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Abstract
Integrated Environmental Assessment systems and ecosystem models study the links between anthropogenic and climatic
pressures on marine ecosystems and help understand how to manage the effects of the unsustainable exploitation of ocean
resources. However, these models have long implementation times, data and model interoperability issues and require het-
erogeneous competencies. Therefore, they would benefit from simplification, automatisation, and enhanced integrability of
the underlying models. Artificial Intelligence can help overcome several limitations by speeding up the modelling of crucial
functional parts, e.g. estimating the environmental conditions fostering a species’ persistence and proliferation in an area (the
species’ ecological niche) and, consequently, its geographical distribution. This paper presents a full-automatic workflow to
estimate species’ distributions through statistical and machine learning models. It embeds four ecological niche models with
complementary approaches, i.e. Artificial Neural Networks, Maximum Entropy, Support Vector Machines, and AquaMaps.
It automatically estimates the optimal model parametrisations and decision thresholds to distinguish between suitable- and
unsuitable-habitat locations and combines the models within one ensemble model. Finally, it combines several ensemble
models to produce a species richness map (biodiversity index). The software is open-source, Open Science compliant, and
available as a Web Processing Service-standardised cloud computing service that enhances efficiency, integrability, cross-
domain reusability, and experimental reproduction and repetition. We first assess workflow stability and sensitivity and then
demonstrate effectiveness by producing a biodiversity index for the Mediterranean based on ∼1500 species data. Moreover,
we predict the spread of the invasive Siganus rivulatus in the Mediterranean and its current and future overlap with the native
Sarpa salpa under different climate change scenarios.
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1 Introduction

The unsustainable exploitation of ocean resources—with
overfishing, chemical and physical pollution, and heavymar-
itime traffic—threatens oceans, seas, and coasts. Climate
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change further exacerbates this problem [1, 2]. Digital tech-
nologies are crucial tools to understand how to manage
the effects of this pressure and potentially help mitigate
it. For example, Integrated Environmental Assessment sys-
tems (IEAs) and ecosystemmodels (EMs) allow studying the
links between anthropogenic driving forces, environmental
pressures, and the response of ecosystems [3–8]. However,
several works on these models [9–12] have highlighted fre-
quent data interoperability and scalability issues, adoption
of heuristic and non-automatic approaches, and results pro-
duced with limited transparency.

Artificial Intelligence (AI) methods can help overcome
several limitations in this context, by speeding up the mod-
elling of crucial parts of IEAs and EMs. For example, they
can help automate the discovery of natural relations between
the ecosystem, environmental conditions, and anthropogenic
stressors [13–16], identify the essential data for assessing the
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current ecosystem status [17–19], estimate potential species
distribution change over time [20–22], and predict alien and
invasive species spread in an area [23–26]. Autonomous
algorithms requiring minimal parametrisation are crucial
to speeding up the modelling, producing more objective
results, and maximising model use by communities with
heterogeneous competencies [27]. Another crucial action is
to improve result transparency by endowing the algorithms
with Open Science features of reproducibility, repeatability,
and reusability of processes and results [28]. Open Science
compliance requires the models to be available under recog-
nised standards of interoperability and integrability and the
published results to be repeatable and reproducible (after
changing somemodel-parameter values). These features also
guarantee the transparency of the results to decision-making
authorities and foster the consideration of the results in policy
making [29–32].

Ecological niche models (ENMs) can play a crucial role
in this context. ENMs estimate the set of resources and envi-
ronmental conditions that foster a species’ persistence and
proliferation in an area (the species’ ecological niche) [33–
37]. ENMs operationally assess a species’ habitat as the
locations, within a study area, with suitable environmen-
tal conditions to fall within the species’ ecological niche.
Consequently, they can predict the presence/absence of the
species in the area [38, 39]. If the analysed area corresponds
to the known native species’ areal, then the ENM will esti-
mate the actual (or native) species’ distribution. Otherwise,
in areas where the species has never been observed (e.g. far
from the native region), the ENM will estimate the poten-
tial (or suitable) species’ distribution [40]. Mathematically,
a species’ ecological niche is a region in a vector space (a
hypervolume) of the environmental variables associated with
the species’ subsistence. The ENM effectiveness depends on
correctly identifying the most complete set of environmen-
tal variables constituting the vector space dimensions [33].
Environmental variable selection for ENMs is frequently
conducted through statistical analysis [41–45] or machine
learning models [46–51]. Generally, an ENM uses statistical
analysis, machine learning, or expert-defined rules to esti-
mate a function relating an ecological entity (e.g. a species,
community, or ecosystem) with specific environmental con-
ditions defined on a set of environmental variables.

Typically, the input of an ENM is a set of environmental
variables represented as spatial distributions over the analy-
sis spatial extent, e.g. coming from extensive collections of
satellite or in situ probe data [52–58]. Another input is a set
of species observations in the area (presence locations) and
locations where the habitat is either known to be unsuitable
(absence locations) or is potentially unsuitable (background
locations) [59, 60]. As the output, the ENMs estimate a
multivariate function calculating the probability that a spe-
cific location is suitable habitat for the species, given the

environmental characteristics of that location. After building
the prediction function, as a possible application the ENM
can use it on a study area and different climatic scenarios
(e.g. future environmental conditions) to produce new spa-
tial distributions of habitat suitability probabilities [22, 24,
35, 61–66]. ENMs can therefore identify suitable areas fos-
tering a species presence [66–69], and be effective even with
few data available [47, 48, 70, 71].

ENMs are valuable in the view of helping IEAs and EMs
with functional relations automatically extracted from the
data. From the point of view of IEA and EM experts, an
important feature is that the ENMs are simple to use, auto-
matic, AI-based, and endowed with Open Science features
simplifying their integration with large workflows [27, 32].

This paper contributes to automatise ecological niche
modelling and add Open Science features to it, a frequent
requirement from IEA and EM communities of practice in
international projects [72, 73]. We present a fully automatic
workflow to estimate potential and actual marine species
distributions based on ENMs. It integrates four statistical
and machine learning models (i.e. AquaMaps, Maximum
Entropy, Artificial Neural Networks, and Support Vector
Machines) whose complementarity is demonstrated by this
andother studies (Sect. 2.2). Eventually, it combines themod-
els within an ensemblemodel to merge their complementary
indications and produce a more stable and reliable distribu-
tion. Finally, it combines the ensemble models of several
species to produce one biodiversity index representing the
total, punctual number of species potentially present in a
marine area (i.e. the grid-based species richness [74–76]).
Theworkflow can scale to process from local-to-global-scale
areas at coarse-to-detailed spatial resolutions and exten-
sive batches of species data. One novelty of our workflow
with respect to other solutions [77] is its full automatism,
achieved by searching for the optimal parametrisation of each
ENM, and the complete integration between the different
ENMs. Moreover, the workflow automatically estimates the
optimal decision thresholds on each ENM prediction to dis-
tinguish between suitable- and unsuitable-habitat locations.
Another novelty is the availability of the workflow as an
open-source and Open Science (OS) compliant software: it
is available as a standardised Web service integrated with
an OS-compliant cloud computing e-Infrastructure, enabling
experiment repeatability, reproducibility, and cross-domain
reusability. The cloud computing platform allows for pro-
cessing extensive batches of species and environmental data
to quickly produce a multi-species biodiversity index and
future projections, e.g. under different Representative Con-
centration Pathways (RCP) scenarios [78].

Through specific case studies, we demonstrate the effec-
tiveness of our workflow at producing a biodiversity index
for more than 1500 Mediterranean species. Moreover, we
show its potential use for (i) predicting alien and invasive

123



International Journal of Data Science and Analytics

species distributions, (ii) estimating the overlap between
native species and competitor invasive species distributions,
(iii) estimating the potential influence of climate change on
invasions, and (iv) assessing the workflow-output sensitiv-
ity to the individual ENM contributions. In the case studies,
we used RCP projections as future scenarios, instead of
other projections (e.g. [79]), because we could access robust
data from other ENM studies [80] and included RCP-based
expert-curated distributions in the evaluation [81].

Our workflow belongs to big data processing methodolo-
gies. Our case studies present typical applications involving
a vast number of species and a wide study area, yet the
training sets for our models can be relatively small. When
applied to large species-batch processing, it is important to
view the output of our workflow as the analysis of macro-
patterns of species richness change rather than as detailed,
cell- and species-specific answers. An erroneous species
presence or absence assessment does not significantly impact
macroscopic trend analyses. Other studies have shown that
individual biases have limited influence when numerous
models are aggregated to analyse overall trends in a study
area, because model combinations produce more stable and
reliable macroscopic knowledge than the individual mod-
els [82, 83]. However, it is advisable to exercise caution
when interpreting the results of our workflow across mul-
tiple species, as punctually reliable indications cannot be
guaranteed. On the other hand, macro-patterns can provide
crucial information for ecosystem modelling and conserva-
tion, such as predicting future biodiversity changes well in
advance and planning preventive actions. Our objective is to
present a framework that, by default, combines models for
various species to examine the aggregated model’s changes
over time and extract viable macro-patterns.

This paper is organised as follows: Sect. 2 describes our
workflow, its Open Science-oriented Web service version,
and the evaluation methodology used. Section3, describes
the workflow sensitivity analysis, the Mediterranean biodi-
versity index produced, and a quantitative and qualitative
evaluation of the future prediction of theMediterranean inva-
sion by Siganus rivulatus and its overlap with the native
Sarpa salpa. Finally, Sect. 4 draws the conclusions.

2 Methods

This section describes our workflow for generating ENMs,
ensemblemodels, and a biodiversity index.Ourworkflowcan
process from local- to global-scale areas and easily manage
an extensive set of species data. It is open source (“Sup-
plementary information”) and requires minimal input, i.e. a
collection of environmental variables (in the form of raster
files) and species’ observationpoints.All options canbeman-
aged through a workflow configuration file without changing

the code. The workflow has also a Web service version with
a standardised interface that complies with the Open Science
directives [28] and allows for concurrently producing many
species models and quickly estimating biodiversity indices.

In the following, we describe all components of our work-
flow, according to the schema reported in Fig. 1, i.e. data
provisioning and pre-processing (Sect. 2.1), the ecological
niche models integrated (Sect. 2.2), the ensemble model con-
struction (Sect. 2.3), and the biodiversity index construction
(Sect. 2.4).Moreover,we describe theOpenScience-oriented
Web service associated (Sect. 2.5) and the evaluationmethod-
ology used (Sect. 2.6).

2.1 Data provisioning

A user of our workflow should prepare a set of raster files
of environmental variables in the ESRI-GRID (ASCII) for-
mat, one of the most frequently used formats by ecological
and ecosystem models [80]. Each file should contain the dis-
tribution of one environmental variable (e.g. geophysical,
oceanographic, or biological) that could be relevant for mod-
elling the species response. The raster file should be defined
on a regular grid of resolution R over the spatial extent of the
area under analysis. The grid may contain pixels, i.e. raster
cells, where the variable is undefined. Only pixels with fully
defined variableswill be utilised in theENMs; in otherwords,
we exclude raster cells with undefined (NA) values. All files
should refer to the same spatial extent, have resolution R, and
use the WGS84 coordinate system. The workflow will use
these files to set the focus spatial extent and the final model
resolution. It will produce output at the exact resolution of the
input variables to avoid introducing re-sampling biases. The
environmental variable files can come from large providers
of Findable, Accessible, Interoperable, and Reusable (FAIR)
data, such as Copernicus [84] and EMODnet [85], and other
sources [80].

As an additional input file, the user should provide
a comma-separated-values (CSV) file containing coordi-
nate pairs of a species’ observations within the focus area
(presence locations). This file should report one column
containing the species’ scientific name (scientific name)
and two data columns (longitude, latitude) with observa-
tion coordinate pairs (in the WGS84 coordinate system).
These data could come from large providers of FAIR data
of species observations, e.g. OBIS [86] and GBIF [87]. Mul-
tiple species-observation files can also be provided, which
the workflow will process sequentially.

As the first processing step, our workflow associates a
vector of environmental variables to the observation points
(data enrichment operation). It extracts the variable values
from each environmental variable’s raster file and associates
the value of the closest raster cell to the observation’s coor-
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Fig. 1 General schema of our workflow

dinates. Eventually, this operation associates a vector of
environmental variable values to each observation.

As a further step, the workflow proposes the background
sampling strategy described in [88] and other works [89–93]
to generate background absence datawhich potentially repre-
sent locationswith limited suitable, or completely unsuitable,
conditions for species presence. This technique consists in
taking a random sample of locations from the study area’s
spatial extent (at resolution R), while excluding presence
locations, for generating background absences during mod-
elling. If many species observations were available from
extended surveys in the native area, the background sam-
ples’ locations would likely include absence locations [94].
This is the default strategy adopted by the workflow. As an
alternative to background sampling and in compliance with
common approaches in ecological niche modelling [60, 93,
95, 96], the workflow also allows users to externally provide
reliable species absence (associated with known unsuitable
habitat) or pseudo-absence locations as CSV files.

Proposing background sampling as the default strategy is
particularly useful for user scenarios where species absence
information is missing, e.g. for processes involving many
species. Background points cannot substitute absence loca-
tions, but they can approximate negative examples, especially
for nonlinear models such as Artificial Neural Networks,

MaxEnt, and Support Vector Machines (when using non-
linear kernels) [97, 98]. For instance, MaxEnt can produce
reasonable distributions, similar to those using reliable
absences, while slightly overestimating species’ presence
[93]. Overestimation is reduced if the model internally
enables more complex modelling of the relation between
species’ presence and environmental features through hinge
features (Sect. 2.2.2) [93]. To further soften overestimation,
our workflow offers a post-processing algorithm for native
areas that reduces the probability of habitat suitability loca-
tions far from the species’ presence locations (Sect. 2.2.5).
Apart from these considerations, the reliability of back-
ground samples as absence locations can be verified through
techniques evaluating how much these locations correspond
to entirely different environmental conditions than those of
the presence locations [80, 93, 99].

The data preparation algorithm, for each species to anal-
yse, can be summarised as follows:

Two sets of generated environmental variable vectors
({ f p} and { fa}) represent multidimensional presence and
absence reference environmental vectors. The ENMs will
learn to distinguish these vectors by tracing hyper-volumes
separating them, with some tolerance when using back-
ground points instead of absence locations. The additional
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Algorithm 1 Data preparation and pre-processing
Read all user-provided environmental variable raster files
{e1, e2, · · · , en}
Generate a matrix-gridGR for each variable, with the grid step rep-
resenting the spatial resolution R and thematrix size corresponding
to the focus-area extent
Read all user-provided presence locations
Generate a maximum of 10,000 random locations from the focus
area not including presence locations (background points)
For each presence location p:

Assign the environmental variable values to p, to obtain one
vector f p = e1p , e2p , · · · , enp

For each background location a:

Assign the environmental variable values to a, to obtain one
vector fa = e1a , e2a , · · · , ena

For each grid pixel g:

Assign the environmental variable values to g, to obtain one
vector fg = e1g , e2g , · · · , eng

Save the { f p}, { fa}, { fg} vector sets as R objects.

vector set { fg} represents the vectors on which the trained
ENMs will produce output projections.

2.2 Ecological nichemodels integrated

This section describes the ENMs integrated with our work-
flow, i.e. AquaMaps, Maximum Entropy, Artificial Neural
Networks, and Support Vector Machines. These models sim-
ulate the probability that a specific location is suitable habitat
for a species, given the values of a set of environmental vari-
ables associated with that location (posterior probability of
habitat suitability). Their output, over a set of square-sized
locations in an area (also outside of the native region), can
be interpreted as the spatial distribution of the probability
that the species could subsist in each area location (potential
species distribution). We also describe an adjustment algo-
rithm for estimating a species’ actual distribution from the
potential distribution when the analysed area corresponds to
the species’ native region.

Each ENM integrated can optionally be deactivated to use
only a subset of models or substitute one model with another
by other software. All ENMs can work in either training or
projection mode. In training mode, they internally learn a
function relating the species’ habitat suitability to a set of
input-provided environmental variables. In projection mode,
the previously trained models project the function on the
gridded environmental data associated with an area or future
climatic scenarios.

One principal requirement in the design of our workflow
was the necessity to restrict the number of ENMs integrated
into a small core of models with complementary approaches.
This requirement, also faced by other ENM frameworks

[77], comes from the fact that we aimed to reach commu-
nities of practice aside from expert ecological modellers.
These communities needed (i) simplification of input/output
through full automatism, (ii) integration between the ENMs,
(iii) cross-community usage through Open Science features,
and (iv) a computationally efficient and effective solution.
To this aim, we selected AquaMaps as a representative of
ENMs adopting a factorised approach in the analysis of
the environmental variables (similarly to Decision Trees),
because it estimates functional relations for one variable
at a time and eventually combines the functions together
(Sect. 2.2.1). We chose Maximum Entropy as a represen-
tative of Generalised Linear Models (GLMs), because it is
equivalent to the Poisson regression GLM,which is naturally
suited for species distribution modelling (as better reported
in Sect. 2.2.2). We used Support Vector Machines to include
linear, polynomial, and other basic nonlinear classification
models (Sect. 2.2.4). Finally, we integrated Artificial Neural
Networks to model up to non-convex functions and simulate
very complex ecological niche functions (Sect. 2.2.3). In a
previous study, we verified that these models actually bring
complementary information important for improving model
robustness [24], i.e. removing one of the models would result
in lower prediction performance on known species locations.
This feature was also confirmed by the results of the present
work (Sect. 3). In the view of processing extensive batches of
species data, the simplification strategy adopted by ourwork-
flow required to fix the default model optimisation strategies
of the ENMs to the most commonly used ones, while exclud-
ing other alternatives [100, 101].

2.2.1 AquaMaps

AquaMaps [102] is a presence-only ENM that incorporates
scientific expert knowledge to account for known biases
and limitations of marine species occurrence data [103].
The models’ name corresponds to two model implementa-
tions estimating the actual (AquaMaps-native) and poten-
tial species’ habitat distributions (AquaMaps-suitable). The
main difference between the two models is that AquaMaps-
native restricts the distribution to the areas where the species
is known to live.

AquaMaps can produce from regional- to global-scale dis-
tributions at a 0.5◦ resolution. The algorithm models the
association between the observed locations and the envi-
ronmental variables as the multiplication between mutually
independent envelope functions, each traced on one envi-
ronmental variable at a time. The envelope function is
a trapezoidal function, normalised to 1, traced over the
quartiles of the density of one variable values over the obser-
vations [104]. A positive slope (starting from 0) connects the
1st and 2nd quartiles, a flat region with 1-value lies between
the 2nd and 3rd quartile, and a negative slope from the 3rd

123



International Journal of Data Science and Analytics

quartile ends at 0 at the 4th quartile. A location whose asso-
ciated environmental variable values fall in the flat regions
of all envelope functions will have a habitat suitability prob-
ability equal to 1. If the values fall outside of all envelope
function values, the location will have 0 habitat suitability
probability associated. AquaMaps also applies mechanistic
assumptions as rule-based sub-routines to revise the estima-
tions. The default input environmental variables used by the
algorithm are (i) sea-bottom and sea-surface temperature,
(ii) distance from land, (iii) maximum, mean, and minimum
depth, (iv) net primary production, (v) sea ice concentration,
(vi) sea-bottom and sea-surface practical salinity, (vii) and
sea-bottom moles of oxygen per unit of mass.

AquaMaps produces reasonably good results if compared
to more complex approaches, but it often requires the bound-
ing boxes and envelope functions to be revised by an expert
[103]. One main advantage of this process is that it does
not require optimisation, because expert-provided rules are
embedded within the code and environmental variable quar-
tiles are automatically extracted from the data.

AquaMaps can work with environmental variables pro-
jected for the short- and long-term future under different
RCP scenarios. The AquaMaps Web site publishes expert-
curated projections for 2050 and 2100 under the RCP8.5
and RCP4.5 scenarios [81, 105], which represent valuable
references to evaluate other models’ projections. We inte-
grated AquaMaps as an R procedure, re-programmed from
the original PHPalgorithmcode.Wealso included the expert-
defined sub-routines in our re-implementation. However, to
fully exploit the quality of the AquaMaps models in our case
studies, we used the expert-revised distributions from the
AquaMaps Web site, when available (Sect. 2.6). Our work-
flow users can, in fact, import theAquaMaps files to use them
instead of our implementation (Sect. 2.3).

2.2.2 Maximum entropy

Maximum Entropy (MaxEnt) is a machine learning model
frequently used in ecological modelling [48, 94, 106–112].
MaxEnt estimates a function π(x̄) interpretable as the prob-
ability of species habitat suitability given the vector of
environmental variables x̄ . This function has two principal
constraints: (i) it has to comply with the mean values at the
species presence locations, and (ii) its associated entropy
function (H = −∑

π(x̄) ln(π(x̄)) ) should be maximum
[94, 95, 113]. MaxEnt performs a relative maximisation of
the entropy function on the presence locations with respect to
the entropy function on the background points [106]. It builds
the π(x̄) function to represent the complex relation existing
between specific environmental variable combinations and
the species habitat suitability [24, 33]. One advantage of this
model is that it works well also when species presence data
are only available (i.e. without absence data). However, it

is over-sensitive to biased presence and environmental data
[48, 114] andmight overfit small datasets [113, 115].MaxEnt
can be preferred over linear and logistic regression because
it is equivalent to a Poisson regression (a GLM), a model
naturally suited for modelling the probability of a number of
events occurring in a fixed space such as species occurrences
[116].

During the training phase, MaxEnt estimates the coeffi-
cients of a linear combination of the environmental variables,
which is the core of theπ(x̄) function corresponding tomaxi-
mum entropy [95]. These coefficient represent the variables’
weights in the species’ environmental preferences (named
per cent contribution). We integrated a MaxEnt implemen-
tation by Phillips et al. [117] within our workflow. Our
workflow configuration file also allows setting the species
prevalence, i.e. the prior species occurrence probability in the
area, whichMaxEnt uses formodellingπ(x̄). This parameter
is set 0.5 (uninformative) by default, assuming that no prior
information is available for the species presence in the area
and the model should entirely rely upon the data.

To reduce model overfitting issues, we followed the
heuristic indications of other studies on MaxEnt parametri-
sation [94, 117–120]: we allowed the inclusion of presence
points among the background points and included different
types of hinge features in theπ(x̄) function tomodel complex
species response to the environmental variables as alterna-
tives to linear combination. The MaxEnt software we used
indeed allows combining the environmental variables within
π(x̄) through simple-to-complex functions (hinge functions)
to model species-environment relations. We configured the
software to exhaustively test hinge functions among linear
(the standard combination), quadratic, product, and thresh-
old functions, and all their combinations. Eventually, the
software selects the configuration producing the highest Area
Under the Curve (AUC) [113]. AUC is the integral of the
receiver operating characteristic (ROC) curve that reports the
true-positive rate vs false-positive rate using various decision
thresholds on themodel output.AnAUCvalue close to 1 indi-
cates high-qualitymodel training, whereas anAUC close to 0
indicates low-quality model training. Depending on the rep-
resentativeness of the presence and background points, the
AUC and optimal hinge function can change across differ-
ent MaxEnt executions (Sect. 3.1), but are mostly stable with
high-quality data [48].

2.2.3 Artificial neural networks

Artificial Neural Networks (ANNs) are machine learning
models constituted by interconnected representations of bio-
logical neurons [121]. ANNs are extensively used ecological
modelling [122–126], because they allow formodelling com-
plex, nonlinear functions [127]. ANNs can also perform
classification by discretising their output values over differ-
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ent classes [128]. In Feed-Forward Neural Networks [129]
(used in our workflow), the digital neurons are organised into
“layers”. The first layer receives and processes the input vec-
tor directly; the last layer produces the output vector; and
intermediate layers (“hidden layers”) process the in-between
information. One layer is fully connected only to the next
layer through weighted edges, i.e. a neuron in one layer is
connected to all neurons of the next layer. An ANN can
be trained on known data acting as examples. A learning
algorithm (e.g. “backpropagation” [130]) adjusts the edge
weights to produce the expected output on the training data.
To assess prediction accuracy, a trained ANN can be used to
produce estimates on known input data not included in the
training set (test data). The optimal number of hidden lay-
ers and neurons can be found by testing different topologies
[131], e.g. by adding neurons and layers as far as the error
on the test set decreases (“growing” strategy [128]). One
drawback of ANNs is that they do not provide the analytical
form of the simulated function combining the input vari-
ables. Unlike traditional mathematical models that yield an
explicit equation describing the relationship between input
and output variables, ANNs operate as complex, intercon-
nected systems of neurons, and the mapping between inputs
and outputs is hardly expressible in a concise mathematical
form. The lack of a readily interpretable analytical expression
can make it more difficult for researchers and practitioners
to gain a direct, intuitive understanding of the underlying
relationships encoded within the ANN. Moreover, the ANN
performance can be sensible to the network weight initiali-
sation.

We integrated ANNs through the neuralnet R package
[132]. The ANN-based ENM has one input per environ-
mental feature and one output neuron producing a number
between 0 (unsuitability) and 1 (high suitability). If exter-
nally provided absence locations were available, the ANN
will use them as a reference for unsuitability; otherwise, it
will approximate unsuitable environmental conditions using
the background points described in Sect. 2.1 (similarly to
ANN-based approaches in other domains [98, 133]).

As the default strategy to automatically select the optimal
ANN topology, our workflow splits the training set into 10
parts. It iteratively trains the ANN with 9 parts and tests it
with the remaining part (tenfold cross-validation). Ourwork-
flowuses a “growing” strategy to identify the optimal number
of hidden neurons and layers achieving the highest average
cross-validation accuracy. As the default configuration, our
workflow tests between one and two hidden layers and from
10 to 200 neurons in each layer. This configuration results
from our previous works estimating and testing the range
of layers and neurons typically required to process species
observation data from OBIS and GBIF without overfitting
the model [22, 47, 48, 134]. The validity of this configura-
tion was also tested on the case studies of the present paper

(Sect. 2.6). This setup is unsurprising because a two-hidden-
layer ANN can simulate any multivariate nonlinear function
and complex classification regions in the input space [128,
135, 136]. Nevertheless, the number of layers and neurons
can easily be changed from the workflow configuration file
to test more complex architectures.

We used cross-validation, instead of other techniques, due
to the high variability of the number of species occurrence
records our workflow could encounter during an extensive
species-batch process. The number of occurrence records
depends on many factors, such as the scientific surveys’
sampling frequency and extent, the species’ commonness,
and the population change over time. Therefore, the num-
ber of presence points is normally low unless a species is
widespread, frequently observed, and frequently targeted by
scientific surveys. As we observed in our Mediterranean Sea
case study, the number of occurrence records across a set
of many species follows a log-normal-like distribution, with
most species having few occurrences associated (10–500)
and fewer species having many occurrences associated (over
1000–10,000). Since our aim was to provide a solution for
processing large batches of species data, we adopted cross-
validation as a strategy commonly used by other ENMs that
could work for both data-poor and data-rich cases [93].

2.2.4 Support vector machines

SupportVectorMachines (SVMs, [137]) are amachine learn-
ing method frequently used to build binary classifiers, also in
ecologicalmodelling [24, 138–142]. Themethod projects the
input data onto a higher-dimensional feature space through
a kernel function. Then, it searches for a linear separation of
this space into two regions. The training algorithm searches
for the optimal separation hyperplane maximising the dis-
tance (margin) of the training vectors of different classes
from the hyperplane. The closest training vectors to the mar-
gin are named support vectors. The SVM training process
searches for the optimal hyperplane and the largest margin
through a fast optimisation algorithm. The requirement to
sharply separate the two classes can be relaxed—to avoid
overfitting—by allowing some classification error through
cost weights [143]. After training, the distance of a vector
from the separation hyperplane can be used to simulate a
probability function. An output value of 1 corresponds to a
vector confidently falling in the region above the hyperplane
(interpreted as suitable habitat in our ENM). Conversely, a 0
output value corresponds to a vector well below the hyper-
plane (unsuitable habitat). During the projection phase, an
SVM receives an environmental variable vector, transforms
it through the kernel function, and calculates its belonging
class. Then, it assigns a score between 0 and 1 according
to the normalised distance from the hyperplane within the
belonging class.
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SVMs require an accurate parametrisation to optimise
vector separability. We integrated the SVM implementation
of the e1071 R package [144]. This software can manage
four kernel function types (linear, polynomial, radial, and
sigmoid) with different parametrisations.Moreover, it allows
adjusting penalties (costs) formisclassifications during train-
ing to reduce data-overfitting risk. Our workflow tests all
supported kernel functions with multiple parametrisations.
Specifically, it tests the performance of linear, three- and
four-grade polynomials, and the radial and sigmoid func-
tions with their gamma parameter ranging between 10−3

and 102. Moreover, it tests all cost values between 10−3

and 102. During training, the workflow conducts a tenfold
cross-validation for each configuration and eventually selects
the optimal parametrisation (i.e. the optimal kernel func-
tion and parameters and costs). The workflow configuration
file includes a section that allows the kernel functions to be
selected and the parameter ranges to be changed for testing
different parametrisations.

2.2.5 Native distribution adjustment

The integrated ENMs estimate the potential species’ habi-
tat suitability on a projection grid. However, within the
spatial extent of the native area, some species might only
inhabit a subset of all suitable-habitat locations. This could
be attributed to factors such as geographical obstacles or
environmental hindrances preventing access to certain areas.
The exact knowledge of these hindrances would require spe-
cific analyses of the species’ behaviour and native area,
which is usually unavailable to ENMs. The native distribu-
tion indeed corresponds to theactual distribution in the native
bounding box only if complete knowledge about the environ-
mental conditions for the species’ subsistence is available
and correctly captured by ENMs [103]. Knowledge gaps,
often present in practical applications, can create a signif-
icant discrepancy between the species’ native and actual
distributions [60]. Therefore, an enhancement of the native
distribution estimation is required to include the effects of
other unknown variables regulating the species’ presence in
the area. Such refinement can approximately be obtained by
analysing the species observations’ distribution instead of
searching for additional environmental variables. Suppose,
for example, a reasonable number of species observations is
available. In such case, the observations’ spatial distribution
implicitly indicates if the species is spread across the terri-
tory or localised in specific regions [145]. For example, if
a species were localised in a coastal area, its observations
would likely present accumulation regions close to the coast
and fewer, less dense points far from the coasts. Therefore,
an analysis of the distribution ofminimumdistances between
the observations could indicate if we can expect species
observations very far from the available observations. Our

workflow approximates the distribution of the mutual dis-
tances between the observations as a log-normal distribution
to create a decayweighting function for the species’ presence
in the native area. The log-normal shape of this distribution
derives from our previous heuristic analyses of the OBIS
data [24, 145]. This shape is not an ecological property of
species, but depends on the partial, sampled species infor-
mation contained in large observation-data collections [60,
146, 147]. Distances below the upper confidence limit of this
distribution can be considered plausible for observing the
species. Conversely, distances higher than the upper confi-
dence limit can be classified as too far (i.e. less plausible).
The log-normal distribution can be used for these locations
as a multiplicative decay function for the ENM probabil-
ity function. This way, the locations far from areas with a
high observation density are assigned a lower habitat suitabil-
ity probability. In other studies, we have demonstrated that
this technique can effectively simulate geographical reacha-
bility from habitat suitability [24, 44]. Our workflow thus
produces a new weighted ENM distribution by multiply-
ing the too far ENM output values by the decay function
value. This new ENM distribution is an approximation of the
native species distribution. The workflow user can activate
this native-distribution adjustment of the potential habitat
distribution through the workflow configuration file.

The algorithm can be summarised as follows:

Algorithm 2 Native distribution adjustment
For each presence location pi :

Calculate the distance d(pi , p j ) (with i �= j) from all other
presence locations

Record the minimum distance dmin(pi )
Approximate the dmin(·) distributionwith a log-normal distribution
L(dmin(·)) (with height normalised to 1)
Calculate the upper confidence limit of the log-normal distribution
dmin−upper
Scan the GR grid of an ENM (m), and for each pixel g:

Calculate the minimum distance from a presence location
dmin(g)
If dmin(g) > dmin−upper → m′(g) = L(dmin(g)) ·m(g), with
m(g) being the ENM value in g; substitute the ENM value
m(g) with m′(g)

Update all m models.

This algorithm thus adjusts the less plausible ENM val-
ues through a log-normal decay function and eventually
overwrites the previous ENM output files with the new val-
ues. Since the algorithm does not process environmental
variables, we added it as an optional adjustment for native
distributions instead of including it as an additional ENM.
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2.3 Ensemblemodel construction

Our workflow executes all ENMs concurrently and gener-
ates one spatial distribution of habitat suitability for each,
in the ESRI-GRID (ASCII) format. The workflow also pro-
duces onemetadatafile for eachmodel, indicating theoptimal
model variables and the optimal decision threshold for
dichotomic classification (suitable/unsuitable habitat). This
threshold, which is likely different for each ENM, is the cut-
off value maximising the prediction accuracy of the optimal
model. It allows assessing the R-squared cells (grid pixels)
corresponding to suitable (1) and unsuitable (0) habitat for
each ENM. Specifically, the workflow selects the numeric
threshold, over the optimal model, that maximises the sepa-
ration of the training presence and background locations into
suitable and unsuitable locations, respectively. For this task,
we use a similar strategy to ROC curve and AUC calculation
[93], i.e. we vary a numeric threshold over the outputs of the
optimal model on the training set and eventually select the
value corresponding to the highest prediction accuracy. The
workflow uses this strategy for all models. We preferred it
to alternative thresholds—e.g. omission-sensitivity balance,
equal sensitivity–specificity, and others [148]—whichwould
have required specific prior knowledgeon themodels’ perfor-
mance for each species data and area, normally unavailable
for large sets of species.

Based on this binarisation, as a further computational
step, our workflow generates an ensemble distribution that
takes advantage of the complementary properties between
the models, consequent to their likely different functional
forms and training processes [24]. For this task, ourworkflow
sums the corresponding pixels’ binary values. This opera-
tion generates an ensemble model ready for a consensus-
based model like the biodiversity index model described in
the next section. This approach is compliant with general
consensus-based classifiers [149–153] and simulates dif-
ferent experts assessing species presence cell by cell. The
underlying assumption is that each model produces inde-
pendent assessments of the species’ presence because they
use different rationales, resulting in independent probability
distributions. Other works on weighted-averaging machine
learning have indeed demonstrated that such distributions—
especially those of nonlinearmodels—arehardly comparable
and often have forms not associable with known probability
distributions [24, 82, 126, 154, 155]. Averaging their val-
ues might bias the results towards the sharpest distributions,
whose high values do not necessarily indicate high model
confidence and robust training. Overall, we use the sum of
the binarised models as the sum of mutually independent
probabilities. On the one hand, this strategy loses definition
in assessing the ensemble probability over the area. On the
other hand, it prevents the production of biased results due
to the combination of too different probability distributions.

One critical point of this ensemble strategy is that it assigns
equal weight to all models, with the rationale that suitabil-
ity could be due even to one distribution estimating a high
probability. This choice depends on the fact that the default
configuration of our workflow mainly addresses the produc-
tion of a species richness index based on a large set of species.
It is therefore conceived for feeding other processes that
aim to discover macro-patterns of species richness change
over time and space. Discovering macro patterns is in fact
more affordable than producing accurate cell-wise assess-
ments [83, 156]. Reliable patterns can indeed emerge from
the statistical aggregation of many model outputs, even if
these contain individual biases. The biases blur when sev-
eral models are aggregated and can fade away when overall
trend discovery is the target of the analysis. In this view,
assigning the same weight to every model means assum-
ing we miss prior information about the optimal model(s)
for each species, which is a common condition for large
species batches. Therefore, also considering that the involved
models likely bring complementary information (Sect. 2.2),
we assigned the same weight to every model as the default
workflow configuration. Nevertheless, our tool allows the
modification of the models’ weights in the ensemble when
prior information on the models’ performance is available.

The algorithm to build the ensemble model can be sum-
marised as follows:

Algorithm 3 Ensemble model construction
Train the individual ENMs → detect the optimal model variables
and decision thresholds {t1, t2, t3, t4}
(Optional) Add native distribution adjustment
Import the ENM results and metadata
Scan the GR grid, and for each pixel g:

Retrieve the associated environmental variable vector { fg}
For each ENM m:

Calculate themodel binary habitat-suitability assessment
dm(g) = {1 if m( fg) ≥ tm; 0 otherwise}

Sum the binary assessments to calculate the ensemble-model
value for pixel g: E(g) = ∑4

1 dm(g)

Save all E(g) values to an ESRI-GRID (ASCII) file.

As the result, this algorithm produces one spatial distribu-
tion (in the ESRI-GRID format, at resolution R) reporting the
pixel-by-pixel total number of models that indicated suitable
habitat in the focus area (ensemble model).

The ensemble model construction algorithm can also inte-
grate new models or alternative versions of the integrated
ENMs. This modular design allows for easily extending the
number and types of models to combine. During the data
import phase, the algorithm can read the ESRI-GRID files
of other ENMs’ outputs, with plain text metadata associ-
ated, to include these distributions in the ensemble. We also
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provide conversion tools (“Supplementary information”) to
transform plain CSV files (with longitude, latitude, proba-
bility columns) containing species distribution information
into integrable data. This procedure allowed us, for example,
to integrate the official, expert-curated AquaMaps distribu-
tions in some evaluation cases instead of the automatically
estimated ones (Sect. 2.6).

The ensemble model can be used to estimate an overlap
index between multiple ensemble models. This index esti-
mates the number of different, punctual, overlapping species
habitats. Ourworkflowperforms this operation by transform-
ing the species ensemble habitat distributions into binary
distributions (suitable/unsuitable habitats) and then summing
them pixel by pixel. One valid heuristic to transform the
ensemble distribution into a binary distribution considers
the agreement between the component models [24]: if at
least three models out of four indicate suitable environmen-
tal conditions for the species in a grid pixel, this location can
overall be classified as suitable habitat. As a generalisation,
since in our workflow the number individual models can be
changed, the minimum agreement between the ENMs for
assessing potential distribution is “number of models − 1”.
In the case of only one model used, the minimum would be
1. This threshold can be reduced to set more relaxed habitat
suitability assessment conditions. For example, a one-model
threshold would allow identifying locations with minimal
potential habitat suitability.

2.4 Biodiversity index construction

An overall cross-species overlap index is obtained by sum-
ming the binary ensemblemodel values. This indexmeasures
the number of different species potentially living in each
pixel of the analysed area, i.e. it can be used as a proxy
for a biodiversity index (or species richness index, alterna-
tively). Although this index does not consider the species’
mutual interactions, it can be demonstrated that this type of
approach can produce reliable biodiversity information for
long time frames (e.g. over one year) [33, 35].

The biodiversity index construction algorithm can be sum-
marised as follows:

As a result, this algorithm produces one spatial distribu-
tion (in the ESRI-GRID format, at resolution R) reporting
the pixel-by-pixel total number of species’ ensemble models
indicating suitable locations. This is the final result of our
workflow.

2.5 Open science-oriented web service

We developed our workflow as an open-source R software
suite (“Supplementary information”). The software avail-
ability as a suite (internally using almost R-base packages
only) instead of a CRAN package increases its integrabil-

Algorithm 4 Biodiversity index construction
For each species s under analysis:

Retrieve the ensemble distribution Es

Scan the GR grid, and for each pixel g:

For each species s:
Calculate the ensemble model binary habitat-suitability
assessment ds(g) = {1 if Es(g) ≥ |m|−1; 0otherwise},
with |m| being the number of models

Sum the binary assessments to estimate the biodiversity
index for pixel g: I (g) = ∑

s ds(g)

Save all I (g) values to an ESRI-GRID (ASCII) file.

ity, maintenance, and long-term compatibility with multiple
versions of R. This choice also made it easy to publish
the workflow as a Web service supporting secure cloud-
and parallel-processing and Open Science-oriented features
[28]. To this aim, we integrated it with the DataMiner
cloud computing platform of the D4Science e-Infrastructure
[49, 157–159], which published the process under the Web
Processing Service standard of the Open Geospatial Con-
sortium (OGC-WPS [160]) (“Supplementary information”).
This standard allows for direct integration of the process with
widely used geospatial data processing software supporting
it (e.g. QGIS and ArcGIS) [32]. DataMiner automatically
produced a graphic user interface based on the software
input/output definitions. It also tracks the model parame-
ters, input and output data at each execution (computational
provenance) in a user’s private data space as XML docu-
ments following the Prov-O ontological specifications [161].
Provenance tracking is crucial for computational repeatabil-
ity, reproducibility, and experimental history tracking [162,
163]. Through D4Science, the users can also share the com-
putational provenance, compare and merge different results,
and collaborate during the experimentation [164]. All these
features helped us meet Open Science requirements of soft-
ware reusability across different application domains and
enhanced the reproducibility and repeatability of the experi-
ments [28].

The workflow Web interface requires uploading a ZIP-
compressed file containing a set of raster files, in the
ESRI-GRID (ASCII) format, each representing the distri-
bution of an environmental variable associated with the
species’ ecological niche in a focus area. These files can
come from open repositories of geospatial data (e.g. Coper-
nicus, EMODnet, or others [80]). The files should all be
at the same spatial resolution. As an additional input, our
workflow requires providing a list of observations for one
species as a CSV file (with scientific name, longitude, lati-
tude columns) that it will enrich with environmental variable
values to train the models. All files should be uploaded on
the D4Science platform-integrated distributed storage sys-
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tem [159]. The workflow can be executed either through
a WPS-HTTP (POST/GET) call [158, 160] or the online
Web interface. As the output, the workflow produces one
ZIP-compressed file containing (i) all ENM distributions as
ESRI-GRID (ASCII) files, (ii) their metadata as plain text
files, (iii) the trained models as binary R files, and (iv) the
ensemble model as an ESRI-GRID (ASCII) file. The biodi-
versity index distribution can be obtained as an additional
ESRI-GRID (ASCII) file by running the workflow script to
assemble several ensemble models. The script should be exe-
cutedwith only the biodiversity index construction algorithm
activated in the workflow configuration file.

The open-source R software allows customising all work-
flow variables through the configuration file, e.g. all vari-
ables’ ranges used during model optimisation, the number of
background points to sample or the alternative absence loca-
tions to use, and theminimumensemble-agreement threshold
for the biodiversity index (“Supplementary information”).

Hosting our workflow on the DataMiner allowed dis-
tributing the executions for multiple species on a cloud
of 15 machines equipped with Ubuntu 18.04.5 LTS x86
64 operating system, 16 virtual cores, 32 GB of Random
Access Memory, and 100 GB of disc for each machine. Each
machine managed up to 4 executions simultaneously (i.e.
15× 4 = 60 concurrent executions). This integration allows
processing the data of many species concurrently because
the DataMiner automatically distributes the single-species
requests across the machines while balancing the compu-
tational load. Eventually, the workflow can assemble the
cloud computation resultswithin one biodiversity index. This
way, it took ∼ 5 hours to produce a biodiversity index for
1508 European marine species with full-automatic model
optimisation (Sect. 3.2), instead of the ∼7 days required by
sequential processing.

2.6 Evaluationmethodology

We evaluated our workflow with four different case studies.
First, we evaluated the change in the individual and ensem-
ble models’ results across repeated executions (Sect. 3.1).
We selected all species for which the AquaMaps [105] and
FishBase [165] open repositories presented observations and
maps in European marine basins (1508 species, including
fishes and non-fishes)with local-to-widespread distributions.
We estimated the stability of the ENMs, ensembles, and
biodiversity indexon this large species set, in termsof the sen-
sitivity of their convergence to the same solution after model
initialisation. The ENMs parametrisation, internal topolo-
gies, and results indeed depend on (i) the model initialisation
(e.g. ANN weight initialisation, background point selection,
etc.), (ii) the quality of the observation and environmental
data, and (iii) the quantity and density of the species obser-
vations. Our first case study assessed howmuch these factors

influence the individual ENMs and whether the ensemble
and biodiversity index models mitigate variability issues. To
assess model stability, we repeated 10 executions and evalu-
ated the per cent number of species distributions remaining
almost stable, i.e. producing the same binary assessments for
at least 60% of the grid pixels.

As a second case study, we produced a biodiversity index
for the Mediterranean Sea based on the 1508 selected Euro-
pean species to demonstrate the capacity of our workflow to
process large sets of species data through cloud computing
(Sect. 3.2). We integrated expert-reviewed AquaMaps [81]
for this assessment to improve output reliability and demon-
strate the integrability of externally provided model outputs.

As a third case study, we studied the invasion of the
Mediterranean Sea by Siganus rivulatus, a Lessepsian
species currently invading the basin (Sect. 3.3). The distribu-
tion of this species often overlaps with the one of the native
Sarpa salpa. The two species can coexist but S. rivulatus
tends to consume the habitat resources with consequent risks
for S. salpa survival [166]. To estimate habitat distributions
in the Mediterranean, we used a native-adjusted model for S.
salpa and a potential distribution model for S. rivulatus. The
training-set locations were taken from their respective native
areas. We studied the accuracy of our individual and ensem-
ble ENMs at predicting the current observation records of S.
rivulatus reported in OBIS in the last ten years (153 obser-
vations), and the potential change of habitat distribution in
2050 and 2100 under the RCP4.5 and RCP8.5 scenarios [78].
We also calculated the per cent overlap (as the fraction of
shared high-suitability locations) between the S. salpa and S.
rivulatus distributions to estimate overlap change over time
and whether climate change will favour it. In this case study,
we did not use AquaMaps because expert-curated data were
unavailable for S. rivulatus across the RCP scenarios.

As a final case study, we analysed the correspondence
between expert studies and the estimated ensemble distribu-
tions of S. rivulatus to assess the overall reliability of the
identified high habitat suitability locations (Sect. 3.4).

All ENMs used the same set of environmental variables
at a 0.5◦ resolution over the Mediterranean Sea [80], i.e.:

1. Sea-bottom and sea-surface temperature (◦C)
2. Distance from land (km)
3. Maximum, mean, minimum depth (m)
4. Net primary production (mgC m−3 day−1)
5. Sea ice concentration (0–1 fraction)
6. Sea-bottom and sea-surface practical salinity (PSU)
7. Sea-bottom moles of oxygen per unit of mass (µmol/kg)

We used their publicly available projections in 2050 and
2100 [80] under the RCP4.5 and RCP8.5 future scenarios
for case study 3. These variables are those also used by
the official expert-revised AquaMaps distributions, which
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the AquaMaps Consortium considers as containing sufficient
information for general habitat suitability assessments [167].

3 Results

3.1 Sensitivity analysis

Table 1 reports the average per cent number of species dis-
tributions remaining almost stable (matching percentage)
across several executions of (i) the integrated ENMs, (ii)
the ensemble model, and (iii) the biodiversity index. This
table assesses our workflow’s sensitivity to model initialisa-
tion and background point selection: 66%ANN distributions
remained stable, whereas the other ENMs presented much
higher stability (between 90 and 100%). The lower ANN
stability was probably due to its over-sensitivity to using
background points as a proxy for habitat unsuitability [33,
60, 168]. SinceAquaMaps is independent of initialisation and
has no model parameters to optimise (Sect. 2.2.1), it reached
a 100% matching percentage.

It is worth noting that although the ensemble model was
obtained from ENMs with 66-to-100% matching percent-
ages, it reached a 96% matching percentage. This result
demonstrates the capacity of the ensemble model to com-
pensate for instability by leveraging model complementary
aspects, in agreement with other studies on ENM combina-
tions [169–171].

The biodiversity index further improved this stability,
reaching a 100% matching, i.e. it was independent of ENM
initialisation and background point selection.

3.2 Mediterranean biodiversity index

The biodiversity index calculated from the ensemble distri-
butions of 1508marine species represented a species richness
overview of theMediterranean Sea (Fig. 2). Coasts presented
a higher index than the basin’s centre, in agreementwith other
studies [172]. Since the biodiversity indexdepends on species

Table 1 Average number of matching species distributions after 10
consecutiveworkflowexecutions on 1508European species data, across
the integrated ecological niche models, their ensemble model, and the
biodiversity index

Matching distributions (%)

Artificial neural networks 66

Support vector machines 90

Maximum entropy 94

AquaMaps 100

Ensemble model 96

Biodiversity index 100

distribution models rather than on species-observation den-
sity, this result is unlikely subject to observation-sampling
biases.

The highest index values were in the western Mediter-
ranean and decreased eastwards, as also highlighted by other
studies [173, 174]. This gradient likely depends on the exten-
sive range of physicochemical water conditions suitable for
many organisms in the western region and the influx of
Atlantic species [174]. In the rest of the basin, higher index
values were mainly present in the Adriatic Sea, the Strait of
Sicily, and the Aegean Sea, which agreed with other assess-
ments [174–176]. The Strait of Sicily is indeed a crucial
biodiversity hot spot because of its border location between
the Mediterranean eastern and western sides [176]. As for
the Adriatic, although it has areas with freshwater presence
having less biodiversity richness [174], it is indeed an overall
biodiversity hot spot [177, 178]. Finally, the EasternMediter-
ranean showed lower levels of species richness in our map,
still in agreement with other studies [174, 179].

3.3 Quantitative evaluation of species invasion
prediction

The ensemble model distribution reached a high accuracy
across all scenarios (80%) at predicting the presence loca-
tions of Siganus rivulatus (Fig. 3). This result indicates that
the ensemble model valuably reused the complementary out-
put information of the individual ENMs. Indeed, SVMs and
ANNs underestimated the presence locations (40% and 45%
accuracy, respectively), whereas MaxEnt (80% accuracy)
strongly contributed to improving the ensemble model accu-
racy. The gap between the models’ accuracy persisted across
the RCP scenarios. The ensemble model covered increas-
ing pixels across the years and RCP scenarios (with a slight
reduction in 2050 under RCP8.5). This observation suggests
that climate change in theworst scenario (RCP8.5)will likely
favour the invasion. The ensemble model could not predict
some pixels in the western Mediterranean. Rather, it pre-
dicted that the habitat will remain unsuitable far from the
coasts in this area.

The ensemble models also predicted that the overlap
between the ensemble distributions of S. rivulatus and S.
salpa will progressively increase from 2019 to 2100 (Fig. 4).
In the RCP8.5 scenario, there would be an overlap increment
of 6.7% in ∼30 years (from 70 to 75.3%) and of 25.6% in
∼80 years (from 70 to 78.9%) with respect to 2019. Instead,
in the RCP4.5 scenario, there would be an increment of 7.6%
in ∼30 years (from 70 to 74.4%) and 12.7% in ∼80 years
(from 70 to 87.9%). This result confirms the prediction of a
long-term fostering of the invasion by climate change, and
comparable effects in the shorter term although greenhouse
gas emission mitigation [35, 180].
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Fig. 2 Biodiversity index (species richness) at half-degree resolution, produced by our workflow after processing 1508 Mediterranean species data

Fig. 3 Accuracy comparison between three individual ecological
niche models integrated with our workflow—i.e. Artificial Neural Net-
works (ANN), Maximum Entropy (ME), and Support Vector Machines
(SVM), and their Ensemble model—in the prediction of the Siganus

rivulatus distribution in the Mediterranean Sea in 2019. Projections for
2050 and 2100 are reported for theRCP4.5 andRCP8.5 scenarios. Small
green dots report the S. rivulatus observations from OBIS

Fig. 4 Per cent overlap between the estimated distributions of Siganus rivulatus and Sarpa salpa in 2019, 2050 and 2100. Future projections are
reported for the RCP4.5 and RCP8.5 scenarios. Small green dots report the S. rivulatus observations from OBIS, and purple dots those of S. salpa
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3.4 Qualitative evaluation of species invasion
prediction

Our ensemble model identified high-suitability areas for S.
rivulatus confirmed by expert studies on the easternMediter-
ranean Sea, e.g. off the coasts of Turkey [181], Egypt [182],
Cyprus [183, 184], Crete [184], and Israel [185, 186]. Stable
species presence has been reported in other locations also
predicted by our model, e.g. off the Albanian [187] and east-
ern Greek coasts [188]. In the central Mediterranean Sea,
the northernmost observation from expert studies is near the
Bobara island (south-eastern Adriatic) [189], and the west-
ernmost is near the Pelagie Islands (Strait of Sicily) [190].
Our ensemblemodel also predicted habitat suitability in these
locations (Fig. 3). Additionally, in the Strait of Sicily it fore-
saw a particular increase of habitat suitability over the years.

S. rivulatus has been rarely reported in the western
MediterraneanSea. Presence off the French coasts could only
be inferred through eDNA analysis in ports [191] and has
been unofficially reported by fishers [192]. One observation
off the western Corsican coast was just indirectly inferred
fromapicture [193]. These considerations, and the lowobser-
vation frequency, might confirm a low habitat suitability in
this area in agreement with our model’s suggestions.

Our model indicated low habitat suitability also far from
the northern Tunisian coasts. However, two expert observa-
tions are available in this area from a transect report [188].
Nevertheless, also Siganus luridus might be present in the
area [194], which can be mistaken for S. rivulatus given their
similarity. The S. luridus distribution often overlaps with that
of S. salpa [193], and the species outcompetes S. rivulatus
when present in the same area [195]. In a similar case, in
Malta, the S. rivulatus observations were indeed re-classified
as S. luridus observations after expert verification [196].

4 Conclusions

We have presented an automatic workflow to produce poten-
tial and actual species distributions over a marine area,
through four integrated ENMs with complementary aspects.
The workflow combines the ENMs to produce one overall
ensemble model, which is more stable and accurate than the
individual models. The ensemble model has a lower sensi-
tivity to initialisation and background point selection and a
higher predictive accuracy than the individual ENMs.

The workflow allowed for predicting the invasion of the
MediterraneanSeaby an invasiveLessepsian species (S. rivu-
latus) and its current and future distribution overlap with a
native competitor species (S. salpa). The ensemble model
was particularly reliable at predicting known presence loca-
tions of the invasive species in theMediterraneanwith a large
agreement with expert studies. The invasion assessment was

also projected in future (2050 and 2100) medium and high
greenhouse gas emission scenarios (RCP4.5 and RCP8.5).
The projections highlighted that climate change will likely
foster the invasion of the basin by S. rivulatus and increase its
distribution overlap with S. salpa, especially in the RCP8.5
scenario. Therefore, climate change would increase the risk
of S. salpa habitat loss and fisheries change in the Mediter-
ranean.

We have also demonstrated the possibility of easily pro-
ducing a biodiversity index for many species through cloud
computing, which was (i) independent of the individual
ENMs’ initialisation, (ii) more stable than the species’
ensemble models, and (iii) in agreement with expert stud-
ies.

Our workflow is general enough to process the data of
other areas, species, and scenarios than those presented in the
case studies. Moreover, it can integrate the outputs of addi-
tional ENMs. Its Open Science compliance makes it easily
integrable with GIS software and improves communication
transparency towards result stakeholders (e.g. ecological and
ecosystemmodellers and policymakers) [9–11, 29–31]. This
compliance, combinedwith the use of generalmodels, allows
for reusing the workflow in other domains than marine sci-
ence. For example, it might be used for terrestrial species
(using AquaMaps as a pure envelope function estimator or
disabling it, in this case) [19, 66, 111].We also plan to extend
the workflow with new general ENMs, while distinguishing
data-poor and data-rich scenarios to optimise model effec-
tiveness and stability.

One essential aim of our workflow is to extend the use of
ENMs to heterogeneous communities of practice, even with
low expertise in ecological niche modelling. Open Science
compliance and full automatism support this goal. Draw-
backs are the default integration of a small (but represen-
tative) number of ENMs using complementary approaches
and the use of pre-defined model optimisation strategies as
the default configuration. However, our workflow is quickly
integrable with other software using alternative ENMs and
evaluation strategies. Additionally, our workflow customisa-
tion allows for producing single-species models with high
accuracy because expert modellers can easily modify all
parameters and processing steps. Specifically, the workflow
configuration allows for modifying many model parameters
(such as the ANN layers, the MaxEnt parameters, and the
SVM kernels), and the modular open-source architecture of
the software allows for quickly changing specific scripts that
implement precise workflow steps. For example, model com-
bination weights in species richness estimation can easily be
changed to assign more importance to specific models.

Our workflow should be contextualised within big data
processing approaches. In our case studies, the number of
species and the study area were extensive but the models’
training sets were relatively small. The results should be
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considered as the bases ofmore complex analyses. They indi-
cated macro-patterns of species richness and habitat change
rather than cell- and species-wise detailed answers. Although
an erroneous ormissing indication of one species’ presence in
a cell is not essential in macroscopic trend analyses [83, 170,
171], caution should be used when interpreting the results of
our workflow over many species because punctually reliable
indications cannot be guaranteed.

The full automatism makes our workflow suitable for
supporting IEAs in the automatic discovery of the mutual
relations between the different driving forces stressing an
ecosystem [3, 5, 197]. This is a crucial focus also of mod-
ern designs for Digital Twins of the Ocean (DTOs), which
aim to produce digital representations of oceanic ecosystems
that use real-time and historical data to assess and forecast
ecosystem status [27]. These models are attracting scientific
interest but require new automatic solutions (possibly AI-
based) for modelling and discovering ecosystem functions
and assessing habitat suitability. Our workflow meets these
scopes, and we plan to propose its use in the DTO context.

Supplementary information

The source code and all experiments’ input and output
are available on the GitHub at https://github.com/cybproj
ects65/EcologicalNicheModellingWithR
The software was tested with R 4.2.3 on the MS Windows
and Linux Operating Systems.
The GitHub repository contains all evaluation experiments’
input and output and the conversion tools used. It also
includes the list of 1508 species used in our biodiver-
sity index for the Mediterranean Sea (https://github.com/
cybprojects65/EcologicalNicheModellingWithR/blob/main/
List_of_1508_EU_species_from_AquaMaps_and_FishBase.
txt)
The Web service interface and WPS access point is avail-
able on the D4Science e-Infrastructure (https://services.
d4science.org/).
Subscription to the (free-to-use) BiodiversityLab Virtual
Research Environment is required to properly size the com-
putational resources to the users’ request load (https://
services.d4science.org/group/d4science-services-gateway/
explore).
After subscription, the ENM Workflow Web interface will
be freely accessible at https://services.d4science.org/group/
biodiversitylab/data-miner?OperatorId=org.gcube.dataanal
ysis.wps.statisticalmanager.synchserver.mappedclasses.tra
nsducerers.ECOLOGICAL_NICHE_MODELLER

Example input datasets are available at URL:
data.d4science.net/cGHy and URL:
data.d4science.net/MQtR, as indicated in the Web interface.

No fee is required to use the service.
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