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Abstract
Modern machine learning methods allow for complex and in-depth analytics, but the predictive models generated by these
methods are often highly complex and lack transparency. Explainable Artificial Intelligence (XAI) methods are used to
improve the interpretability of these complex “black box” models, thereby increasing transparency and enabling informed
decision-making. However, the inherent fitness of these explainable methods, particularly the faithfulness of explanations to
the decision-making processes of the model, can be hard to evaluate. In this work, we examine and evaluate the explanations
provided by four XAI methods, using fully transparent “glass box” models trained on tabular data. Our results suggest that
the fidelity of explanations is determined by the types of variables used, as well as the linearity of the relationship between
variables and model prediction. We find that each XAI method evaluated has its own strengths and weaknesses, determined by
the assumptions inherent in the explanation mechanism. Thus, though such methods are model-agnostic, we find significant
differences in explanation quality across different technical setups. Given the numerous factors that determine the quality
of explanations, including the specific explanation-generation procedures implemented by XAI methods, we suggest that
model-agnostic XAI methods may still require expert guidance for implementation.

Keywords Predictive models · Explainable AI (XAI) · Performance evaluation of algorithms and systems · Explanation
fidelity

1 Introduction

Modern machine learning and deep learning techniques have
allowed the analysis and modelling of complex data to
enable decision-making. However, these advanced machine
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learning techniques are often not human interpretable, and
therefore, lack transparency and hamper responsible and
accountable human decision-making [23]. Explainable AI
(XAI) methods are used to improve the interpretability of
these complex “black box” models, thereby increasing trans-
parency and enabling informed decision-making [18]. A key
category of XAI techniques is post hoc explainable methods;
that is, external mechanisms that provide explanations for a
given predictivemodel, rather than an interpretation provided
directly by the model.

Despite the increasing use of post hoc XAI methods in the
literature, evaluations and comparisons of post hoc explain-
able methods are so far under-explored. In particular, past
evaluations of explanation fidelity, a measure to assess the
correctness and completeness of an explanation with respect
to the underlyingmodel [59], are specific to particular classes
of datasets or specific explainablemethods. A number of eas-
ily accessible, open source XAI techniques, such as LIME
[41] and SHAP [27] are commonly used, as they are model-
agnostic and can be easily applied to pre-existing predictive
models. However, the ability of such techniques to mimic the
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workings of predictive models of different classes remains
unknown.

Evaluations of fidelity in the literature can generally be
classified as one of the following: external fidelity, which
assesses how well the prediction of the underlying model
and the prediction implied by the explanation and/or explana-
tion generationmechanism agree; and internal fidelity, which
assesses how well the explanation matches the decision-
making processes of the underlying model [32]. While
methods to evaluate external fidelity are relatively common
in the literature [19, 25, 33, 46], internal fidelity evalua-
tions are generally limited to text and image data [13, 16,
26, 38, 44], rather than tabular data. Thus, the capability of
an explanation to mimic the decision-making processes of
the underlying model, particularly models built on tabular
data, is unknown.

In this paper, we attempt to understand the strengths
and limitations of explanations provided by four XAI meth-
ods. We generate explanations for fully transparent “glass
box” predictive models and compare explanations directly
against the underlying model. This facilitates the evalua-
tion of an explanation’s ability to reflect the behaviour of
the model. In particular, we focus on local explanations,
though the techniques used to generate these explanations
often vary between, and even within, explainable method
types. The goal of our evaluation is not to identify “the
best” explainable method, but to understand the strengths
and weaknesses of different explanation-generating mech-
anisms and the contexts that each explainable method can
support.

The main contributions of this work are:

• the development of a method to compare local explana-
tions against the decision-making of three classes of fully
transparent predictive models;

• evaluation of four XAI methods in various experimental
setups; and

• insights to support the choice of XAI methods to be used
within a particular context.

This paper is structured as follows.We first present a num-
ber of related works, along with the motivations of this work,
in Sect. 2. This is followed by a proposal of our evaluation
method (Sect. 3) and design of experiments (Sect. 4). We
present our results in Sect. 5 and analyse the results and
draw insights in Sect. 6. Finally, we conclude our paper and
discuss future work (Sect. 7).

2 Background and related works

2.1 Explainable AI

The “black box problem” of AI arises from the inherent
complexity and sophisticated internal data representations of
many modern machine learning algorithms [26]. Although
more complex predictive models may produce more accu-
rate results, this accuracy comes at the cost of human
interpretability of algorithmic decisions [24]. XAI research
attempts to provide human-understandable explanations for
predictive models. This is necessary to ensure system quality
and to facilitate informed human decision-making [8].

In this work, we consider “interpretability” to be the abil-
ity to provide meaning in terms understandable to a human
and “explanations” to be the interface between the human and
the predictive model [18]. Interpretability in machine learn-
ing is generally broken down into two categories: inherently
interpretable predictive models and post hoc interpretation.
Interpretable predictive models are those that are immedi-
ately interpretable by a human [18], though this often means
that the models are simpler, and so may have reduced pre-
dictive power. This category includes simple decision trees
and linear and logistic regression models, which are easily
interpretable, and thus fully transparent.

Post hoc methods provide interpretations that are not
inherent to the predictive model and are derived after its cre-
ation through an external mechanism [18]. Post hoc methods
are usually applied to opaque models, which have complex
internal mechanisms, such as a neural network, or are oth-
erwise “black box”. A sufficiently complex tree-ensemble
model or a model protected by IP agreements may also fall
into this category [43]. Thus, post hoc interpretability allows
for the use of more complex and accurate predictive models
without compromising interpretability. However, since post
hoc interpretation is external to the predictive model, there
is no guarantee that the explanations provided are fully and
correctly representative of the underlying model [43].

2.2 Post hoc explainable methods

The purpose and scope of post hoc explanations often vary
[29]. In this work, we assess four local (prediction–level)
explanations, rather than global (whole–model) explana-
tions. That is, when given an individual input x ∈ X of length
n and a prediction function f , a local XAI method would
return an explanation φ(x), rather than φ( f ). In this work,
we use four methods that generate local, post hoc explana-
tions.
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Moreover, we examine XAI methods that are model-
agnostic. These methods typically use some explanation-
generation mechanism external to the underlying predictive
model, and/or use multiple mechanisms suited for examin-
ing multiple types of predictive models. We describe these
in more detail below.

2.2.1 LIME

Local InterpretableModel-Agnostic Explanations (LIME) is
a local feature attribution method that highlights how impor-
tant each feature is to a prediction [41]. Given an instance
for which one wants to generate explanations, x , LIME first
applies a set of permutations x ′ ∈ X ′ and then, generates
predictions over those permutations, f (X ′), to train a more
interpretable surrogate model. The surrogate model g ∈ G
that mimics the behaviour of f in the vicinity of x is obtained
by:

argmin
g∈G

L( f , g, πx ) + �(g) (1)

where �(g) is defined as the complexity of g (the number
of nonzero coefficients in the linear surrogate model), πx is
a distance function centred on x and the loss function L is
defined as:

L( f , g, πx ) =
∑

x ′∈X ′
πx (x

′)[ f (x ′) − g(x ′)]2 (2)

The coefficients of g are returned as the explanation φ(x).

2.2.2 SHAP

Much like LIME, Shapley Additive Explanations (SHAP) is
a feature attribution method and produces SHAP values as a
measure of a feature’s contribution [27]. SHAP values for a
single feature i can be calculated as:

φi ( f , x) =
∑

z′⊆z

|z′|!(M − |z′| − 1)!
|M |! [ fx (z′) − fx (z

′\i)] (3)

where:

• z is a simplified representation of x ,
• z′ ⊆ z represents all z′ vectors where the nonzero entries
are a subset of the nonzero entries in z,

• |z′| is the number of nonzero entries in z′, and
• M is the number of features in z

Rather than attempting to estimate the importance of fea-
tures to themodel, SHAP defines the contribution of a feature
φi such that:

f (x) = φ0 +
M∑

i=1

φi zi (4)

where φ0 is generally defined as f (∅) and calculated as the
expected value of the prediction function f . Both model-
agnostic [27] and model-specific [27, 28] approximations of
SHAP values exist and are used in this work (see Sect. 4).

2.2.3 LINDA-BN

UnlikeLIMEandSHAP,Local Interpretation-DrivenAbstract
Bayesian Network (LINDA-BN) provides a profile-like
explanation instead of a feature attribution explanation [34].
Similarly to LIME, LINDA-BN creates a surrogate model
in a neighbourhood of x within a variance of ε. However,
instead of using Linear Regression to fit the permuted data
points, LINDA-BN learns a Bayesian network using the
Greedy Hill Climbing approach. This Bayesian network is
returned as the explanation for a prediction. Therefore, this
method expresses explanations as correlations between fea-
tures, rather than assuming that each feature individually
contributes to the prediction. LINDA-BN is considered a
profile-like explanation, as the extracted Bayesian network
enables the identification of four rules to inform a decision-
maker about the potential correctness of a single prediction
(Fig. 1) [34].

Since LINDA-BN’s explanations are grounded in proba-
bilistic graphicalmodels, they fulfil the axioms of probability
theory and the rules that derive from them. Thus, the struc-
ture of the explanation, i.e. the Bayesian network, can be
used to determine the model’s confidence in and the likely
correctness of a prediction [34].

Although LINDA-BN returns only the surrogate model, a
quantified impact of each feature can be calculated by query-
ing the returned Bayesian network (see Sect. 4).

2.2.4 ACV

ActiveCoalition ofVariables (ACV) is a probabilisticmethod
of explanations that aims to find some set of minimal suffi-

Fig. 1 Outputs from LINDA-BN [34]: when the data instance to be
explained falls in a well-defined region of the decision space, then there
is high confidence in the generated predictions (Rule 1). When the data
instance falls near the decision boundary, the returned networks will
show uncertainty towards the prediction (Rule 4)
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cient features (minimal sufficient explanations, M-SE) such
that retaining only the M-SE in x returns the same or sim-
ilar f (x) given a high probability π [5]. That is, given an
instance x , prediction f (x) and threshold t , xs ⊆ x is a
Sufficient Explanation for probability π if the same decision
probability SDPs(x, f (x), t) ≥ π and no xz ⊆ xs satisfies
SDPz(x, f (x), t) ≥ π where:

SDPs(x, f (x), t) = Pr(( f (X) − f (x))2 ≤ t | Xs = xs)

(5)

for regression, and for classification:

SDPs(x, f (x)) = Pr( f (X) = f (x) | Xs = xs) (6)

A M-SE is a Sufficient Explanation with minimal size, and
the set of all Sufficient Explanations is denoted as A-SE.

ACV uses a Random Forest model as a global surrogate,
i.e. a surrogate model that attempts to capture the entirety of
model behaviour, instead of some subset of behaviour. The
idea of Projected Forest, which is used to estimate E[ f (X) |
Xs = xs], is combined with a Quantile Regression Forest,
which estimates Pr( f (X) ≤ f (x) | X = x) to compute the
SDP [5]. As the number of possible subsets is exponential,
to reduce the complexity of the computation, the search for
Sufficient Explanations is contained to a maximum of ten
features that are usedmost frequently in the surrogate model.

ACV is also distinct from the other XAI techniques used
in this work, as it can also function as a self-explaining pre-
dictive model. When explaining a separate predictive model
f , rather than taking the model as input, as LIME, SHAP
and LINDA-BN do, ACV’s surrogate model takes as input
the training set X and the original model’s predictions f (X).
However, if given X and the associated labels Y , ACV can
also be trained as a predictive model, though we do not use
it as such in this work.

2.3 Evaluating explanations

Evaluation methods for XAI can be categorised into three
levels of evaluation [12]:

• Application-grounded evaluation wherein the evaluation
is conductedwith real end users in full context replicating
a real-world application;

• Human-grounded evaluation wherein the evaluation is
conducted with laymen in simpler simulated contexts or
completing proxy tasks that reflect a target application
context; and

• Functionally-grounded evaluation which requires no
input from users and relies on evaluating the inherent
abilities of the system via a formal definition of inter-
pretability.

The former two categories are also often referred to as
cognitive metrics of evaluation, and functionally-grounded
evaluations fall into the complementary category of compu-
tational metrics [26].

Evaluations of this last category are often the first step in
determining the quality of anXAImethod [12]. This includes
evaluation of explanation fidelity with respect to the original
predictive model. The term “fidelity” is generally defined as
a measure of how faithful and accurate an explanation is to
the underlying black box model [56]. Two characteristics of
explanations are relevant to explanation fidelity [30, 59]: the
completeness of an explanation in capturing the dynamics of
the underlying model; and the correctness and truthfulness
of the explanation with respect to the underlying model.

Explanation fidelity can severely impact the safety and
usefulness of a predictive system. The authors of [21] find
that, when the user has deep knowledge of the context, local
explanations enabled the identification of prediction errors
and the predictive model’s error boundaries. The study also
finds that explanations affect the user’s perception of model
correctness. Similarly, the authors of [47] find that model
transparency affects causability—the ability of the user to
understand what features affect the prediction. In turn, caus-
ability is found to determine the user’s trust in and perception
ofmodel performance.Wemust note that explanation fidelity
does not play a direct role in causability or user perception;
these are generally determined by explanation presentation
and content [21, 58]. However, if a user’s knowledge or per-
ception is based on incorrect or incomplete explanations of
the model, it may engender trust in a false prediction, or mis-
trust in a correct prediction, leading to unsafe or incorrect
usage of a predictive system. Thus, explanation fidelity is
necessary for predictive model safety and usefulness.

Although a number of methods have been proposed to
assess fidelity, they are often highly specific to particularXAI
methods or datasets. Fidelity evaluation approaches fall into
two general measures: measurements of external fidelity and
internal fidelity [32]. External fidelity approaches are those
that compare how often the decision implied by the expla-
nation and the decision made by the underlying predictive
model agree. For example, when evaluating surrogate mod-
els that approximate the underlying predictive model, this
method determines the accuracy of the surrogate model’s
predictions using the predictions of the underlying model as
ground truth [46]. Explainable methods that produce deci-
sion rules are also often evaluated through this approach,
and the predictions of the decision rule or decision rule sets
are compared against the black box model’s predictions [19,
25, 33].

Evaluating external fidelity provides an assessment of
consistency between the explanation’s predictions and the
predictions of the underlying model, i.e. that the predictive
model and the explanation mechanism can reach the same
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decision. However, this does not guarantee that the explana-
tions are faithful to the computations, or “decision-making”,
of the black box model, for example, weights given to each
feature, or the decision path followed in a tree [32]. Such
information may be necessary in order to change the pre-
dicted outcome to a desired outcome. For example, in the
case of a risk prediction model, taking the most appropri-
ate action to reduce the risk. Lack of full transparency can
also hamper model inspection and diagnosis, which may be
necessary to ensure that the model relies on appropriate fea-
tures when computing a prediction [41]. Moreover, some
explainable methods do not produce an output suitable for
external fidelity evaluation approaches, including LINDA-
BN and some optimisations of SHAP.

As such, we aim to develop a method to assess the internal
fidelity of feature attribution explainable methods, where the
fidelity of the explanation regarding the underlying model’s
decision-making process is evaluated [32]. As noted in [6],
given that the internal workings of a black box model are
opaque and there is no “ground truth” of the model, it is
near impossible to assess explanation correctness. Signifi-
cant effort is required to assess the internal fidelity of an
explanation or explainable method. Potential internal fidelity
evaluation approaches include:

1. Generating explanations for a fully transparent, inher-
ently interpretable “glass box”model, and comparing the
explanation to the glass box model’s decision-making [4,
41];

2. Using a post hoc explanation approach to explain both
a surrogate model and the underlying predictive model,
and comparing how often the explanations concur [32];
and

3. “Removing” or permuting the features identified as rel-
evant by the explanation and measuring the change in
model output [4, 13, 16, 26, 37, 38, 44].

It is important to note that the method in [32] is an evalu-
ation of a surrogate model using a post hoc technique, rather
than an evaluation of the post hoc technique. Thus, it is not
suitable for this work. As another note, while the method of
permuting features is relatively common in the literature, it is
mostly applied to text [13, 38] or image data [16, 26, 44], in
which case, the relevant features are often removed or blurred
from the original input prior to encoding. This method has
been applied to tabular data [4, 31, 37], typically by permut-
ing rather than removing features at the input level [4, 37] or
removing the feature as a whole from the dataset [31]. More-
over, we note that these works typically used few, standard
benchmark datasets and/or limited predictive models. In our
previous work, we adopted a local, perturbation method to
evaluate explanations for models built on time series tabular
data, which, however, provided poor results [49].We theorise

that the results of our previousworkwere likely influenced by
the difficulty in choosing and permuting an appropriate sub-
set of features given the complexity of time series data, and
lack of understanding ofmodel andXAI technique behaviour
with respect to tabular data.

Tabular datasets are highly heterogeneous with respect to
the quantity and type of features and may present challenges
such as lack of locality and sparsity in data, as well as the
need to manage mixed feature types [48]. Furthermore, there
may be fewer correlations between features in tabular data
than in other types of data such as images, as well as lack
of semantic meaning and connection between features such
as may be present in natural language data [7]. Although it
is noted in [17] that simpler, glass-box models can generally
provide accurate predictions for tabular data, the authors of
the study also note that in some cases, particularly when the
dataset is “noisy”, more complicated black box models may
be necessary. These factors affect the predictive techniques
that may be used [7], but, as we noted in [49], the characteris-
tics of tabular data also does not allow for use of explanation
evaluation methods developed for image and text data.

2.4 Motivation

In this work, we use fully transparent, glass-box models to
better understand interactions between data, model and XAI
technique. This provides a “ground truth” formodel decision-
making, with which to assess explanations. Furthermore, we
extend the approach used in [41], which relied on measuring
only the completeness of the explanation in capturing a hard-
coded, arbitrary number of features. Moreover, to the best
of our knowledge, no work compares the performance of
XAI techniques in different technical contexts to understand
the factors that affect explanation quality. In particular, we
aim to examine whether easily accessible, model-agnostic
XAI methods, such as those described, work reliably and
consistently in all technical contexts. Thus, in this work, we
attempt to take a more holistic approach to evaluation, as
described in Sect. 3.2.

We investigate properties of post hoc XAI methods by
addressing the following questions:

• Local surrogate models are commonly used to generate
local, post hoc explanations. To what degree do permu-
tation and the choice of local surrogate model affect the
quality of explanation generated by the surrogate model?

• Model-agnostic XAI methods often use some theoretical
construct to define and calculate explanations. For exam-
ple, principles fromgame theory are used to derive SHAP
explanations [27, 28] and statistical models are applied
by LINDA-BN [34]. However, some assumptions and
design decisionsmay be needed tomake these theoretical
foundations suitable for application. How do the design

123



International Journal of Data Science and Analytics

choices made in the implementation of the explanation
generation mechanism affect explanation quality?

• While many local explanation methods use local surro-
gate models (at the data point level), a few also use global
surrogate models (i.e. at the dataset level). How does the
use of a global surrogate model affect explanation qual-
ity?

3 Method

3.1 Evaluationmethod

In this work, we aim to investigate the internal fidelity of
model-agnostic explanations, where the faithfulness of the
explanation to the underlyingmodel’s computational process
is evaluated [32]. Given that the internal workings of a black
box model are opaque, significant effort is required to assess
the internal fidelity of an explanation or explainable method.
In our previous work [49], we attempted to assess explana-
tion fidelity for black box models trained on tabular data,
by replicating the methods used to test the internal fidelity
of explanations for models trained on image and text data.
Our results suggested that explanation fidelity is poor when
explaining tabular data, though we found that this may be a
consequence of the evaluation method and the complexity of
the datasets used. This lack of evaluation method for tabular
data is notable given the volume and diversity of tabular data
used in modern data analytics.

Thus, in this work, we evaluate explanations using fully
transparent glass-boxmodels.We choosemodels fromwhich
the relevance of a feature to a prediction can be determined, to
provide a reference for evaluating the internal fidelity of post
hoc explanations. As the internal workings of a glass-box
model are apparent, it can be compared against an explana-
tion to determine the fitness of the explainable method. It
must be noted that high explanation fidelity for a relatively
simple glass box method does not necessarily imply high
fidelity for a more complicated black box model. As such,
our aim in using this method is not to determine some “best”
XAImethod.Rather,we aim tomoreprecisely understand the
specificworkings of eachXAImethod, howdifferent types of
predictivemodels affect explanation quality, and any patterns
of quality that could inform the selection of XAI methods
for a given setup and context. Thus, we focus on behaviours
and characteristics of models and XAI algorithms. More-
over, given the ease of availability of model-agnostic XAI
techniques, we also wish to determine the level of expertise
needed to select an XAI technique for use.

In this work, we choose to examine four local, post hoc
XAI methods of differing characteristics in order to answer
the questions posed:

• LIME uses permutation, then a local, linear surrogate
model to derive an explanation. Previous works have
suggested that LIME’s permutation of input x affects
explanation stability, particularly as the length of the
input increases [46, 50]. In addition to the effect of per-
mutation, in this work we will examine the effects of the
choice of local surrogate model.

• While SHAP is grounded in game theory, it uses
both model-specific and model-agnostic computations to
determine feature attribution [27, 28].

• LINDA-BN is grounded in statistical modelling and pro-
vides a queryable explanation.

• ACV uses a global, rather than local, surrogate model to
generate explanations. Moreover, ACV provides expla-
nations of multiple types, including feature subsets and
feature attribution.

We have chosen datasets and predictive models in such a
way as to facilitate answers to these questions. Our experi-
mental setup and choice of algorithms are introduced in 4.

3.2 Evaluationmetrics

In this work, the goal of our evaluation is to understand
the strengths and limitations of several local, post hoc XAI
mechanisms. In particular, we examine these mechanisms
with respect to the characteristics of the underlying mod-
els and datasets. Thus, in this work, we use a range of
datasets, XAI techniques and predictive models for a com-
prehensive evaluation. We evaluate four XAI techniques, all
of which use different explanation-generation mechanisms,
with three predictive models of different classes. We also
selected datasets by considering a breadth of different charac-
teristics, including the prediction problem, the volume of the
data, types of variables present, and the number of features
that can be encoded from the data. A detailed description of
techniques and datasets used is presented in Sect. 4.

We evaluate three properties when measuring fidelity:

• The correctness of the explanation in identifying themost
impactful features;

• The completeness of the explanation in identifying the
most impactful features; and

• The correctness of the importance ranking of all features,
which is particularly key for feature attribution methods.

The evaluation method for the first two properties use two
subsets of features. The basic approach of this method is to
compare the subset of features determined to bemost relevant
by the model (xt ⊆ x) against the features determined to be
the most relevant by the explanation (xe ⊆ x). A similar
approach was used in [41], where the recall metric was used
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to determine fidelity in the form of completeness as follows:

Recall(xt , xe) = |xt ∩ xe|
|xt | (7)

Additionally, we also use the precision metric to capture
the correctness of the explanation as follows:

Precision(xt , xe) = |xt ∩ xe|
|xe| (8)

To evaluate the third property, we extract the importance
ranking of features by the model (rt ) and the ranking of fea-
tures by the explanation (re), where r is a reordering of x
indicating feature importance.We then use a correlationmea-
sure to determine the similarity between rt and re, where a
higher similarity would indicate higher correctness of the
explanation’s ranking. We use Kendall’s Tau-B to measure
rank correlation between rt and re.

As XAI methods, particularly methods relying on feature
permutations, often produce unstable explanations [46, 50,
51], we generate five φ(x) for each x , compute an adjusted
or average explanation ϕ(x), and determine xe and re based
on ϕ(x).

These metrics are applied at the local level (i.e. when test-
ing individual inputs), but can be averaged out at the dataset
level, as in Sect. 5.

Note that, of the chosen predictive methods, only the deci-
sion tree model provides a natural subset to be used as xt .
Similarly, only theACVprovides a subset of features asφ(x).
Thus, a heuristic is necessary to identify xt and xe for other
methods. The procedure for determining this heuristic, as
well as the results, are summarised in Sect. 4.4.

4 Design of experiments

4.1 Datasets

We focus our evaluations on tabular data, which has been
relatively unexplored in the literature on explanation fidelity.
In order to better understand the effect of dataset properties
on the results, we chose datasets with specific characteris-
tics, rather than datasets from any particular domain. The
datasets all vary in terms of the variable types present, the
number of variables present once the dataset is encoded as
described below, the volume of the data, and, in the case of
the regression datasets, the distribution of the target variable.

A total of 14 open source datasets are used, which include
seven classification datasets:

1. Adult Income [22]
2. Breast cancer [55]
3. COMPAS [39]

4. Diabetes [2]
5. Iris [15]
6. Mushroom [45]
7. Nursery [40]

and seven regression datasets:

1. Bike Rentals [14]
2. Facebook [35, 36]
3. Housing [1]
4. Real Estate [57]
5. Solar Flare [3]
6. Student Scores [10]
7. Wine Quality [11]

A brief profile of each dataset is provided in Tables 1 and 2.
Some pre-processing was necessary for all datasets. All

classification datasetswere balanced through downsampling,
to ensure parity between classes. Where a classification
dataset had more than two prediction classes, the target vari-
able was binarized before downsampling. All categorical
variables in the datasets were one-hot encoded, and min-
max scaling was applied to all numeric variables (excluding
the target variable in regression datasets). A train-test split
of 70–30 was used, and a sample of the testing set was used
to evaluate the XAI methods.

4.2 Predictive models

In thiswork,we use predictivemodel types forwhich extract-
ing xt is unambiguous. As such, we choose to exclude
techniques for which xt cannot be easily derived, or are
unclear. For example, attention mechanisms are an increas-
ingly popular technique used to interpretmodelswithout post
hoc methods. This is a form of input selection within some
neural networks, which allows the model to focus on inputs
most relevant to the output [23].While attentionmechanisms
are sometimes used as explanation and have been shown to
be successful in some domains [53], the validity of attention
as explanation is still debated [20, 31, 54]. Thus, we choose
not to use it in this work.

We use four different algorithms of three different classes
to create predictive models. Firstly, we use a simple CART
decision tree to create both classification and regressionmod-
els, covering all datasets. For all classification datasets, we
also create logistic regression and Naïve Bayes models, and
for all regression datasets, we create linear regression mod-
els. In summary, we have conducted our evaluations using a
total of 35models: 21 classificationmodels and 14 regression
models. The accuracy of these models is shown in Tables 3
and 4.

123



International Journal of Data Science and Analytics

Table 1 A brief profile of the
classification datasets used in
this work

Dataset Variable types Num variables Training instances Class balance (%)

Adult Income Mixed 104 10,977 50.47

Breast Cancer Continuous 30 296 51.01

COMPAS Mixed 20 2793 50.13

Diabetes Continuous 8 375 50.4

Iris Continuous 4 70 52.86

Mushroom Discrete 117 5842 50.09

Nursery Discrete 27 6048 50.39

Table 2 A brief profile of the
regression datasets used in this
work

Dataset Variable types Num variables Training instances Target distribution

Bike Rentals Mixed 62 12,165 Exponential

Facebook Discrete 49 349 Exponential

Housing Mixed 23 354 Normal

Real Estate Continuous 6 289 Normal

Solar Flare Discrete 32 972 Exponential

Student Scores Mixed 58 454 Normal

Wine Quality Continuous 11 3428 Normal

Table 3 Model accuracy on all classification datasets

Dataset Decision tree Logistic regression Naïve Bayes

Adult Income 0.82 0.82 0.81

Breast Cancer 0.88 0.98 0.95

COMPAS 0.71 0.73 0.72

Diabetes 0.69 0.71 0.68

Iris 1.00 1.00 1.00

Mushroom 1.00 1.00 1.00

Nursery 1.00 1.00 1.00

Table 4 Model R-squared error on all regression datasets

Dataset Decision tree Linear regression

Bike Rentals 0.88 0.68

Facebook 0.42 0.26

Housing 0.63 0.71

Real Estate 0.55 0.45

Solar Flare 0.14 0.17

Student Scores 0.79 0.90

Wine Quality 0.28 0.29

Given their differences, the extraction of xt from each type
of model varies. We provide a summary of the used methods
in Table 5.

4.2.1 Decision tree

Given that a decision tree model is extremely structured,
identifying xt is relatively simple. When using a decision
tree model, we traverse the tree to identify the decision path
for input x and take as xt the unique set of features that fall
along the decision path (see Fig. 2). We then calculate the
ranking of all features rt based on each feature’s position
and frequency on the decision path.

4.2.2 Linear and logistic regression

Given a linear regression model:

f (x) = w0 + w1x1 + · · · + wnxn (9)

and a logistic regression model:

f (x) = 1

1 + exp(−(w0 + w1x1 + · · · + wnxn))
(10)

where w0 is the intercept and w � w1 . . . wn are the coef-
ficients applied to each feature. We consider the weights in
the top 5% of the range of w′ � |w1| . . . |wn| to be the most
relevant to themodel and take xt � xi for i ∈ n if |wi | ≥ p
where:

p = maxw′ − (maxw′ − minw′) × 0.05 (11)

We order the features in x by the absolute values of their
coefficients |w1| . . . |wn| to determine rt .
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Table 5 A brief summary of the predictive models used in this work

Model Applied To Feature extraction Ranking extraction

Decision tree All Datasets Features along the decision path
were used as true features

Features were ranked in order
and frequency of appearance on
the decision path

Logistic regression All Classification Datasets Features with coefficients in the
top 5% of the range of
coefficients

Features were ranked in order of
the absolute values of their coef-
ficients

Linear regression All Regression Datasets Features with coefficients in the
top 5% of the range of
coefficients

Features were ranked in order of
the absolute values of their coef-
ficients

Naïve Bayes All Classification Datasets Features for which the differ-
ence in likelihoods given each
class were in the top 5% of the
range of likelihoods

Features were ranked in order of
the absolute values of the differ-
ence in likelihoods given each
class

Fig. 2 Prediction of Diabetes,
using a decision tree. The
highlighted decision path shows
all the True Features xt that are
impacting the prediction for a
single instance

4.2.3 Naïve Bayes

Since a Naïve Bayes algorithm applies Bayes’ theorem with
the assumption that all features are conditionally independent
from one another, for all c ∈ C classes in a dataset and given
an instance x of length n, Pr(c | x) is calculated as:

Pr(c | x) = Pr(c)
n∏

i=1

Pr(xi | c) (12)

to determine the most probable c.
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As such, we calculate the importance of each feature i
given a Naïve Bayes model f and instance x as:

wi = Pr(xi | f (x)) − Pr(xi | 1 − f (x)) (13)

We calculate w1 . . . wn ∈ w′ and take xt � xi for i ∈ n
if |wi | ≥ p where p is calculated using Eq. 11. Since
we use a Gaussian Naïve Bayes model, the distribution of
Pr(xi | f (x)) is assumed to be Gaussian and easily calcu-
lated using the training set. We order the features in x by the
absolute values of w (i.e. |w1| . . . |wn|) to determine rt .

4.3 XAI techniques

We use and evaluate four XAI methods in this work, each
of which use different underlying mechanisms. The format
of the provided explanations also varies across the explain-
able methods. The method by which we extract xe from each
method is described in detail below. A summary of the XAI
techniques used, the feature extractionmethod and the exper-
iments that it is used for is provided in Table 6.

As specified, one of the goals of this work is to under-
stand the effect of explanation mechanisms on explanation
fidelity. Thus, we examine XAI techniques with different
underlying theoretical principles and explanation-generation
procedures. LIME uses linear, local surrogate models to
determine feature importance [41], while SHAP is grounded
in game theory and differs its approach to determining the
contribution of a feature depending on the underlying model
[27, 28]. LIME and SHAP are also among the most com-
monly used local, post hoc techniques for tabular data, and
thus, important candidates for evaluation. Although LINDA-
BNalso uses local surrogatemodels to generate explanations,
unlike LIME, it is grounded in probability theory and uses
a Bayesian Network as surrogate model [34]. Moreover,
unlike LIME and SHAP, LINDA-BN does not attempt to
determine feature importance to the prediction, but examines
the conditional dependence between all variables, including
the features. Similarly, ACV is also not a feature attribution
method, but attempts to identify which subsets of features are
necessary for the prediction [5]. Thus, we choose LINDA-
BN and ACV in contrast to the more “conventional” LIME
and SHAP.

4.3.1 LIME

As a model-agnostic method, LIME was used across all
experiments. For a user-definednumber of features s, xs ⊆ x ,
LIME returns weights for each feature in xs , i.e. w1..ws ∈
φ(x). For each x , we set s = n, generate five explanations,
and calculate |w1| . . . |ws | ∈ ϕ(x).

For i ∈ n, we take xe � xi if wi ≥ p where:

p = max ϕ(x) − (max ϕ(x) − min ϕ(x)) × 0.05 (14)

We order the features in x by the weights in ϕ(x) to extract
re.

4.3.2 SHAP

Although SHAP is model-agnostic, specific optimisations
have also been developed for tree-based and linear and
logistic regression models. Thus, we use TreeSHAP when
explaining the decision tree models and LinearSHAP when
explaining the logistic regression and linear regression mod-
els. Model-agnostic computations of SHAP are dependent
on the number of features present in the dataset; thus, we use
two different SHAP optimisations for the Naïve Bayes mod-
els. We use the ExactExplainer to explain the Naïve Bayes
classifiers for the Iris and Diabetes datasets, and the Permu-
tationExplainer to explain all other Naïve Bayes models.

SHAP provides its explanations as SHAP values, where
φ(x) is single vector of length n for regressionmodels.When
explaining classification models, φ(x) is a vector of SHAP
values for each possible class c ∈ C , where each φc(x) is of
length n. Though the underlying mechanisms of LIME and
SHAP are different, SHAP’s explanation is similar in struc-
ture to that of LIME, such that φ(x) � v1 . . . vn . Therefore,
we repeat our feature extraction method for LIME, calculat-
ing |v1| . . . |vn| ∈ ϕ(x) from five explanations. For i ∈ n, we
take xe � xi if vi ≥ p where p is determined by Eq. 14. As
with LIME, we order the features based on ϕ(x) to determine
re.

4.3.3 LINDA-BN

Although LINDA-BN is also a model-agnostic method, as
the explanation produced is a probabilistic model, it can
currently only be used to explain classifiers. Thus, it was
evaluated using only the classification models. The explana-
tion φ(x) returned by LINDA-BN is a probabilistic graphical
model that captures conditional dependencies between vari-
ables (including the prediction) and provides a posterior
probability for any given prediction class c. That is, Pr(c),
given no knowledge about the feature values in x . Given the
instance x and f (x) being explained, we can query φ(x) to
determine the impact (πi ∈ π ) of each feature xi ∈ x to f (x)
as follows:

πi (φ(x)) = |Pr( f (x)) − Pr( f (x) | xi )| (15)

In this way, we can create something approximating fea-
ture attribution explanations using LINDA-BN. As with
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LIME and SHAP, we repeat this procedure five times, gener-
ating a new Bayesian Network each time and calculating π

for eachnetwork.WhenusingLINDA-BN,ϕ(x) � π1 . . . πn ,
and we take xe � xi if πi ≥ p where p is determined by
Eq. 14. We then order the features in x based on ϕ(x) to
determine re.

4.3.4 ACV

ACV offers explanations in many formats, including the set
of all possible sufficient explanations (A-SE), the smallest
possible set of sufficient explanations (minimal sufficient
explanations, M-SE) and a Local Explanatory Importance
(LEI) score for each feature. The LEI is not directly deter-
mined by the prediction, but is a measure of how often any
given feature is present across all sets in the A-SE. Thus, we
take the A-SE as φ(x), and the smallest set in the A-SE (i.e.
the MSE) as ϕ(x). When evaluating ACV, xe = ϕ(x), and
the LEI is used as re.

Weperformed hyperparameter optimisation ofACV’s sur-
rogate model to ensure external explanation fidelity.

4.4 Identifying feature subsets

To test the completeness and correctness of the most impact-
ful features, both in the model and as determined by the
explanation, subsets of features are required. However, only
one predictivemethod and oneXAImethod used in this work
rely on feature subsets. For all other methods, these sub-
sets must be determined and extracted from x , based on the
“weights” attached to each feature.

Thus, a certain percentile of the Top-K features must be
chosen as subsets from methods that do not provide subsets.
To determine the most appropriate percentile, we conducted
tests to identify a percentile from 0.05 . . . 0.5 that would pro-
vide the most faithful explanations. For each combination of
dataset, model and XAI technique, we extracted xt and xe
using each of the ten percentiles and calculated the F1-score
to determine the match between the subsets. As with the
fidelity evaluation, this resulted in 126 experiments. In 38
experiments, the subsets produced for all percentiles were
equally faithful, i.e. the top-K percentile had no impact on
the fidelity of the subsets, and these results were set aside.
Out of the remaining 88 experiments, 0.05 produced themost
faithful subsets in the majority of experiments (see results in
Fig. 3). Of these, in 49 experiments, 0.05 produced the most
faithful subsets. In another 38, the subsets produced for all
percentiles were equally faithful, i.e. the top-K percentile
had no impact on the fidelity of the subsets. Thus, 0.05 was
chosen to determine xt and xe.

Fig. 3 Distribution of the number of experiments that produces the
most faithful explanations, over the percentile used to calculate the top-
K features. Taking the top 5% of features as the true and explanation
features generally produced the most faithful results in a significant
proportion of the 126 experiments conducted

5 Results and analysis

The average results for each combination of model and
dataset are presented in Tables 7 and 8.

5.1 Analysis of fidelity results

There are a number of notable observations to be made from
these results.

LIME’s results are highly inconsistent across the dif-
ferent experimental settings. LIME explanations generally
have high precision coupled with low-to-moderate recall
scores, indicating that a large number of relevant features
are missing from the subset, but also that few extraneous
features are included. Feature ranking correlation is also gen-
erallymoderate. There are no significant differences in LIME
performance between classification and regression model.
However, model type appears to affect results, and LIME
generally performs poorly when explaining Naïve Bayes
models. Dataset characteristics also affect LIME explana-
tion quality, and explanations are more faithful for datasets
with a larger proportion of categorical features.

SHAP explanations also change significantly under differ-
ent experimental conditions. Feature subsets derived based
on SHAP contributions showhigh precision in the results, but
poor recall and generally low-to-moderate feature rank cor-
relation. SHAP shows no difference in performance between
classification and regression datasets, but does show poor
performance when explaining logistic and linear regression
models, and exceptional precision when explaining decision
tree models. Dataset characteristics do not appear to affect
SHAP’s explanation fidelity.
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Table 7 Average precision (Pr), recall (Re) and correlation (Tau) results for XAImethods when explaining the decision tree (DT), logistic regression
(LR) and Naïve Bayes (NB) classification models

Dataset Model LIME SHAP LINDA-BN ACV

Pr Re Tau Pr Re Tau Pr Re Tau Pr Re Tau

Adult Income DT 0.95 0.15 0.24 1.00 0.19 0.59 0.47 0.42 0.07 0.62 0.15 0.43

LR 1.00 1.00 0.75 0.32 0.34 0.11 0.00 0.46 0.01 0.09 0.09 0.14

NB 0.15 0.15 0.48 0.68 0.68 0.67 0.03 0.91 0.04 0.22 0.24 0.20

Breast Cancer DT 1.00 0.43 0.35 1.00 0.43 0.62 0.09 0.43 0.10 0.26 0.25 0.30

LR 0.75 0.24 0.52 0.60 0.17 0.53 0.24 0.57 0.06 0.38 0.20 0.29

NB 0.41 0.42 0.61 0.40 0.37 0.69 0.05 0.53 −0.07 0.18 0.20 0.44

COMPAS DT 0.96 0.26 0.45 1.00 0.26 0.59 0.33 0.11 0.13 0.70 0.35 0.34

LR 0.56 0.57 0.69 0.50 0.55 0.39 0.01 0.24 −0.04 0.32 0.55 0.18

NB 0.06 0.05 0.35 0.82 0.82 0.52 0.11 0.55 0.01 0.25 0.38 0.21

Diabetes DT 0.89 0.30 0.49 1.00 0.35 0.61 0.49 0.42 0.05 0.52 0.35 0.28

LR 0.53 0.54 0.53 0.50 0.51 0.55 0.25 0.66 0.02 0.36 0.48 0.23

NB 0.64 0.64 0.63 0.82 0.83 0.80 0.24 0.60 −0.07 0.27 0.42 0.20

Iris DT 1.00 1.00 0.71 1.00 1.00 1.00 0.23 0.88 0.03 0.75 1.00 0.24

LR 0.85 0.88 0.83 0.71 0.81 0.72 0.24 0.96 −0.01 0.25 0.50 0.74

NB 0.81 0.75 0.83 0.94 0.94 0.88 0.27 0.96 −0.01 0.44 0.63 0.58

Mushroom DT 0.47 0.06 0.20 0.94 0.34 0.54 0.05 1.00 0.00 0.24 0.06 0.15

LR 1.00 1.00 0.86 0.48 0.58 0.33 0.01 1.00 0.00 0.29 0.58 0.11

NB 0.06 0.20 0.44 0.86 0.60 0.34 0.02 0.97 0.00 0.14 0.11 0.24

Nursery DT 1.00 1.00 0.27 1.00 1.00 1.00 0.04 1.00 0.00 0.13 0.26 0.18

LR 1.00 1.00 0.30 1.00 1.00 0.81 0.04 1.00 0.00 0.14 0.27 0.10

NB 1.00 1.00 0.78 1.00 1.00 0.88 0.04 1.00 0.00 0.14 0.29 0.11

Bold values indicate the best performance for each metric in each row

Table 8 Average precision (Pr),
recall (Re) and correlation (Tau)
results for XAI methods when
explaining the decision tree
(DT) and linear regression (LR)
regression models

Dataset Model LIME SHAP ACV

Pr Re Tau Pr Re Tau Pr Re Tau

Bike Rentals DT 0.74 0.07 0.38 0.99 0.06 0.51 0.47 0.06 0.22

LR 1.00 0.88 0.78 1.00 0.14 0.63 0.06 0.01 −0.16

Facebook DT 1.00 0.18 0.50 0.92 0.17 0.59 0.34 0.03 0.37

LR 1.00 1.00 0.74 1.00 0.33 0.59 0.00 0.00 0.17

Housing DT 0.81 0.11 0.34 1.00 0.14 0.55 0.78 0.12 0.43

LR 0.53 0.33 0.44 0.44 0.23 0.45 0.18 0.12 0.41

Real Estate DT 1.00 0.33 0.48 1.00 0.31 0.56 0.84 0.27 0.12

LR 0.40 0.48 0.44 0.30 0.30 0.45 0.40 0.43 0.10

Solar Flare DT 0.89 0.16 0.51 0.96 0.22 0.84 0.21 0.03 0.33

LR 1.00 1.00 0.92 0.16 0.16 0.51 0.00 0.00 −0.02

Student Results DT 0.96 0.56 0.19 1.00 0.57 0.48 0.77 0.43 0.43

LR 1.00 1.00 0.91 0.08 0.08 0.61 0.00 0.00 −0.30

Wine Quality DT 0.99 0.33 0.59 1.00 0.31 0.70 0.45 0.18 0.10

LR 0.43 0.52 0.65 0.34 0.39 0.68 0.20 0.22 −0.08

Bold values indicate the best performance for each metric in each row
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Table 9 The Wilcoxon signed-rank test was applied to the results of the work on the classification datasets

XAI techniques Precision Recall F1-score Rank correlation

T z p T z p T z p T z p

LIME & SHAP 64,472 −6.6 0.00 62,995 −4.9 0.00 81,245 −5.4 0.00 542,663 −12.9 0.00

LIME & LINDA-BN 101,122 −28.8 0.00 111,778 −11.5 0.00 124,550 −27.6 0.00 9730 −37.1 0.00

LIME & ACV 73,746 −25.5 0.00 97,228 −15.4 0.00 155,344 −20.9 0.00 198,713 −29 0.00

SHAP & LINDA-BN 47,991 −31.6 0.00 108,833 −8.1 0.00 62,908 −30.8 0.00 3148 −37.4 0.00

SHAP & ACV 43,307 −29.1 0.00 74,658 −19.6 0.00 109,395 −25.4 0.00 46,797 −35.5 0.00

LINDA-BN & ACV 385,472 −11.1 0.00 82,189 −23.1 0.00 392,239 −11.6 0.00 83,384 −29.7 0.00

We find that there is a statistically significant difference in explanation fidelity across all techniques, and when using all metrics

Table 10 The Wilcoxon signed-rank test was applied to the results of the work on the regression datasets

XAI techniques Precision Recall F1-score Rank corrrelation

T z p T z p T z p T z p

LIME & SHAP 19,874 −9.8 0.00 11,408 −13.5 0.00 16,542 −13.1 0.00 190,176 −17.9 0.00

LIME & ACV 31,400 −22 0.00 34,864 −19.6 0.00 39,536 −20.2 0.00 118,162 −24.6 0.00

SHAP & ACV 13,599 −18.5 0.00 28,498 −13.3 0.00 29,000 −14.4 0.00 36,792 −30 0.00

We find that there is a statistically significant difference in explanation fidelity across all techniques, and when using all metrics

The faithfulness of LINDA-BN’s explanations appears to
be related to model confidence in predictions. LINDA-BN’s
explanations generally had correctness, with respect to both
correctness of the subset and the correctness of the feature
ranking. However, recall scores for LINDA-BN’s explana-
tions were generally high. Closer inspection shows that the
set xe returned by LINDA-BN contains numerous features.
Thus, simply by volume, this set includes many features that
are also present in xt . This does not appear to be related
to model type, or dataset characteristics, but the prediction
probability associated with a prediction. This phenomenon
was most common when explaining models trained on the
Iris, Mushroom and Nursery datasets, all of which produced
predictions with high prediction probabilities.

ACV shows little to no consistency in performance,
especially when explaining the classification models. ACV
explanations generally have low-to-moderate scores for all
measures. In particular, ACV generally performs poorly
when explaining linear regression models, but otherwise
shows little consistency in performance.

We examine these phenomena further in Sect. 6.

5.2 Comparison of XAI techniques

There were notable differences in XAI technique perfor-
mance for each of the three fidelity criteria examined. We
applied the Wilcoxon Signed Rank test with a significance
level of p < 0.05, to determine whether this difference in
performance is statistically significant. Our results Tables 9
and 10) show that there is a significant difference in the

performance of the four techniques. Additionally, we also
compute the F1-score from recall and precision. We find
that the differences between XAI techniques on precision
and recall do not appear to be a trade-off, as the F1-scores
are also distinct across the XAI techniques.

Various factors appear to underlie these differences.
LIME’s and SHAP’s performance differs significantly given
the underlying model, particularly when the precision metric
is used (i.e. in correctness of the subset of most important
features). While SHAP performs best for the decision tree
model, it must be noted that LIME’s performance is com-
parable. In reverse, LIME’s explanations for the logistic and
linear regression models are more faithful than that of SHAP.
Similarly, SHAP clearly outperforms LIMEwhen explaining
Naïve Bayes models. This is noteworthy, as it suggests that
the type of predictive model used should be taken into con-
sideration when choosing a post hoc XAI technique. Though
LIME and SHAP are model-agnostic methods, the charac-
teristics of the underlying model affect explanation fidelity
when using these techniques. LINDA-BN and ACV gener-
ally produce less precise explanations than LIME and SHAP.

LINDA-BN performed best with respect to the com-
pleteness of the subsets. The low precision scores that
generally pair with high recall scores, and close examina-
tion of LINDA-BN’s explanations suggest that this is likely
because LINDA-BN’s feature “weights" are often similar.
This is especially true when the model is confident regard-
ing a prediction. The other XAI methods generally produce
less complete explanations than LINDA-BN. However, the
consistently low correlation between rt and re suggests that
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LINDA-BN simply does not perform adequately as a feature
attribution technique. Thus, while LINDA-BN generally has
higher recall than the other methods, this cannot be said to
be an advantage of LINDA-BN.

Feature ranking correlation across all XAI methods was
poor. These results suggest that none of the XAI methods
could fully capture the true importance of all features to
the model. This is particularly noteworthy when considering
LIME and SHAP as they were intended to generate feature
attribution explanations, which is closely tied to feature rank-
ing. ACV’s low feature ranking correlation suggests that the
LEI scores, which were used to determine re, are not fully
aligned with the importance of the model. It must be noted
that the LEI is suggested by the creators of ACV to show the
necessity of each feature to the prediction [5], and thus, it
may not fully align with its importance to the model.

Overall,wenote significant differences in the performance
of the four XAI methods. ACV was the most consistent
method, though it generally performed poorly across all
measures, indicating that it could not fully capture the fea-
tures most important to themodel. LINDA-BN’s explanation
fidelity is more consistent across model types than that of
LIMEor SHAP, but generally does not provide precise expla-
nations. While LIME and SHAP generally provide precise
explanations, the explanations they offer may not be com-
plete. Moreover, the characteristics of the underlying model
and data appear to affect the faithfulness of LIME and SHAP.

6 Discussion

There are two key insights to be derived from these results.
Firstly, the explanation mechanism itself affects the expla-
nation quality. This is particularly noticeable when using
the different optimisations of SHAP. Though they all share
a similar theoretical grounding, the implementation of the
explanation mechanism greatly affects explanation quality.
Thus, it is key to note that choice of XAI method should
consider the potential implications of the explanation mech-
anism, not simply its grounding. Moreover, as noted in
section 5.2, it is apparent that there are significant differences
between the fidelity of different post hoc techniques. This
suggests that, though a number ofmodel-agnostic techniques
are open source and easily accessible, machine learning
expertise may be needed to choose the most appropriate
XAI method for the task. It may also be more appropriate to
use model-specific XAI techniques, rather than the model-
agnostic techniques applied in this work.

Secondly, explanation quality is heavily impacted by all
aspects of the technical setting, including data and the chosen
predictive model. The strengths and weaknesses of the dif-
ferent XAI mechanisms, as well as their causes, are explored
in Sects. 6.2, 6.3, 6.4 and 6.5. While these methods are all

model-agnostic, their performance across different predictive
model types is highly inconsistent.

These findings indicate clear implications for the use of
XAI in real-life settings. In this work, the class of the model
used is known and, the models themselves are fully trans-
parent. In cases where the predictive model is considered to
be intellectual property, the category of the predictive model
may be unknown to end users [43]. Given the clear impacts
of model type on explanation quality, it will likely become
difficult to choose the most appropriate XAI method for the
task without knowledge of model type. This then becomes a
consideration not only for the choice of an XAI method but
also for the choice of the predictive model.

6.1 Correctness versus completeness

There is a clear distinction between the precision and recall
scores for almost all XAI techniques evaluated. In particular,
precision results for LIME and SHAP are generally higher
than recall. That is, while the features most highly weighted
by LIME and SHAP do not necessarily include all relevant
features (i.e. the explanation is not complete), in general, all
features weighted highly by the explanation are relevant to
the model (i.e. explanation correctness is high). Thus, a user
applying LIME and SHAP explanations can be confident that
highly weighted features are truly relevant to the model, but
must also be aware that other factors could have impacted on
the model prediction.

LINDA-BNgenerally has low precision, often pairedwith
high recall. This is a characteristic of the permutationmethod
of LINDA-BN. Because LINDA-BN was intended to deter-
mine the conditional dependence between variables within a
small neighbourhood, the variance ε of permutations is gen-
erally low. Thus, in a neighbourhood where small changes in
feature values do not necessarily affect the model’s predic-
tion, the Bayesian Network returned by LINDA-BN reflects
this.When xe is extracted from thenetworkusingourmethod,
Pr( f (x) | xi ) is the same or similar for a large number of
features, and a large set of features is returned as xe. Such a
result indicates that a user can have strong confidence in the
original model’s prediction [34]. However, a faithful feature
attribution explanation cannot be extracted from LINDA-BN
for such a prediction.

All XAI techniques generally show a low-to-moderate
correlation between rt and re. This is particularly notewor-
thy when using LIME and SHAP, which explicitly attempt
to explain the importance of each feature to the prediction.
Combined with the findings regarding precision and recall,
we can come to the conclusion that while a user of LIME
and SHAP can be confident that highly ranked features are
relevant, they must be aware that the ranking of features as a
wholemay not be correct.Moreover, neither can they assume
that they have identified all relevant features.
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It must also be noted that LINDA-BN and ACV were not
intended to provide feature attribution explanations. Their
internal explanation-generation mechanisms reflect this, and
thus, it is not surprising that both show low correlation scores.
We explore this further in Sects. 6.4 and 6.5.

6.2 LIME

6.2.1 Impact of surrogate model

Notably, LIME performed poorly when explaining Naïve
Bayes models. It is important to note that Gaussian Naïve
Bayeswas used in this work, which assumes that the relation-
ship between features and the target variable has a Gaussian,
i.e. nonlinear, distribution. We demonstrate this using ICE
plots in Fig. 4.

This issue stems from the choice of surrogate model for
LIME.LIMEuses aRidgeRegressionmodel as a surrogate to
mimic the computations of the original model, returning the
coefficients of the surrogatemodel asφ(x).Whenfitting non-
linear relationships betweenvariables, LinearRegression and
associatedmethods increase the coefficients of less important
features in order to capture complex interaction and cancella-
tion effects [28]. Thus, the coefficients of the model become
more nuanced and can no longer be interpreted purely as
feature importance. Therefore, when using such models as
a surrogate for a predictive model, if the original model
assumes a nonlinear relationship between variables, the coef-
ficients of the surrogate model can no longer be interpreted
simply as importance. One exception to this rule is in cases
where the dataset contains all or mostly categorical features.
When explaining Naïve Bayes, LIME’s precision was gen-
erally poorest for the Breast Cancer and Diabetes datasets,
which have only continuous variables. LIME permutes cate-
gorical features and continuous features differently, resulting
in smaller variation in feature values, and thus in the predic-
tion, when permuting categorical variables. And so, LIME is
able to compute their importance more accurately.

6.2.2 Impact of permutation

As noted, LIME’s permutation procedure differs for categor-
ical and continuous features. Therefore, LIME explanations
are more sound for datasets with a greater proportion of
categorical features. This is especially true when explain-
ing Linear Regression models, for which LIME performs
best given that both the predictive model and the surrogate
model are of the same class.When explaining Linear Regres-
sion models, LIME’s precision falls below 0.5 for only two
datasets, both of which have only continuous features (Real
Estate and Wine Quality). The models trained on the Face-
book and Solar Flare datasets, which have all categorical
features, and the Student Score dataset, which has a high

proportion of categorical features, have both perfect preci-
sion and perfect recall.

We also note that the length of the input does not affect the
result. LIME’s explanation stability is known to be related
to input length, due to the nature of LIME’s permutation
method [46, 50]. It is reasonable to expect that a decrease
in explanation consistency would affect the correctness of
the explanation. However, when considering LIME’s fidelity
results, particularly explanation correctness, such a relation-
ship is absent. This could suggest that our strategy of taking
an average explanation from multiple explanations reduced
the impacts of instability. The datasets with the longest inputs
in this study are also composed primarily of categorical vari-
ables, due to the encoding method. It is also possible that the
impact of the permutation method was reduced because of
the large proportion of categorical variables, for which there
is smaller variability in permutations.

Overall, our results suggest that thefidelity ofLIMEexpla-
nations are determined by the types of variables used, as
well as the linearity of the relationship between variables
and model prediction.

6.3 SHAP

It is important to note that SHAP values are not defined as the
importance of a feature to the model. Rather, SHAP values
indicate the contribution of that feature in moving the actual
prediction away from the expected value of the prediction,
i.e. the average value of the target variable in the training
set. In our evaluations, we compared SHAP values against
the importance of the feature to the model. In the case of
decision trees, we found that SHAP values aligned closely
with the model regarding feature importance, likely because
position in the tree matters both to the prediction and Tree-
SHAP’s calculation of SHAP values [28]. On the other hand,
LinearSHAP assumes that the model treats features in the
dataset as conditionally independent, and calculates SHAP
values as for a given feature xi ∈ x as [27]:

φi ( f , x) = wi (xi − E[xi ]) (16)

Therefore, SHAP values, when produced by LinearSHAP,
do not fully align with model importance.

Given this, we suggest that SHAP may be more useful for
supporting end user decision-making, rather than data engi-
neers or data scientists investigating the quality of a model.

6.4 LINDA-BN

LINDA-BNwas designed to aid in understanding the depen-
dencies between variables and determining the truthfulness
of a prediction. Thus, rather than returning a static explana-
tion, it returns a Bayesian Network describing the relation-
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Fig. 4 ICE plots showing the relationship between the model prediction and a single feature for the COMPAS (a–c) and the Nursery (d–f) datasets.
As the nonlinearity of the relationship between variables increases, the fidelity of the explanation decreases

ships between features within a small neighbourhood. This
network can be further queried and explored to generatemore
insights into a prediction [34]. Generalising this explanation
to a simple feature attribution explanation over-simplifies
the information that this Bayesian Network provides, and
so should not be the sole purpose of LINDA-BN.

However, in some cases, approximating the impact of
each feature on the target variable does provide useful
insights, even when the results suggest that the explanation
is not sound. For example, as previously noted, the feature
attribution scores extracted from the network returned by
LINDA-BN could be used to determine the certainty of an
explanation. Therefore, we suggest that the greatest strength
of LINDA-BN is not in attempting to extract a single type
of explanation from the Bayesian Network, but in querying
and exploring the relationships between the variables using
various methods, including the one presented in this work.

It must be noted, however, that understanding LINDA-
BN’s explanations requires statistical knowledge and an
understanding of Bayesian Networks. While a technical
expert may have this knowledge, a domain expert in another
field may not. Thus, LINDA-BN’s use for an end-user must
also be evaluated prior to implementation.

6.5 ACV

There are several notable insights that can be derived from the
described results. Firstly, extensive hyperparameter optimi-
sation was conducted when training the surrogate model for
ACV, resulting in relatively high surrogate model accuracy
with respect to the original model’s predictions. However,
our results suggest that this high external fidelity does not
translate into high internal fidelity, particularly at the local
level.

Secondly, in cases where no feature subset meets π , no
A-SE explanations are returned by ACV. As we use the A-
SE to derive both the M-SE (which we take as φ(x)) and
the LEI (which is used to determine re), in cases where no
explanationmeets theπ -level, we get poor scores for all three
measures.

Finally, it is important to note that, although we used ACV
as a post hoc explanationmethod in thiswork, ACVcan func-
tion as predictive model in its own right. If used in this way,
ACV would no longer have to mimic a distinct and sepa-
rate model and can provide faithful explanations for its own
behaviour. So, while ACVmay underperform as a local, post
hoc method in comparison with LIME and SHAP, its appli-
cation as a self-explaining predictivemodel can eliminate the
need for post hoc explanations altogether, which is generally
more desirable [43].
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Table 11 A brief summary of the strengths and weaknesses of the four XAI methods tested

Strengths Weaknesses Should be used for

LIME Generally precise in identifying
features

Generally, does not identify all
important features

Model types with relatively
distinct relationships between
features and prediction

Performs well for decision tree
and linear and logistic
regression models

Does not correctly rank
features based on importance

Datasets with mostly
categorical variables

More accurate for datasets with
higher proportion of
categorical variables

Cannot accurately work with
Naïve Bayes model -
relationship between
prediction and features are
too nonlinear

Contexts in which not all
relevant variables may be
important (for example, not in
medical decision-making)

More continuous variables
result in poorer explanation
correctness

Explanation quality is subject
to dataset characteristics, and,
in some cases, model
characteristics

SHAP Generally precise in identifying features Generally, does not identify all
important features

Not for investigations of model
quality or model fairness -
performance may be
inconsistent across model
types

Performs well for decision tree
and Naïve Bayes models

Does not correctly rank
features based on importance

End user decision-making

Cannot accurately work with
linear and logistic regression
models

Contexts in which not all
relevant variables may be
important (for example, not in
medical decision-making)

Explanation quality is subject
to model type and SHAP
implementation for model
type

LINDA-BN Fidelity is relatively consistent
across model types

Cannot always distinguish
between most important and
least important features

Not feature attribution

Explanations cannot be taken
as accurate feature
attribution/feature ranking

Model debugging and
determining model
confidence with no ground
truth (i.e. in context)

ACV Can show feature necessity to
prediction (i.e. features
without which predictions
cannot be accurately made)

Cannot always distinguish
between most important and
least important features

A self-explaining model - does
not function well post hoc

Explanations cannot be taken
as accurate feature
attribution/feature ranking

6.6 Summary of insights

Basedon the insights identified in this section,we consolidate
the strengths and weaknesses of the XAI techniques in Table
11.

These strengths and weaknesses can assist a data scien-
tist or a practitioner in choosing an XAI technique to use.

While these consolidated findings are not recommendations
or guidelines for use, to the best of our knowledge, this is
the first known attempt at moving towards such guidelines.
Future work performing benchmarks of XAI performance
can be useful in producing more concrete recommendations
for XAI use in practice and in data science.
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6.7 Limitations and future work

There are a number of limitations associated with our work.
Firstly, we have evaluated XAI methods using only tabular
data. While evaluating explanation fidelity for this form of
data is relatively under-explored in the literature, it is unclear
how our findings in this work may be generalised for other
dataset types. In particular, Naïve Bayes models are com-
monly used in text classification. It is currently unclear how
well our findings regarding the fidelity of linear explanation-
generationmechanismswould apply forNaïveBayesmodels
trained on text data, rather than tabular data.

Secondly, in this work, we evaluate explanations by using
fully transparent predictive models. Thus, we focus on the
behaviours of the models and XAI techniques applied, rather
than the classes of the models. It is key to note that high
explanation fidelity for the relatively simple models we have
used in this work does not necessarily translate into high
explanation fidelity for other, more complicated predictive
models. However, the findings of this work can provide guid-
ance in selecting an appropriate XAI method, if considering
the model or dataset behaviours, rather than model class. For
example, if a model is known to assume a nonlinear relation-
ship between features and target variable, such as with Naïve
Bayes models, linear surrogate models may not be able to
accurately capture those relationships. It is noted in [6] that
an adversarial party could manipulate choice of explainable
technique or explanation generation parameters in order to
produce an explanation of benefit to them—a method which
may be difficult for an external auditor or examiner to detect.
However, with a clearer understanding of how explanation
generation mechanisms interact with predictive techniques,
such manipulations can be detected.

However, this work and the fidelity evaluation method
used within could serve as the first step in developing a
fidelity evaluation method for other contexts. As noted ear-
lier, current fidelity evaluation methods at the local level
performed poorlywhen applied tomore complex tabular data
than those used in this work. Future work could use the find-
ings of this work in order to develop a new fidelity evaluation
method compatible with the more complex time series tab-
ular data, and which can examine explanations of black box
predictive models. Our findings in this work regarding the
behaviour of XAI techniques under certain situations can be
used to validate such a method. We also suggest that glass
box methods can be used as a proxy for black box models in
developing a new evaluation method.

Similarly, we must also note that the evaluation meth-
ods outlined in this work necessitates that explanations be
provided or can be reduced to some form of feature attri-
bution or ranking. Though we found that LINDA-BN and
ACV generally showed poor fidelity, this is because we sim-
plified or focused on one aspect of the explanation, rather

than assessing the explanation as a whole. Therefore, we
suggest that future work should also exploremethods to eval-
uate the fidelity of other forms of explanations. This includes
not only non-static, queryable explanations, such as LINDA-
BN’s explanations, but also counterfactuals, among others.

Furthermore, we suggest that the findings of this work
could be used to motivate and inform future XAI devel-
opment. In this work, we have outlined the strengths and
weaknesses of each technique and identified potential causes
for these. FutureXAI development could use the insights pre-
sented in this work to develop XAI techniques that address
these weaknesses.

Finally, it is important to note that the findings in this work
are only the first step in determining the suitability of an XAI
technique for a specific situation. When evaluating the XAI
techniques used, we consider only the technical context of
the explanation, such as dataset characteristics and the type
of model used. This fails to consider how an explanation
might be understood or perceived by a user. For example,
past user studies have demonstrated that feature attribution
explanations are often not helpful for users performing spe-
cific tasks [42, 52, 58], instead suggesting the rule-based
or counterfactual-based explanations are most useful [9, 42,
52]. Moreover, some explainable methods, such as LINDA-
BN, produce an explanation that a user must have a certain
level of statistical knowledge to accurately understand, and
so may not be useful for an end user. Thus, the use of cogni-
tivemetrics, used to gauge explanation qualitywith respect to
a human user [26], also becomes necessary given a context.

7 Conclusion

Given the increasing use of explainable AImethods to under-
stand the decision-making of opaque predictive models, it
becomes necessary to understand how well an explainable
method can interpret any given model. However, evalua-
tion methods to achieve this still remain an open question
in the field of XAI, particularly for tabular data. In this work,
we examine and evaluate the explanations of four model-
agnostic, open-source XAI methods, using fully transparent
“glass box”models trained on fourteen open-source datasets.
We examined the various dataset characteristics and model
behaviours that affected the faithfulness of an explanation to
the underlying model.

Overall, our results suggest that model-agnostic XAI
methods show significant differences in explanation quality
under different technical contexts. This is likely to necessi-
tate technical expert involvement and close examination of
techniques when deploying XAI techniques. Our key find-
ings are as follows:

• the explanation mechanism, i.e. the engineering of the
XAI method, has a strong effect on explanation quality,
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whichmay once again require a technical expert to exam-
ine and assess whether a given mechanism is suitable for
the technical context; and

• there is no one “best”,most faithful XAImethod, even for
a single dataset or model type—all of the methods show
significant differences in performance across datasets and
models.

In addition to these insights, we also specifically highlight
some characteristics of all four methods that affect expla-
nation quality. The insights we present in this paper are
simply the first step in understanding the strengths and weak-
nesses of XAI methods in certain contexts. More extensive
experiments can help in understanding the suitability of XAI
techniques when used with different datasets and model
types, and, importantly, for different user groups.
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