and is a useful
representation that encode the PH by collating Betti numbers
[26]. Every point on a PD can be represented by equation 1.

D = bi, bj|bi < di (1)

where bi denotes the birth (the independent variable) and
di the death coordinate (the dependent variable) of the kth-
Betti topological feature. PDs embed useful information for
all topological features detected during filtration. However,
the output is amultiset which cannot be directly implemented
in ML and DL machinery. As such, vector transformation
of the PD’s multiset is required, where multiple techniques
exist.

The simplest forms of vector-transformation techniques
that exist include total persistence and persistence entropy.
However, these representations oversimplify PD’s and poorly
characterise data for ML and DL prediction tasks [27]. More
stable and comprehensive vector representations, includ-
ing persistent landscape (PL) and persistence image (PI),
have been used to improve prediction [24, 28]. We exclude
PLs as it is beyond the scope of this study. PIs are deter-
mined by applying a Gaussian kernel to each topological
point in the persistence diagram (PD), transforming them
into a collection of pixels on a standardised rectangular
grid. The Gaussian kernel serves to weight the contributions
of individual points, emphasising their significance based
on proximity and intensity [29]. This gridded representa-
tion forms a structured array of values, encoding persistent
topological information with spatial coherence. The choice
of the Gaussian kernel enables a smooth and continuous
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transformation of topological features, allowing for nuanced
extraction of Betti numbers that robustly characterise the
underlying geometric and topological properties of the data
[30]. Consequently, the intensity of each pixel represents the
weighting function applied to each feature. More persisting
topological features (i.e. long lifespan) are deemedmore sig-
nificant than less persisting topological features (i.e. short
lifespan). Theweight is defined as the absolute value of equa-
tion 2 proven by [24]:

Topological feature = |bi − dj| (2)

The topological features for each point, denoted as (b, d),
provide a description of persistence intervals. Pixels on
the PI are then converted into numerical values organ-
ised in a fixed-dimensional vector. These PIs serve as
fixed-dimensional vectors encapsulating essential topologi-
cal information, characterising gene expression data for each
patient. This representation demonstrates promising utility
in downstream classification tasks, where the distinctive fea-
tures captured by PIs contribute to the effectiveness of the
classification models [24, 30].

2.2 TDA for biological research

In the realm of biological sciences, TDA has proven to be
a versatile tool, contributing to various applications rang-
ing from classifying phenotypes based on imaging data [31]
to characterising proteins at a topological level [32]. In
genomics, TDA has continued to emerge as a breakthrough
technique for extracting information from sequence data and
has been applied to topics such as evolution and complex
diseases, as detailed by [33]. In Parkinson’s disease research,
gene expression has been combinedwith TDA to classify and
predict phenotype [10]. In this study, we propose and eval-
uate a novel method that replaces distance correlation with
TOM to construct a set of data points from gene expression
data. Preliminary results indicate that thisworkflowenhances
theVRcomplex, subsequently revealing numerous persistent
topological features. Importantly, robust topological signa-
tures representing the data were obtained in the current study,
leading to an improvement in the prediction accuracy of the
DL model.

3 Methods

3.1 Experimental workflow

3.2 Datasets

Patient transcriptomic data generated from RNA Sequenc-
ing (RNA-Seq) were obtained from The Cancer Genome

Table 1 Cancer datasets obtained from TCGA

Dataset Cancer-afflicted Healthy References

BRCA 193 132 [34–37]

LUAD 132 107 [38, 39]

PRAD 115 51 [40–42]

COAD/READ 123 50 [43, 44]

Atlas (TCGA) data portal (https://portal.gdc.cancer.gov/).
Four different cancer types including Breast Adenocarci-
noma (BRCA), Lung Adenocarcinoma (LUAD), Colonic
Adenocarcinoma, Rectal Adenocarcinoma (COAD/READ)
and Prostate Adenocarcinoma (PRAD) cancers were focused
on to evaluate the framework for various types of disease. The
details of the datasets are summarised in Table 1.

To mitigate the computational cost for PH computation,
two parameters, namely the size (n) and dimensionality of the
VR complex (k), were considered. Our approach achieved
this by selecting biologically relevant genes to reduce the
dimensionality, aiming to address the expected combinatorial
complexity associated with computing up to Betti-2 for each
patient.

3.3 Gene filtering

3.3.1 Differential gene expression

The selection of biologically relevant genes was conducted
through Differential Gene Expression (DGE) analysis, serv-
ing as the initial step to identify genes significantly up-
and downregulated between cancer-afflicted and healthy can-
cer samples, thereby distinguishing the two sample groups.
Before initiating the DGE analysis, we conducted a principal
component analysis (PCA) to visually assess the separation
between cancer-afflicted and healthy patient groups based
on the gene expression profiles. PCA begins by calculating
the covariance matrix of the standardised data. The covari-
ance matrix describes the relationships between all pairs of
variables, indicating the degree to which they vary together
[45]. As such, PCA provides a comprehensive overview of
the overall variance in the dataset and enables the observation
of any distinct clustering patterns.

After obtaining raw counts for each gene, these counts
were subjected to size factor normalisation to account for
variations in library size across patient samples. Size fac-
tors were estimated individually for each sample, effectively
scaling the counts based on library size differences [46]. Sub-
sequently, normalised quotient counts were derived from the
raw gene count values and the mean count value per gene
across all patient samples, with the exclusion of gene count
values below ten following the approach implemented by
[47]. To facilitate a more robust analysis and visualisation,
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Fig. 4 A simple workflow detailing the methods followed in order to
evaluate the DNN model performance based on learning from topolog-
ical features obtained from PH computation generated from distance

correlation measures and TOM. DGE Differential gene expression,
DCM distance correlation measures, TOM topological overlap mea-
sures, PH persistent homology, DNN deep neural network

variance stabilising transformation (VST) was applied to the
normalised counts before fitting the negative binomial model
to identify DGE’s and for PCA.

For the DGE analysis, a negative binomial linear model
was individually fitted for each gene. Subsequently, a Wald
test was employed for significance testing to evaluate the
differences between the actual and predicted estimates, as
defined by a weighted distance [48]. The significance of
the results was determined using the Benjamin–Hochberg-
adjusted probability value (BH-adjusted p-value), with sig-
nificance declared at p-values less than 5%. The BH-adjusted
p-value was used as a false discovery rate (FDR), a correc-
tion method applied to p-values to account for the multiple
comparisons problem. It helps control the proportion of false
positives among significant findings [49]. Genes with a fold
change (FC) greater than one were selected to represent
up-regulation, while values less than one indicated down-
regulation. Furthermore, log2FCwere used instead of rawFC
values, to linearise the FC values, making them more inter-
pretable (i.e. a log2FC of one indicated a two-fold change)
[50]. The R programming package DESeq2 [51] played a
central role in the entire differential gene expression (DGE)
analysis process, encompassing normalisation, transforma-
tion, identification of differentially expressed genes (DEGs),
and principal component analysis (PCA).

Additionally, to elucidate the underlying genetic regula-
tion of DEGs, we performed functional enrichment analysis
using the R programming package clusterProfiler [52].
Our focus was specifically on Reactome, a well-established
knowledgebase, to discern significantly enriched pathways
associated with the observed gene expression changes [53].
To minimise the false FDR, we applied a stringent thresh-
old of a BH-adjusted p-value of 5% or less. This approach
enabled us to gain valuable insights into the molecular mech-

anisms and pathways implicated in neoplasm regulation
relative to healthy or normal function. Overall, this analysis
provides a robust foundation for the subsequent interpreta-
tion of biological significance in the obtained results. These
comprehensive analyses collectively contribute to a deeper
understanding of the molecular distinctions between cancer-
afflicted and healthy patient samples. Gene expressionmatri-
ces were then subsetted by preselecting significantly up- and
down-regulated genes. The modified gene expression matri-
ces were optimally split into train (X train) (70%) and test
(X test) (30%) data [54, 55]. X train was used to compute the
distance correlation and TOM.

3.4 Distance correlation approaches

Measurement of the dependence between variables is the
central way of projecting data into a topological space. In
particular, the strength of the dependency (i.e. the correla-
tion coefficient) with the Pearson correlation coefficient is
the most used to evaluate linear relationships and is defined
by equation 3 and proved by [56].

cor(X ,Y ) = cov(X ,Y )√
Var(X)Var(Y )

(3)

The Pearson correlation coefficient is defined by the
quotient of the pairwise covariance and the variance of vari-
able X and Y. The cor(X ,Y ) is a measure of ε[−1, 1].
A |cor(X ,Y )| = 1 shows dependence and cor(X , Y ) =
0 shows independence between variable X and Y. How-
ever, variable X and Y can be non-independent whilst the
cor(X ,Y ) = 0, highlighting the importance of considering
nonlinear relationships as shown in Fig. 5.
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Fig. 5 The correlation of data points between two random variables
shown by the blue points. Positive correlations are shown to have posi-
tive gradients and negative correlations with negative gradients. Whilst

non-independent correlations may have a Pearson correlation coeffi-
cient of zero, they appear to have nonlinear relationships depicted by
the shape of the data points

Distance correlations are unique in that they are more sen-
sitive to detecting nonlinear relationships. Let two random
variables be X and Y with finite second moments. The dis-
tance covariance can be defined by the following function.
Let (X ,Y ), (X ′,Y ′) and (X ′′,Y ′′) be the independent and
identically distributed duplicates. The distance covariance
can therefore be defined by equation 4 and proved by [57].

dCor2(X ,Y ) := E(|X − X ′||Y − Y ′|)
+E(|X − X ′|)E(|Y − Y ′|)
−2E(|X − X ′||Y − Y ′′|) (4)

The distance correlation coefficient can be determined by
equation 5.

dCor(X ,Y ) := dCov(X , y)√
dCov(X ,Y )dCov(Y ,Y )

(5)

Distance correlation (dCor(X ,Y )) is a nonnegative mea-
sure defined by dCor(X ,Y ) ε[0, 1]. The difference is that
the distance correlation coefficient (that is, dCor(X ,Y ) = 0)
is invariant with respect to linear transformations. Calcu-
lating the covariance between two variables determines the
correlation. As such, covariance tending to zero indicates
independence between variables and vice versa. The Python
package dcor was used to calculate the covariance between
pair of genes [58].

3.5 Topological overlappingmeasures

TOMs are an extension of the Pearson correlation coeffi-
cient; however, this measure considers neighbour-mediated
strengths to recalculate correlation measures. Standard TOM
measures (i.e. unsigned) consider that all neighbour-mediated
strengths reinforce direct connections. However, thismay not
always be the case, and signed-TOM attempts to account for
these considerations. In a signed-TOMnetwork negative cor-
relations are considered unconnected with their connection

strength tending to zero, whereas unsigned-TOM consid-
ers negative correlations to have high connection strengths
[14]. As such, unsigned-TOM take the absolute values of
correlations failing to distinguish between positive and nega-
tive correlations. Signed-TOM corrects the direct connection
strength by removing anti-reinforcingmediated connections.
The input of signed-TOM requires the negative/positive sign
of the correlation measure. This can be achieved by first
defining the weighted network adjacency measures âi, j as
per equation 6 and shown by [59].

âi, j = sign(cor(xi , x j ))
β (6)

The xi and x j represent the i th and j th pair of vertices
(i.e. pair of genes in a gene expression matrix). And the
cor(xi , x j ) of the similarity measures the pairwise similar-
ity of genes using the Pearson correlation coefficient metric.
The weighted adjacency measures are calculated by trans-
forming the similarity measure by raising to the power value
β ≥ 1. The adjacency encodes the network connection
strength between a gene pair (xi and x j ). The β value is
determined by applying the scale-free topology criterion that
implies that the degree distribution of the adjacency network
must follow a power law. Following the computation of the
adjacency network, the signed-TOM was determined as per
equation 7 and proved by [14]:

TOMi, j = |ai, j + ∑
u �=i, j âi,uâu, j |

min(ki , k j ) + 1 − |aaj | (7)

where ki and k j represent the connectivity of the i th and
j th vertex. Signed-TOM preserves the sign of the relation-
ship between vertices with respect to connections by shared
neighbours. Both distance correlation measures and signed-
TOMwere used to form theVRcomplex for PHcomputation.
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3.6 TDA implementation

Using the Python packageGudhi (https://gudhi.inria.fr), data
were projected into a topological space from distance corre-
lations and signed-TOM into VR complexes. A collection
of topological features were collated by a weighted filtra-
tion approach during PH computation. Topological birth and
death coordinates for the zero, first and second Betti num-
bers were determined for BRCA, LUAD, COAD/READ and
PRAD datasets. To determine the weighted filtration rate for
eachpatient’sVRcomplex, theGudhi implementation shown
in equation 8 was performed [60].

filtration = max(2 × Fi , 2 × Fj , disti, j + Fi + Fj ) (8)

Equation8 determines the filtration rate based on the
expression value of each gene pair. Such that, the largest
value of the mathematical expression becomes the filtra-
tion rate for a specific gene pair. Fi describes the i th gene,
and Fj describes the j th gene. The weighted filtration rates
were based on the distance correlations and signed-TOM
(i.e. disti, j ) constructed from X train for both X train and X test

datasets. Consequently, X test was omitted from the distance
correlation/signed-TOM computation to prevent data leak-
age during model training and testing.

Patient-level topological signatures were represented as
PDs (shown in Fig. 10a–h). PDs play a key role in TDA,
by collating all the identified topological features (grouped
by Betti numbers). The topological signatures in the form
of PD multisets were vector-transformed into PIs for model
prediction.

3.7 Phenotype prediction

A deep neural network (DNN) was fitted on each patient’s
PI to classify their phenotype. Following hyper-parameter
tuning, the DNN model architecture included ten layers,
a Rectified Linear Unit (ReLU) activation function with a
regularisation step added to the loss function. Forward and
back-propagation to adjust neural weights was performed
with 2000 epochs to learn from topological signatures. The
TDA framework was repeated five times using a reshuffled
X train and X test, and the mean and standard deviation were
reported on X test data (the mentioned process also known as
the Monte Carlo cross-validation) [61]. Model training and
testingwere performed using the Python package scikit-learn
( https://scikit-learn.org/stable/). The entirety of the frame-
work can be summarised by Fig. 6.

4 Results and discussion

4.1 Genetic filtering process

PCAwas conducted on the RNA-Seq countmatrices for each
cancer dataset to evaluate the association between cancer-
afflicted and healthy patient groups. The objective of this
analysis in the context of gene expressionwas to visualise and
explore the variation in expression patterns among the two
groups. This facilitated the identification of sample clusters
with similar expression profiles, the detection of outliers,
and to highlight the most significant sources of variability in
the data. This preliminary exploration was performed before
engaging in the subsequent analysis for DGE.

The PCA plots provide insights into the complexity of
the phenotype classification task at hand, aiming to stratify
cancer-afflicted and healthy patient groups. This complex-
ity is particularly evident in the TCGA-BRCA, PRAD, and
LUAD datasets. Within these datasets, the two phenotypes
display a 10% variance across the PC1 axis. However, there
is no clear clarification of sample disparities. When there is
substantial overlap between classes or no clear separation
in the reduced-dimensional space, it suggests that the task
may be more challenging, and models might encounter dif-
ficulties in achieving high accuracy without overfitting. This
observation emphasises the importance of conducting aDGE
analysis to identify specific genetic factors contributing to
the observed variations and challenges in phenotype classi-
fication. When there is substantial overlap between classes
or no clear separation in the reduced-dimensional space, as
indicated by PCA, it suggests that the task may bemore chal-
lenging, andmodelsmight encounter difficulties in achieving
high accuracy without overfitting [62]. Following the perfor-
mance of theDGE analysis, the number of DEGs identified is
summarised in Table 2. This information serves as a crucial
foundation for further exploration and interpretation of the
genetic changes associated with the phenotype differences
observed in the PCA analysis.

The PCA plots reveal less variance in the PRAD datasets,
indicating a comparatively more homogenous gene expres-
sion pattern among samples within this dataset. In contrast,
theCOAD/READdatasets exhibit themost pronounced strat-
ification, suggesting a higher degree of heterogeneity in
gene expression profiles. This observation is consistent with
the magnitude of the changes in gene expression reported
earlier, reinforcing the notion that the extent of genetic alter-
ations may contribute to the observed variance in the PCA
plots. The magnitude of these changes provides insights into
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Fig. 6 The developed TDA framework for the prediction of phenotype from gene expression data following DGE analysis. Distance correlations
and signed-TOM are compared to assess the most appropriate representation of pairwise gene measures to infer topology

(a) PCA-BRCA (b) PCA-COAD/READ

(c) PCA-LUAD (d) PCA-PRAD

Fig. 7 PCA plots for cancer gene expression datasets, each point rep-
resents a patient sample, with its position determined alongside the
Principal Components 1 (PC1) and 2 (PC2). The colour scheme dis-
tinguishes between cancer-afflicted patients (depicted in orange) and

healthy patients (depicted in blue). The spread of points along the PC
axes reflects the variance within the dataset; a broader distribution indi-
cates higher variance. This visualisation highlights the differences in
gene expression patterns between cancer-afflicted and healthy patients
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Table 2 Number of significant DEGs identified for each cancer gene
expression dataset

Dataset Up-regulated genes Down-regulated genes

BRCA 963 1328

COAD/READ 1314 1689

LUAD 1137 1589

PRAD 950 777

the genetic alterations associated with each cancer type,
aiding further investigations into the potential biological
mechanisms and pathways involved in cancer development.
Functional enrichment was carried out to link the identi-
fied DEGs to interpret the level of genetic regulation, and
the enriched Reactome pathways for both up-regulated and
down-regulated genes are reported.

The enriched biological pathways identified in this study
offer a comprehensive view of the functional consequences
of gene regulation. Up-regulated genes demonstrated height-
ened activity in several crucial pathways. G Protein-coupled
receptor (GPCR) ligand binding suggested increased sen-
sitivity to extracellular signals, potentially influencing cell
signalling and communication [63]. Ion channel transport
enrichment pointed to an enhancement in cellular respon-
siveness, emphasising the significance of ion flux in cellular
homeostasis and communication [64]. The involvement of
Class A/1 (Rhodopsin-like receptors) indicated specific reg-
ulation of receptors associated with sensory perception and
cellular signalling [65]. Enrichment in potassium channels
highlighted a potential impact on cellular excitability and sig-
nalling [66]. Furthermore, protein ligand binding enrichment
underscored the importance of protein–protein interactions
in mediating cellular processes [67].

Moving beyond pathway analysis, ligand–receptor bind-
ing is a fundamental process in cell signalling, orchestrating
the transmission of information between cells [68]. Ligands,
whether autocrine, paracrine, or endocrine, interact with spe-
cific receptors, categorised as cell surface or intracellular,
initiating a sequence of events leading to cellular responses.
Molecular recognition and binding between ligands and
receptors trigger conformational changes, activating recep-
tors [69]. Subsequently, signal transduction pathways are
activated, involving various intracellular molecules, second
messengers, and protein kinases. This intricate signalling
cascade culminates in a cellular response, influencing pro-
cesses such as gene expression, cell growth, and differen-
tiation [70]. Understanding ligand–receptor interactions is
crucial for unravelling the complexities of cell signalling and
holds significance in drug development for targeting specific
pathways in the treatment of diseases, including cancer and
neurological disorders [71].

Conversely, down-regulated genes revealed distinctive
sets of pathways associated with regulatory processes and
cell cycle control. Moreover, the enrichment in cell cycle
checkpoints implies the potential suppression of cell cycle
progression, suggesting a regulatory mechanism to control
cell division [72]. Mitotic spindle checkpoint enrichment
suggests a potential disruption in the fidelity of chromosome
segregation during cell division. All three observations are
indicative of potential mechanisms to reduce cell growth and
proliferation [73]. In addition, the presence of the keratini-
sation pathway, related to the formation of protective layers
in epithelial tissues, may indicate alterations in tissue devel-
opment or differentiation that could contribute to limiting
cell growth [74]. Moreover, the enrichment in the conden-
sation of phosphate chromosome pathway suggests potential
modifications in chromatin structure and organisation, which
could further influence the regulation of gene expression and
cellular processes related to cell proliferation [75].

In summary, the identified enriched biological pathways
provide detailed insights into the functional consequences
of gene regulation in the studied dataset, covering a wide
range of cellular processes, including signal transduction,
ion transport, cell cycle regulation, and tissue development.
Understanding these pathways is crucial for unravelling the
molecularmechanisms underlying the observed gene expres-
sion patterns and their potential implications in cellular
functions and diseases. Constructing topological features
basedon this level of genetic regulation in the analysed cancer
datasets can provide further insights into the network prop-
erties and interactions shaping the observed gene expression
patterns.

4.2 Discovering genetic interactions

The construction of the distance correlation and signed-TOM
was used to form the VR complex. The distance correla-
tion measures remains a popular correlation metric since it
considers both linear and nonlinear association between two
random variables. However, signed-TOM has been success-
ful in computing weighted co-expression networks. Shown
below is the distance correlation measure and signed-TOM
from pre-selected cancer datasets.

It is evident from figure 9 that a more complex mixture
of dependence and independence (i.e. dCor(X ,Y ) → 1 and
dCor(X ,Y ) → 0, respectively) exists between gene pairs
for a VR complex constructed from a distance correlation
measures. Signed-TOM depicts larger patterns of regions
indicating strong and weak connection strengths between
gene pairs, whereas distance correlation measures shows
more complex interactions between gene pairs. This high-
lights the application of signed-TOM to identify coordinated
gene clusters for the co-expression analysis highlighted by
numerous published work [76–79].
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(a) Reactome-BRCA (b) Reactome-COAD/READ

(c) Reactome-LUAD (d) Reactome-PRAD

Fig. 8 Dot plot illustrating enriched biological pathways in up- and
down-regulated genes in cancer gene expression datasets. Each dot rep-
resents a specific pathway, with its position along the x-axis indicating
the gene ratio (proportion of genes in the pathway among all analysed

genes). The colour of each dot represents the significance of enrichment,
with warmer colours indicating lower BH-adjusted p-values. Pathways
associated with up-regulated genes are positioned on the right, while
those associated with down-regulated genes are on the left

The utility of distance correlation measures in bioinfor-
matics research is recently emerging. Studies have high-
lighted that distance correlation better depicts the complexity
of the coordination of gene expression levels than Pear-
son correlation measures which are the building blocks of
signed-TOM [57, 80–82]. Research outputs following the
implementation of distance correlation to co-expression anal-
ysis reveal that complex biological associations are identified

compared to other correlation metrics including Pearson cor-
relation coefficients [57]. This is the same observation seen
in Fig. 9, whereby more definitive differences are observed
between smaller groups of genes when constructed from dis-
tance correlationmeasures, whereas signed-TOM reveals the
overall topology of the gene expression network (depicted by
larger regions of gene groups of both strong and weak con-
nection strengths) rather than the individual magnitudes of

123



International Journal of Data Science and Analytics

Fig. 9 Distance correlation and
signed-TOM for each cancer
dataset. The correlation
coefficient measure is shown by
the colour bar, the measurement
of dependence (or strong
connection strength for
signed-TOM) is shown by
yellow and independence (or
weak connection strength for
signed-TOM) is shown by blue
colour (colour figure online)
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the relationship each gene pair. Furthermore, signed-TOM
builds a more organised and structured VR complex by
clustering larger groups of strongly connected and weakly
connected genes.

Although signed-TOM may be limited to identifying
linear dependence measures in the constructing the VR com-
plex, nonlinear associations may be still embedded in the
form of topology of the gene expression network. As such,
the identification of complex topological featuresmay be bet-
ter suited from a simpler representation that highlights the
topology of the dataset. We argue that the TDA implemen-
tation augments the identification of independent measures,
oblivious to the signed-TOM, and the distance correlation
measures may be directly obtained. Importantly, the struc-
tured nature of the VR complex may justify why during
PH computation more topological features are identified
and more informative (or higher dimensional) topological
features are embedded. This combats limitations associ-
ated with the more disordered distance correlation measure
that focuses on obtaining the individual distance magnitude
between gene pairs, which reduces the potential to capture
the overall topology of the gene expression network.

A depiction of this is illustrated in Fig. 10 where PDs for
randomly selected cancer-afflicted patients from each can-
cer dataset were constructed from distance correlation and
signed-TOM. The PDs summarise the topological signature
for each patient by collating the birth and death coordinates
for the kth-Betti numbers.

From the topological signatures summarised in the PDs
(shown in Fig. 10) larger numbers of identified topological
features are evident, in particular elevated volume of higher-
dimensional topological features in the homology groups,
Betti-1 and more specifically Betti-2 when using signed-
TOM.The computation of higher-dimensionalBetti numbers
(greater than Betti-2) has seen sparked interest in the field of
quantum computing, highlighting their potential importance
to improve data representation [83]. Classical computers
are prohibitively expensive for high-dimensional Betti num-
ber computation, compared to quantum algorithms that can
approximate them in polynomial time [84]. As such, there is
limited evidence to suggest that high-dimensionalBetti num-
bers are more informative signals to understand the data.
Regardless of the lack of supporting literature, we claim
that the signed-TOM representation embeds far more high-
dimensional topological features for the capacity of classical
computer algorithms (i.e. up until Betti-2 topological fea-
tures) compared to distance correlation measures. We also
claim that Betti numbers greater than Betti-1 reveal more
intricate and high resolution signals embedded in the VR
complex. One study that supports these claims by Shi et al.,
showed that high-ordered topological features (computed up
to Betti-3) played an important role in better explaining the
complexity of brain function [85].

We hypothesise that higher-dimensional topological fea-
tures in the VR complex constructed from the signed-TOM
may reveal more information with regard to the complexity
of gene expression data. To validate this hypothesis, vector
transformation of the PDs was performed to form PI’s prior
to phenotype prediction. Shown below are PI’s (randomly
selected cancer-afflicted patients) showing a matrix of pix-
els generated by imposing a weight function to the points
in the PD (i.e. identified topological features) to define the
probability distribution for the points. From these distribu-
tions, a surface is constructed over the diagram to form the
fixed-dimensional feature vector.

4.3 Phenotype classification

The topological signature generated from signed-TOM not
only indicates an increase in higher-dimensional Betti num-
bers (i.e.Betti-2) but also an increase in persistent topological
features. This is depicted by the bright yellowpixels observed
in higher frequencies in cancer patients with topological
signatures built from signed-TOM (Fig. 11). As stated pre-
viously, low-persistence Betti numbers are more likely to be
topological noise, while those with a high persistence values
tend to correspond to meaningful information [86, 87]. To
validate whether topological signatures embeddedwithmore
persisting topological features better represent a dataset, phe-
notype prediction using a DNN was performed. This was
achieved using topological features in the form of PIs gen-
erated from signed-TOM on the selected cancer datasets as
outlined in table 1.

To evaluate the overall model performance, the Monte
Carlo cross-validation method was employed (table 3 and
4). True-positive rate (TPR), also known as recall, represents
how accurate the model was in predicting the phenotype cor-
rectly by measuring true positives (TP) divided by the sum
of TP and false negatives (FN). Precision measures the num-
ber of TP over the sum of TP and false positives (FP). F1
scores are the mean of precision and accuracy. F1 (Macro) is
computed using the arithmetic mean of all the F1 scores in
each class, whereas F1 (Micro) computes a global average
F1 score. The use of multiple metrics obtains a finer-grained
idea of the performance of the classification model. In par-
ticular, by taking into account class imbalances observed for
the selected cancer datasets in table 1.

Clear observations of improved phenotype prediction on
topological signatures constructed from signed-TOM are
shown in Table 4, with F1 scores moving from 60s and
70s to the high 80s and 90s. Furthermore, Table 4 high-
lights that in a sample size of approximately 60–70unlabelled
patients, the TDA framework constructed from signed-TOM
correctly classifies the phenotype up to 90% of the time.
From up-stream results, more high-dimensional and persis-
tent topological features are identified from the VR complex
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Fig. 10 A comparison between
the topological signatures
generated using distance
correlation and signed-TOM are
shown for randomly selected
cancer patients in each TCGA
cohort. The data points are
coloured by the kt h-Betti
number. Red points (Betti-0),
blue points (Betti-1) and green
points (Betti-2) are topological
features identified during PH
computation. The grey areas
represent regions that do not
contain topological features to
satisfy bi < d j

constructed from signed-TOM. This is a remarkable obser-
vation since distance correlation measures have become the
gold standard in measuring dependence and independence

between two random variables. This may be attributed to
signed-TOM taking into account gene neighbourhoods to
determine the connection strength. This approach is observed
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Fig. 11 PI from an individual cancer-afflicted patient generated from
distance correlationmeasures and signed-TOMsummarising the vector-
based transformed PD into a pixelised topological signature shown in

the yellow regions. The intensity of the yellow spot is proportional to
the density of the most appropriate persistent topological features

Table 3 Topological data
analysis built with distance
correlations measures

Dataset Accuracy F1 (Macro) F1 (Micro) TPR Precision

BRCA 76.34 ± 2.71 75.69 ± 1.72 75.90 ± 3.41 76.51 ± 1.78 75.69 ± 2.34

LUAD 77.77 ± 1.45 77.04 ± 1.35 70.82 ± 1.21 70.83 ± 1.76 76.92 ± 1.53

COAD/READ 68.78 ± 2.89 68.78 ± 3.21 65.71 ± 3.65 72.81 ± 2.90 65.79 ± 3.52

PRAD 70.21 ± 2.13 65.82 ± 1.30 66.98 ± 2.31 73.13 ± 1.56 74.74 ± 1.24

Table 4 Topological data
analysis built with topological
overlapping measures

Dataset Accuracy F1 (Macro) F1 (Micro) TPR Precision

BRCA 88.51 ± 1.11 88.06 ± 0.99 87.24 ± 1.20 88.51 ± 0.98 87.71 ± 1.48

LUAD 96.67 ± 0.75 97.83 ± 0.21 98.57 ± 0.11 96.67 ± 0.89 99.11 ± 0.06

COAD/READ 91.80 ± 0.21 91.53 ± 0.38 91.67 ± 0.67 91.79 ± 0.45 91.36 ± 0.98

PRAD 90.31 ± 3.24 92.92 ± 1.35 91.08 ± 1.87 89.00 ± 1.26 90.63 ± 1.13
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to better defined gene groups, highlighted by its success in
weighted gene co-expression analysis [88–90].

4.4 Further investigations

To further improve the constructed TDA framework, the
incorporation of biological explainability should be inves-
tigated. Recall that Betti numbers are formed by vertices (or
genes) and are identified using concepts of topology per-
spective. Therefore, gene sets representing Betti numbers
can be related to biological function by performing func-
tional enrichment analysis. Many of the ML/DL models are
black boxes that do not explain their predictions in a way
that humans can understand. The lack of transparency of
predictive models can have consequences caused by bias.
Incorporating biological annotation to the identified topolog-
ical features will provide explainability to black-boxML/DL
models but can uncover the underlying biological mecha-
nisms that are used to classify a patient’s phenotype.

The field of biology stands to gain substantial advantages
through the integration of TDA, particularly in the domains
of phenotype prediction and biomarker discovery. The appli-
cation of TDA within the biological context benefits from
the insights provided by domain experts. In the realm of phe-
notype prediction, experts in biology can guide the selection
of pertinent features (i.e. as performed by DGE analysis in
this work), facilitate the integration of multi-omics data, and
optimise algorithm parameters. TDA, in turn, captures the
nuanced relationships among these features, unveiling intri-
cate patterns resulting in the enhancement of prediction tasks.
For biomarker discovery, TDA has the potential to become
crucial as it aids in the identification of potential biomark-
ers, interpretation of topological networks, and integration
of diverse data types. Furthermore, the integration of contex-
tual knowledge is paramount for effective pathway analysis,
validation, and interactive exploration of TDA results, ensur-
ing their alignment with known biological mechanisms. The
collaborative synergy between data scientists and experts in
biology holds the key to unlocking the full potential of TDA,
providing valuable insights into the complexities of biologi-
cal datasets, such as cancer gene expression data.

This study emphasises the importance of marrying the
implementations of domain knowledge to further improve
computational methods. Our findings leads us to recommend
the use of signed-TOM for the encoding RNA-Seq generated
gene expression data into topological signatures using TDA.
The results show that signed-TOM enhances the construc-
tion of the VR complex. Furthermore, the results show that
the simplicial complex is enhanced due to the larger num-
bers of topological features (particularly higher-dimensional
features—highlighted in the PDs) and more persistent topo-
logical features (highlighted in PIs), which are embedded
in the VR complex. These findings are validated using a

DNN to learn from the topological signatures constructed
from distance correlations and signed-TOM and observe
an increase in phenotype prediction performance using
signed-TOM. Further work aims to apply this framework
to datasets constructed from a variety of gene profiling plat-
forms to eliminate the possibility of technical interference of
the construction of the correlation measures. Furthermore,
expanding the phenotype prediction using other diseases to
validate our framework will also be pursued.

5 Conclusions

The concepts of topology are introduced as an ideal rep-
resentation of nonlinear relationships in data as the overall
structure is maintained despite homeomorphisms that shrink
and stretch data [91]. We illustrate that TDA is also able to
retain significant features through Betti numbers of the data
despite excess noise through variability. Lastly, TDA com-
puted with signed-TOM outperformed the popularly used
distance correlations measures to create more informative
PDs with more measurable features in various datasets. We
make four observations to validate the enhancement of the
VR complex. The first, we show the signed-TOM outputs
large organised groups of genes, showing clear patterns of
strong and weak connections of genes. The second observa-
tion is that the VR complex constructed from signed-TOM
shows more data spread in a topological space and embeds
numerous topological features of high dimensions. From this
observation, we speculate that high-dimensional topological
features can be seen as a measure of resolution. The third
observation shows signed-TOM forms more persistent topo-
logical features during PH computation. Lastly, we show that
the topological signature generated from signed-TOM with
all the above stated attributes, improves cancer phenotype
prediction accuracy scores by almost 20% compared to the
popular distance correlation metric. As such, we recommend
the use of signed-TOMfor TDAencoding and the subsequent
use for phenotype prediction on gene expression data gener-
ated from RNA-Seq.
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