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Abstract
Machine learning enhances predictive ability in various research compared to conventional statistical approaches. However,
the advantage of the regression model is that it can effortlessly interpret the effect of each predictor. Therefore, interpretable
machine-learning models are desirable as the deep-learning technique advances. Although many studies have proposed ways
to explain neural networks, this research suggests an intuitive and feasible algorithm to interpret any set of input features of
artificial neural networks at the population-mean level changes. The new algorithm provides a novel concept of generating
pseudo datasets and evaluating the impact due to changes in the input features. Our approach can accurately obtain the effect
estimate from single to multiple input neurons and depict the association between the predictive and outcome variables.
According to computer simulation studies, the explanatory effects of the predictors derived by the neural network as a
particular case could approximate the general linear model estimates. Besides, we applied the new method to three real-life
analyzes. The results demonstrated that the new algorithm could obtain similar effect estimates from the neural networks
and regression models. Besides, it yields better predictive errors than the conventional regression models. Again, it is worth
noting that the new pipeline is much less computationally intensive than the SHapley Additive exPlanations (SHAP), which
could not simultaneously measure the impact due to two or more inputs while adjusting for other features.

Keywords Interpretation · Neural networks · Machine learning · Predictive model · SHapley

1 Introduction

Theories and applications ofMachine learning are expanding
fast, and many industries use it to make better predic-
tions, including the emergency department triage prediction
and COVID-19 outcome risk assessment [1–3]. Machine
learning models are better at predicting data in structural
diversity than conventional statistical modeling [4]. Our
previous work [5–8] revealed superior performance using
novel machine learning models compared to the statistical
approaches in numerous settings. However, researchers are
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highly concerned about machine learning models’ interpre-
tation mechanisms, such as support vector machines [9],
random forests [10], K-neighborhood algorithms [11], and
artificial neural networks (ANN) [12–14]. The landmark
articles of White [13, 14] provide in-depth statistical per-
spectives and interpretability of ANN. Another goal is to
identify the problematic points to solve the effectiveness of
the models when the results diverge from the actual values
[15].

Machine learning models are also essential in health care
[16] ormedical research such as acute pancreatitis in-hospital
mortality [17], oral cancer risk [18], acute liver functionmor-
tality [19], diabetes screening [20], glaucoma progression
in sleep apnea patients [21], and COVID19 diagnosis [22].
Further understanding how machine learning describes the
relationship between variableswill increase confidence in the
model and allow people to use it for subsequent predictions.
Even though thesemodels can accurately predict disease pro-
gression or diagnosis, they are ineffective at understanding
the impact of predicted input variables on the target.
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It is natural to construct models into an opaque box to
attain the most accurate predicted performance with grow-
ing complexity in their setup due to the development of deep
learning [23]. Therefore, many novel techniques aim to sim-
plify model interpretation, including the Local Interpretable
Model-Agnostic Explanation technique (LIME) [24]. The
LIME approximates a machine learning model with a local
and interpretable model. The LIME explains each individ-
ual’s prediction. This model chooses only the most essential
variables for interpretation, and how they affect the result
is unclear. One of the most widely used models in machine
learning is neural networks, which have gained popularity
recently, particularly with the advent of deep neural networks
[25].

In addition to the LIME, the SHapley Additive exPla-
nations (SHAP) [26] comprehend the significance of the
variables in the data and show the direction of the impact
of features on predictions. SHAP is applicable for both local
and global explanations. The absolute Shapley values of all
instances in the data are averaged for global explanations.
Another method implemented the statistical techniques with
the multinomial regression models to generate neural net-
work topologies [27]. The issue is the instability of the data
structure owing to Taylor’s spreading effect affects the anal-
ysis of the actual data.

Recently, ridge regression was used to propose a neural
network with feature sparsity [28], developed the general-
ized additive model into a Neural Additive Network [29],
and derived a neural network architecture using polynomial
regression [30]. Using statistical theory to calculate weights
and specified activation functions efficiently explains the
association between independent variables and the outcome
feature in neural networks. Another strategy used statisti-
cal techniques with the multinomial regression models to
generate neural network topologies [27]. Besides applying
statistical theory to construct models with calculated weights
and specified activation functions, these are efficient ways to
comprehend the fundamental link between independent vari-
ables and contingent factors in neural networks.

A systematic review discussed the evaluation of Explain-
able Artificial Intelligence (XAI) results because it is essen-
tial for maximizing the value of Artificial Intelligence (AI)-
based clinical decision support systems [31]. The previous
techniques address the issue of neural networks’ inability
to explain how well a prediction worked and compute the
weights or coefficients of various variables to comprehend
how the model affects the predicted variables. In addition, a
study compared explainable ensemble learning and logistic
regression for predicting in-hospital mortality in the emer-
gency department [32]. Yet another study improved patient
mortality predictions in emergency departments with deep
learning data-synthesis and ensemble models [33].

In this research, we aim to propose a novel and feasible
approach named the interpretable neural network algorithm
(INNA) for measuring the effect from one or multiple input
features and estimating the population-level impact. The new
method generates pseudo datasets according to perturbations
in the input features and then evaluates the effects on the
predicted values.

2 Methods

Medical science researchers commonly measure the impact
of a specific predictive variable by one standard deviation
(SD) change in the predictor and see how much difference is
expected in the outcome variable [34–36]. Thus, we adopted
the popular measure of one SD change for the interpretation
algorithm.

When the input neuron is continuous, the INNA computes
the expected change in the output neuron according to one
standard deviation (SD) increase/decrease in the input neu-
ron. Regarding the dichotomous input neuron, we obtain the
expected difference of the output neuron based on the con-
trast (1 vs. 0) in the input neuron. Since the generalized linear
model (GLM) [37] is a well-known interpretable statistical
model, we aim to fine-tune the INNA to match the results of
the GLM as a particular case for illustration purposes. We
will conduct computer simulations and three real-life data
analyzes to compare the results between the INNAandGLM.
In the following, we carry out details of the INNA for con-
tinuous outcomes.

Consider an ANN with J input neurons and one output
neuron. We normalize every continuous feature in the input
layer. For categorical features, we generate dummy variables
such that all input neurons become dichotomous with values
of 1 or 0. Assuming the sample size is N . Let X � (x1,
x2, . . . , xJ ) be the collection of J input neurons, and Y be
the output neuron, then Xi � (xi1, xi2, . . . , xi J ) denotes
the observed feature/predictors of the ith subject, where i �
1,2,…, N . Finally, Yi is the actual outcome value of the ith
subject.

Since the outcome is continuous, the loss function is the
mean square error (MSE) defined as 1

N

∑N
i�1

(
Yi − Ŷi

)2
,

where Ŷi is the predicted value from the ANN. Since the out-
put value affects the threshold in resilient back-propagations
of the ANN, we set the cutoff as the maximum output value
for resilient back-propagations, and the maximum number
of iterations is 10,000 (stepmax:10,000). When training the
ANN model, the initial weights of the ANN are randomly
selected. Thus, we repeated the training process ten times
(repetition:10) and chose the optimal one. As a result, the
parameter setting is activation: Relu, hidden layer:1, nodes
� 4:9, stepmax:10,000, threshold � 0.1, learningrate � 0.1,
repetition:10 (algorithm: rprop+). The variation is minimal
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after 10,000 iterations; ten repetitions provide consistent
results. Therefore, we use these numbers as the threshold.

The INNA starts with the first input neuron. Then, the
INNA iterates through the rest of the components of the input
layer. For example, assuming we only have three predictors,
such as J � 3 (x1, x2, x3) and one outcome variable (y) in
the training data. We begin the INNA with the first variable
(x1) and keep the other two variables (x2 and x3) as the orig-
inal unchanged values. Next, run through the algorithm for
the second variable (x2) and keep the other two (x1 and x3)
intact. Finally, we finish the algorithm for the last feature x3.
Figure 1 shows the detailed steps of the INNA from the orig-
inal dataset to the last step that calculates the effect estimates
for a continuous or dichotomous input neuron.

2.1 The reference ANNmodel

The first step is to obtain the optimal hyperparameters and
parameters by fitting the ANN to the original dataset with
the settings mentioned previously. The estimated results are
INNA’s reference ANN model (RANN). The predicted val-
ues Ŷi , i � 1, 2, . . . , N , from the RANN, are the baseline
components for the effect estimate. We denote the mean of
Ŷi , i � 1, 2, . . . , N , which is also the expected value of the
output neuron, as A0. Therefore, A0 � 1

N

∑N
i�1 Ŷi . Mathe-

matically, Let Ŷi � f (Xi ; θ̂ ) where Xi � (xi1, xi2, . . . , xi J )
is the i-th subject input vector, θ̂ is the trained parameters and
Ŷi is the predicted value from the ANN for subject i. Then
A0 � 1

N

∑N
i�1 Ŷi serves as a “reference” estimate for the

expected outcome E0(Y ), where E0 the denotes expectation
from the ANN predicted outcome over the population whose
input features have a joint distribution as in the observed data
sample.

2.2 Effect estimate in the higher group

After obtaining the baseline A0, the next step is to mea-
sure how an input neuron impacts the predicted value when
the input increases. Therefore, we generate a pseudo dataset
assuming the input feature has a higher value, denoted as the
Higher Group (HG).

For the continuous type of input feature, we add one SD
of this input feature in the data sample to every individual’s
value for this specific feature. Note that the rest of the input
neurons are unchanged, and this step maintains the correla-
tion structure of all input neurons in the pseudo dataset.

Take the first input neuron x1 as an example. We denote
the standard deviation of x1 as SDx1. The pseudo vector of J
input neurons for subject i is X+

i � (xi1+SDx1, xi2, . . . , xi J ),
i � 1,2,…, N . Note that the variance–covariance matrix of
the pseudo vector is identical to that of the original X � (x1,
x2, . . . , xJ ).

When the pseudo datasetHG is ready,we use theRANN to
predict the individual results Ŷ +

i , i � 1,2,…, N . The mean of
the predicted values Ŷ + is also the output neuron’s expected
value, denoted as A1. Therefore, A1 � 1

N

∑N
i�1 Ŷ

+
i . Sub-

sequently, we calculate the difference in expected values
due to one SD increase in the input neuron x1, which is
T 1 � A1 − A0. The difference in expected values due to
one SD increase in input neuron x2, …, xJ can be obtained
in an entirely analogous and parallel way.

Mathematically, let Ŷ +
i � f (X+

i ; θ̂ ) with X+
i � (xi1 +

SDx1, xi2, . . . , xi J ), θ̂ the trained parameters, then A1 �
1
N

∑N
i�1 Ŷ

+
i is an estimate of the expected value for the out-

come Ŷ + when the input features have a joint distribution
that has a one-SD increase in the input neuron x1 while all
the other input neurons x2, . . . , xJ are fixed as they were in
the observed data sample. Denote such an expected outcome
by E+(Y ), where E+ represents the expectation of the output
feature over the population whose input feature distribution
is the same as that in the observed sample, except that the
input x1 has a one-SD increase. Recall that A0 estimates the
expected outcome E0(Y ) without such a shift in the input x1,
henceT1�A1–A0 is an estimate of the effect E+(Y )−E0(Y )
owing to a one-SD increase in the input x1 on the difference
of the expected outcome.

2.3 Effect estimate in the lower group

Similar to the approach in the HG, we could evaluate how
the predicted value changes when the input values decrease.
Therefore, we subtract one SD from every individual’s input
neuron and generate the second pseudo dataset as the Lower
Group (LG). The other input neurons remain the same. Thus,
this process controls or adjusts for the other features in the
model.

Consider the first input neuron x1 (standard deviation �
SDx1), the pseudo vector X

−
i becomes(xi1 − SDx1, xi2, . . . ,

xi J ), i � 1, 2, . . . , N , and the predicted value is denoted
as Ŷ−

i , i � 1, 2, . . . , N . The expected value of LG is A2.
Hence, A2 � 1

N

∑N
i�1 Ŷ

−
i .

The next step finds the difference in predicted values due
to the loss of one SD change in the input neuron, which is
T 2 � A0 − A2. The difference in expected values due to
one SD decrease in input neuron x2, …, xJ can be obtained
in a fully analogous and parallel way.

As we have explained above for the measures A1 and T1,
the measure A2 is an estimate of the expected value of the
outcome Ŷ− when the input features have a joint distribution
that has a one-SD decrease in the input neuron x1 while all
the other input neurons x2, . . . , xJ are fixed as they were in
the observed data sample. Let E−(Y ) be such an expected
outcome, which is taken over the population whose input
feature distribution is the same as that in the observed sample
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Fig. 1 Statistical Analysis Steps
of the INNA

except that the input x1 has a one-SD decrease. Since A0
estimates the expected outcome E0(Y )without such a change
in the input neuron x1,T2�A0–A2 estimates E0(Y )−E−(Y )
which reflects the effect of the input x1 owing to such a one-
SD change.

2.4 Overall effect estimate

Since both T1 (for HG) and T2 (for LG) provided above
measure the effect of the input neuron x1 when it has a one-
SD change, we consider the effect estimate of this continuous
input neuron x1 given by the mean of T1 and T2, which is 1

2
(T 1 + T 2) � 1

2 (A1− A2). Obtaining the average of T1 and
T2 provides a more consistent estimate of the model effect.

2.5 Pseudo datasets for dichotomous neurons

Regarding the effect of a dichotomous input neuron, we
change the neuron value to 1 for the HG and evaluate the
difference in prediction due to such a change. This way, we
could evaluate the effect of a dichotomous input neuron due
to the change from 0 to 1. This formula is similar to the
continuous input neurons. Take the first input neuron x1 as
an example, the pseudo vector X+

i becomes(1, xi2, . . . , xi J ),
i � 1, 2, . . . , N , and the predicted value is denoted as
Ŷ +
i , i � 1, 2, . . . , N , and A3 � 1

N

∑N
i�1 Ŷ

+
i . The A3 is

then compared to the RANN A0 to obtain the effect estimate

A3–A0 in the HG. Similarly to the continuous feature case,
A3 estimates the expected outcome Ŷ + when the input fea-
tures have a joint distribution where the dichotomous neuron
x1 is set to 1 while all the other neurons x2, . . . , xJ are fixed
as they were in the observed data sample. We still use the
notation E−(Y ) to denote the expectation of the outcome
over the population whose input features have a joint distri-
bution where the dichotomous neuron x1 is set to 1 and all
the other neurons x2, . . . , xJ are fixed as they were in the
observed data sample. Recall that A0 estimates the expected
outcome E0(Y ) without such manipulation in the neuron x1
(i.e., without purposely setting x1 to 1), hence T1 � A1–A0
estimates E+(Y ) − E0(Y ), and can assess the effect of the
neuron x1 owing to the manipulation.

Similarly, we can set a dichotomous input neuron value to
0 for the LG and evaluate the resulting change in the outcome
prediction. Take the first input neuron x1 as an example. The
pseudo vector X−

i becomes(0, xi2, . . . , xi J ), i � 1, 2, . . . ,
N , and the predicted value is denoted as Ŷ−

i , i � 1, 2, . . . ,

N , and A4 � 1
N

∑N
i�1 Ŷ

−
i . Then, among the LG, we obtain

the effect estimate given as A0 − A4. It can be seen that A4
is an estimate of the expected value of the outcome Ŷ−

i over
the input feature distribution same as the input distribution
in the observed data sample, except that the input x1 always
keeps a value of 0. Denote the expected outcome over such a
feature distribution as E−(Y ). Since A0, the expected value
E0(Y ) of the outcome over the input distribution exactly the
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same as the input distribution in the observed data sample,
A0–A4 is the effect estimate for this input feature.

As in the continuous input neuron case, the final effect
estimate for the dichotomous input neuron case is obtained
as (A3− A0) + (A0− A4) � A3− A4. Therefore, we could
find the effect estimate due to the status change in the dichoto-
mous input features.

2.6 Pseudo datasets for multiple neurons

Suppose the study wants to know how two or more input
features jointly impact the outcome. In that case, the INNA
creates pseudo datasets with these inputs that have increased
or decreased SDs depending on the direction of effects spec-
ified by the research questions. For example, suppose we
wonder how an older man would benefit from a dietary pro-
gram. In that case, this research hypothesis involves three
features, including age (continuous variable), sex (dichoto-
mous variable: male � 1, female � 0), and the calories of
daily food intake (continuous variable). The corresponding
pseudo dataset increases the age variable by one SD, sets
the sex variable to 1, and decreases the calories of daily
food intake by one SD while holding the rest of the features
unchanged in the HG. The effect estimate in the HG can then
be obtained by comparing the average of the predicted out-
comes over the pseudo dataset with that in the original data.
In the LG, the manipulations are in the opposite direction,
and the effect estimate can also be obtained by comparing
the average of the predicted outcomes over the LG pseudo
dataset with that in the original data. The final effect estimate
can be obtained by the average of the effect estimates from
the HG and the LG. Therefore, the INNA is flexible for var-
ious research issues, and such an extension is intuitive and
feasible.

2.7 Simulation study

Since we are comparing the performance of INNA to SHAP
with local explanations, which could only interpret each sin-
gle input neuron, the simulation study only evaluates the
effect of a single neuron. The extension of INNA for multi-
ple neurons is intuitive and straightforward by generating the
pseudo datasets with two features modified simultaneously.

The simulated data consists of one dependent variable (Y )
and five independent variables (X) according to themultivari-
ate normal distribution. We examined Scenario I for Type-I
error when Y is independent of X and Scenario II for sta-
tistical power when Y is associated with X. Under Scenario
I, we expect INNA to generate the effect estimates around
zeros. In contrast, the INNA should yield non-zero estimates
of predictive effects under Scenario II.

The sample size in medical research is much less than
one thousand due to expensive measures in the predictors

Fig. 2 Process of the simulated data

and outcomes. Therefore, the sample size is 1000 for sim-
ulation studies. The mean vector is indicated in Fig. 2, and
the covariancematrix is displayed inAppendix 1.We consid-
ered continuous and categorical predictors with two different
scenarios: (1) all five Xs are continuous; (2) two of the five
Xs are dichotomous. Note that two variables are randomly
selected.We dichotomized the two variables according to the
50th and 75th percentiles. If the variable is higher than the
threshold, the transformed value is 1; otherwise, it is 0.

For continuous input neurons, we normalize them to expe-
dite the training process and avoid the situation of falling into
the optimal local maximum or minimum, resulting in subpar
interpretation and prediction. Details of the simulation study
are in Fig. 2.

The INNA could fit a piece-wise non-linear activation
function (ReLU) or a non-linear activation function like sig-
moid. Therefore, the INNA is flexible for various models
attributable to the nature of ANN. To illustrate the interpre-
tation ability of the INNA, we fine-tuned the ANNwith Relu
to approximate the beta coefficients of the GLM. Therefore,
the simulation compares the effect estimates of the INNA
and GLM models as exceptional cases. The simulation does
mean that the INNA is only valid for the linear model inter-
pretation.

The model is constructed using 80% of the training
dataset. The remaining 20% of the dataset serves as the
testing data. Since the result of this study is based on con-
tinuous variables, the predictive ability is evaluated by the
mean square error (MSE).

2.8 Analysis of real data

Weapplied the INNA to three different datasets. TheUSCen-
sus Bureau collected the first dataset on housing in Boston,
Massachusetts, which includes 506 pieces of information and
14 housing-related variables [38]. In the following, the vari-
able names in the dataset are presented in parentheses. The
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median owner-occupied housing value (medv) is the output
variable. There are five predictors: (1) the per capita crime
rate of each town (crim); (2) the presence or absence of the
CharlesRiver on the boundary (chas); (3) the average number
of rooms per dwelling (rm); (4) the lower population status
percentage (lstat); (5) the weighted average of the distance
to the five Boston employment centers(dis).

The second dataset is from ACME Insurance on access
to affordable health insurance for clients across the United
States [39]. The outcome variable is insurance costs. Predic-
tive variables and the coding of the variables presented in the
parenthesis were gender (SEX), weight (BMI), number of
children (Children), whether or not they smoked (Smoker),
and region of the United States (Region).

The last dataset is from the Bukavu blood pressure obser-
vation data [40], which includes 10,866 samples and ten
variables. The Bukavu dataset focuses on predicting diastolic
and systolic blood pressure. The predictive variables include
age (AGE), sex (SEX), body mass index (BMI), waist cir-
cumference (WC), year of survey (Year), region (Region),
whether taking antihypertensive medication (ANTI_HTN)
and pulse rate (PULSE). Variable descriptions for the three
datasets are summarized in Table 1.

We used the logarithmic transformation for skewed inde-
pendent variables and standardized them because this study
uses two open-ended data from different sources. In addition,
categorical predictors are transformed into dummy variables.
This transformation step ensures the convergence of the
INNA model. The effect estimates obtained from the INNA
model are compared with the beta coefficients of the GLM.

In the Boston data, only the variable "crim" is log-
transformed and standardized, and the distribution of all
variables is shown in Appendix 1.1. Considering the sec-
ond ACME data, the distribution of premiums is skewed.
Thus, premiums were log-transformed, and the variables in
the data were normalized (Appendix 1.2). In the last Bukavu
data, missing data will be excluded. The missing BMI and
pulse rates are 3.9% and 2.0%, respectively. As a result, the
sample size is 10,428, and the distribution is in Appendix
1.3.

In these real-life examples, we included the SHAPmethod
with local explanations to compare the effect of the Shap-
ley value to the results of the INNA model. We expect the
predictive impact of the two methods to be comparable.
Unlike the INNA that directly generates the population-mean
level effect, the Shapley value analysis implements the ’iml’
package in R and outputs the individual level effect as the
default. After the package derived every individual’s pre-
dicted results, we could calculate the population average.
However, this process is very time-consuming. Thus,we only
present the first individual’s results and ignore the rest of the
subjects in the data.

The parameter settings for INNA were approximately
the same as those for the simulated data, except the repe-
tition parameter (repetition:20). All the statistical analyzes
and simulations were conducted by the R Software (4.0.3)
[41]. An R function of the INNA is freely available with an
example dataset for practice. Researchers could effortlessly
implement the INNA function for various datasets from dif-
ferent research fields.

This INNA function requires the installation of the "dev-
tools" package and the "neuralnet" activation function Relu.
The next step brings in the analysis data, which must be in
a matrix format and convert the categorical and continuous
variables. The following symbols are the parameters in the
INNA function:

• ’Y ’: the variable name of the output variable in the dataset.
• ’hidden’: the number of neurons in the hidden layers.
• ’type’: data type of input neurons 1: continuous; 0: binary.
• ’threshold’: back-propagation delivery boundary. Default
is the maximum value of the outcome variable.

• ’rep’:the number of times to retrain the model. The default
is 20.

• ’locate’:path of the dataset. The default is the current path
location.

• ’act.fct’:the choice of the activation function. The default
is "Relu" such that the results approximate theGLM.Other
settings of the activation function could fit other non-linear
models.

• ’algorithm’:choice of the back-propagation algorithm.The
default is "rprop + ".

• ’learningrate’: back-propagation learning rate. The default
is 0.1.

• ’stepmax’: themaximum number of iterations. The default
is 10,000.

3 Results

3.1 Simulation studies

According to the computer simulationswith 1000 repetitions,
Fig. 3 presents the results when all predictors are continuous
with six neurons in one hidden layer.Other settingswithmore
hidden neurons or two hidden layers with different numbers
of neurons show a similar comparison.

In addition, when two predictors are dichotomous, the
results are also similar (not shown due to page limits).
Figure 3A and the upper section of Table 2 display Hypoth-
esis I, assuming the null hypothesis that X and Y are
independent (i.e., the frequency of effects not equal to zero
indicates Type-I errors). Figure 3B and the lower section of
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Table 1 Variable information on
Boston, ACME, and Bakura data BOSTON ACME Bakura

Attributes Values Attributes Values Attributes Values

CRIM % 0.01–88.98 AGE 18–64 Age 18–113

ZN % 0–100 SEX 0: female, 1: male Sex 0: female, 1: male

INDUS % 0.46–27.74 BMI 15.96–53.13 BMI 10.54–58.05

CHAS 0: No, 1: Yes Children 0–5 WC 24–139

NOX (10−6) 0.39–0.87 Smoker 0: No, 1: Yes Year 0:2012, 1:2016

RM 3.56–8.78 Region 0: northeast,
1: northwest,
2: southeast,
3: southwest

REGION 0:city, 1:rural

AGE % 2.90–100 Charges $ 1122–63,770 ANTI_HTN 0:No, 1:Yes

DIS 1.13–12.13 PULSE 30.5–141.0

RAD 1–24 SBP 42.67–230.0

TAX 187–711 DBP 25.0–155.67

PTRATIO 12.6–22.0

Black 0.32–396.9

LSTAT % 1.73–37.97

MEDV 5–50

Table 2 show Hypothesis II assuming the alternative hypoth-
esis (i.e., the effect frequency not equal to zero represents
statistical power).

In Fig. 3A and B, the X-axis indicates the five input
features, and the Y -axis represents the Box plot of the
1000 differences of simulation results in the effect estimates
between INNA and GLM. We can see that the two models
have very similar effect estimates close to zero. The coeffi-
cient difference is zero when the two methods yield the exact
estimate. Therefore, if the coefficient difference is negligible,
our new approach could provide excellent effect estimates.

The simulation results suggest that the difference in the
coefficients estimated by the INNA and GLM is expected to
be 0. Thus, the INNA population-mean level effect estimates
are very close to the beta coefficients (effects of the predic-
tors) derived by the GLM. The difference between the two
methods falls between − 0.5 and 0.5. We observed similar
effect estimates for the five input neurons with 4–9 neurons
in one hidden layer. Under the non-linear situation of neural
networks with two hidden layers, only a few effect estimates
have more considerable differences. Most effect estimates
are close to the beta coefficients of the GLM.

3.2 Real-life analyzes

We summarized applications to three real datasets in Table 3.
The first two columns of Table 3 display the feature and beta
estimates of theGLMusing theBostondataset. The INNAfits
only the significant regression coefficients for comparisons.

The INNA tried various numbers of hidden neurons in one
hidden layer (see Appendix 2). Figure 4A demonstrates the
best prediction performance (MSE � 15.7). Therefore, the
INNA could approximate the beta coefficients of the GLM
with the activation function of ReLU. The twomethods show
a very similar interpretation of the effect estimates. Figure 4B
shows the effect of SHAP for the first subject in the data. The
effect direction and magnitude are comparable to the results
estimated by the INNA.

The GLM results for the ACME insurance dataset are in
the third and fourth columns of Table 3. Figure 5(A1) and
(A2) show the comparisons between the INNA and GLM.
The INNA has six or seven neurons in one hidden layer.
With dummy variables, the effect estimates of the INNA are
comparable to the results of the GLM. The directions of the
effects are consistent with minor differences for significant
predictors. Insignificant predictors have small effects, and the
directions may be different. We also fitted INNA with two
hidden layers (see Appendix 3). The optimal model is one
hidden layerwith six hidden neurons (MSE� 0.14).With the
optimal model selection, Fig. 5B shows the effect of SHAP
for the first subject in the data. The results are very close to
the coefficients estimated by INNA. For example, "age � −
0.3" means that the input feature "age" has a negative impact
on the predicted value. The higher absolute value indicates a
more substantial effect on the outcome prediction.

Finally, the GLM results of the Bukavu dataset are shown
in the fifth and sixth columns of Table 3. Figure 6 analyzes the
systolic blood pressure (SBP) in 6(A1) and diastolic blood
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Fig. 3 Comparisons of the INNA and GLM coefficients for five input neurons with six neurons in one hidden layer under Scenario1

123



International Journal of Data Science and Analytics

Table 2 Comparisons of the
INNA and GLM coefficients for
five input neurons and one
hidden layer of 6 neurons for
Scenario I and II

Hypothesis
I

× 1 × 2 × 3 × 4 × 5

INNA 0.001 ± 0.079 0.001 ± 0.079 − 0.001 ±
0.048

0.001 ± 0.047 − 0.001 ±
0.047

GLM 0.002 ± 0.059 − 0.001 ±
0.058

− 0.001 ±
0.039

0.000 ± 0.039 − 0.002 ±
0.038

Hypothesis
II

× 1 × 2 × 3 × 4 × 5

INNA − 0.059 ±
2.830

− 0.126 ±
2.857

0.143 ± 2.836 0.065 ± 2.834 0.039 ± 2.904

GLM − 0.057 ±
2.847

− 0.128 ±
2.876

0.145 ± 2.846 0.065 ± 2.842 0.039 ± 2.914

Table 3 Coefficients and the
p-values of the regression model
(*p ≤ 0.05, **p ≤ 0.01, ***p ≤
0.001)

BOSTON ACME Bakura

Variables coefficient Attributes coefficient Attributes coefficient

CRIM − 1.35*** Age 0.49*** SBP

CHAS 3.86*** Sex(male) − 0.07*** AGE 7.12***

RM 3.11*** BMI 0.08*** SEX 4.41***

LSTAT − 4.72*** Children(1) 0.15*** BMI − 0.34

DIS − 1.32*** Children(2) 0.29*** WC 2.36***

Children(3) 0.25*** Year 0.76*

Children(4) 0.50*** REGION − 4.90***

Children(5) 0.42*** ANTI_HTN 13.49***

Smoke(yes) 1.54*** PULSE 0.33

Region(northwest) − 0.05 DBP

Region(southeast) − 0.15*** AGE 3.27***

Region(southwest) − 0.13*** SEX 0.98***

BMI 0.50*

WC 1.60***

Year 0.16

REGION − 2.68***

ANTI_HTN 7.13***

PULSE 1.14***

pressure (DBP) in 6(A2). The two methods yielded similar
effect estimates under other parameter settings of the INNA
(see Appendix 4). The optimal result of SBP is one hidden
layer with six neurons (MSE � 261.3). Regarding the DBP,
the smallest MSE is 112.39 with two hidden layers (5 and 3
neurons in the first and second hidden layers). Figure 6(B1)
and (B2) show the SHAP effect for the first subject in the
data. In the case of the SBP and DBP analyzes, the first
participant’s information reveals the overall effect estimates
of SHAP values in close agreement with the INNA estimates.

4 Discussion

This research proposed a novel study design in machine
learning by generating pseudo datasets with perturbations
in the input features. Our approach is an intuitive algorithm
to estimate the effect of one or multiple input neurons. It
measures the expected mean difference in the output node
due to one SD change in the continuous neurons or one vs. 0
changes in the dichotomous neurons while keeping the other
inputs constant. Therefore, the INNA solely evaluates the
adjusted mean level change in the outcome variable. Most
importantly, the INNA could assess the simultaneous effect
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Fig. 4 Comparisons of the
Boston analysis between linear
regression, SHAP, and INNA
with two hidden layers with five
and three hidden neurons
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Fig. 5 Comparison of the ACME analysis between linear regression, SHAP, and INNA

from multiple input neurons by changing two or more fea-
tures in the pseudo dataset. If the pseudo datasets modify
only one subject’s input features, our new algorithm could
also estimate the individual’s effect.

Our approach is the first algorithm in data science, and
more extensions are expected. For example, this algorithm
could serve only as a preprocessing step, and any downstream
classifiers or regressions models can be applied to the tasks,
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Fig. 5 continued
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Fig. 6 Comparisons of the Bukavu analysis between linear regression, SHAP, and INNA

or the proposed method serves as both preprocessing step
and regression model.

According to computer simulations, the INNA validly
interprets the predictive variables. The INNA and GLM
effect estimates are very close in the illustrations using three

real-life examples. The prediction performance of INNA is
generally better than theGLMwith two hidden layers. There-
fore, we suggest the INNA for the analysis of the actual data.

SHAP differs from INNA because it does not have an
overall population-mean-level estimate of the coefficients.
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Fig. 6 continued
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TheSHAPpackage outputs only individual-level impact, and
the individual differences may vary significantly. The aver-
age SHAP value of each variable over all samples may be
similar to the population-mean level effect estimation of the
proposed pipeline. However, this step in SHAP requires a
tremendous computational time. In contrast, our approach
is intuitive and not computation-intensive since the INNA
only fits/trains the model once. In addition, the INNA pro-
poses a novel concept of pseudo datasets with variations of
one standard deviation in the input features. As a result, the
INNA provides a parametric-free algorithm and can effort-
lessly accommodate all types of data structure or distribution
in neural networks.

The simulation study only focuses on the INNAandGLM.
Although othermethodologiesmight interpret the neural net-
works, the GLM is the reference model in this research since
it is the conventional interpretable model.

We prepare a free R function of the INNA and provide
an example dataset for illustrations. Thus, researchers could
quickly implement this novel algorithm in medical science,
public health, or various research fields.

In this research, the simulation study and real-life exam-
ples of the INNA aimed for continuous outcomes. However,
in the future, the INNA could be easily extended for cat-
egorical outcomes by changing the activation functions in
the output layer, such as the sigmoid function. Besides, the
loss function must be suitable for dichotomous output fea-
tures like cross-entropy. We could compare the INNA to the
logistic regression model in this setting and see if the two
methods yield similar and consistent effect estimates. This
topic requires much effort in future research.

Instead of comparing the effect estimates of generalized
linear models (GLM) to the INNA, future research could
assess the similarities and differences using the random forest
and XGBoosting machine.

The new algorithm INNA aims to accurately obtain the
population-mean level effect estimate of every input neuron
in a neural network (continuous, ordinal, or nominal). The
results provide a simple yet clear picture of how the input
neurons change the population-mean level predictive proba-
bility of a specific category in the output neurons.
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Appendix 1: Covariancematrix

X1 X2 X3 X4 X5

X1 1.0 0.8 0.3 0.3 0.3

X2 0.8 1.0 0.3 0.3 0.3

X3 0.3 0.3 1.0 0.3 0.3

X4 0.3 0.3 0.3 1.0 0.2

X5 0.3 0.3 0.3 0.2 1.0
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Appendix 1.1:. The distribution pattern
of the Boston variable after transformation
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Appendix 1.2:. The distribution pattern of the ACME
variable after transformation
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Appendix 1.3

Appendix 2

See Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18.
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Fig. 7 Comparison of INNA and
GLM coefficients for Boston’s
one hidden layers of four nodes

Fig. 8 SHAP effect of one hidden
layer’s INNA four nodes from
the Boston
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Fig. 9 Comparison of INNA and
GLM coefficients for Boston’s
one hidden layers of five nodes

Fig. 10 SHAP effect of
one hidden layer’s INNA five
nodes from the Boston
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Fig. 11 Comparison of INNA
and GLM coefficients for
Boston’s one hidden layers of six
nodes

Fig. 12 SHAP effect of
one hidden layer’s INNA six
nodes from the Boston
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Fig. 13 Comparison of INNA
and GLM coefficients for
Boston’s one hidden layers of
seven nodes

Fig. 14 SHAP effect of
one hidden layer’s INNA seven
nodes from the Boston
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Fig. 15 Comparison of INNA
and GLM coefficients for
Boston’s one hidden layers of
eight nodes

Fig. 16 SHAP effect of
one hidden layer’s INNA eight
nodes from the Boston
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Fig. 17 Comparison of INNA
and GLM coefficients for
Boston’s one hidden layers of
nine nodes

Fig. 18 SHAP effect of
one hidden layer’s INNA nine
nodes from the Boston

Appendix 3

See Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28.
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Fig. 19 Comparison of INNA and GLM coefficients for ACME’s one hidden layers of four nodes

Fig. 20 SHAP effect of one hidden layer’s INNA four nodes from the ACME
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Fig. 21 Comparison of INNA and GLM coefficients for ACME’s one hidden layers of five nodes

Fig. 22 SHAP effect of one hidden layer’s INNA five nodes from the ACME
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Fig. 23 Comparison of INNA and GLM coefficients for ACME’s one hidden layers of eight nodes

Fig. 24 SHAP effect of one hidden layer’s INNA eight nodes from the ACME
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Fig. 25 Comparison of INNA and GLM coefficients for ACME’s one hidden layers of nine nodes

Fig. 26 SHAP effect of one hidden layer’s INNA nine nodes from the ACME
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Fig. 27 Comparison of INNA and GLM coefficients for ACME’s two hidden layers of five and three nodes

Fig. 28 SHAP effect of two hidden layer’s INNA five and three nodes from the ACME

Appendix 4

See Figs. 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52.
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Fig. 29 SBP Comparison of four nodes from the Bukavu one hidden layer’s INNA and GLM coefficients

Fig. 30 DBP Comparison of four nodes from the Bukavu one hidden layer’s INNA and GLM coefficients
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Fig. 31 SHAP effect of
one hidden layer’s INNA four
nodes from the Bukavu SBP

Fig. 32 SHAP effect of
one hidden layer’s INNA four
nodes from the Bukavu DBP

123



International Journal of Data Science and Analytics

Fig. 33 SBP Comparison of five nodes from the Bukavu one hidden layer’s INNA and GLM coefficients

Fig. 34 DBP Comparison of five nodes from the Bukavu one hidden layer’s INNA and GLM coefficients
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Fig. 35 SHAP effect of
one hidden layer’s INNA five
nodes from the Bukavu SBP

Fig. 36 SHAP effect of
one hidden layer’s INNA five
nodes from the Bukavu DBP
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Fig. 37 DBP Comparison of six nodes from the Bukavu one hidden layer’s INNA and GLM coefficients

Fig. 38 SHAP effect of one hidden layer’s INNA six nodes from the Bukavu DBP
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Fig. 39 SBP Comparison of seven nodes from the Bukavu one hidden layer’s INNA and GLM coefficients

Fig. 40 DBP Comparison of seven nodes from the Bukavu one hidden layer’s INNA and GLM coefficients
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Fig. 41 SHAP effect of
one hidden layer’s INNA seven
nodes from the Bukavu SBP

Fig. 42 SHAP effect of
one hidden layer’s INNA seven
nodes from the Bukavu DBP

123



International Journal of Data Science and Analytics

Fig. 43 SBP Comparison of eight nodes from the Bukavu one hidden layer’s INNA and GLM coefficients

Fig. 44 DBP Comparison of eight nodes from the Bukavu one hidden layer’s INNA and GLM coefficients
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Fig. 45 SHAP effect of
one hidden layer’s INNA eight
nodes from the Bukavu SBP

Fig. 46 SHAP effect of
one hidden layer’s INNA eight
nodes from the Bukavu DBP
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Fig. 47 SBP Comparison of nine nodes from the Bukavu one hidden layer’s INNA and GLM coefficients

Fig. 48 DBP Comparison of nine nodes from the Bukavu one hidden layer’s INNA and GLM coefficients
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Fig. 49 SHAP effect of
one hidden layer’s INNA nine
nodes from the Bukavu SBP

Fig. 50 SHAP effect of
one hidden layer’s INNA nine
nodes from the Bukavu DBP
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Fig. 51 SBP Comparison of five and three nodes from the Bukavu two hidden layer’s INNA and GLM coefficients

Fig. 52 SHAP effect of
two hidden layer’s INNA five
and three nodes from the Bukavu
SBP
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